L(s) = 1 | + (5 + 5i)2-s + 34i·4-s + (−40 − 40i)7-s + (−90 + 90i)8-s − 100·11-s + (−205 + 205i)13-s − 400i·14-s − 356·16-s + (−235 − 235i)17-s + 72i·19-s + (−500 − 500i)22-s + (−340 + 340i)23-s − 2.05e3·26-s + (1.36e3 − 1.36e3i)28-s + 450i·29-s + ⋯ |
L(s) = 1 | + (1.25 + 1.25i)2-s + 2.12i·4-s + (−0.816 − 0.816i)7-s + (−1.40 + 1.40i)8-s − 0.826·11-s + (−1.21 + 1.21i)13-s − 2.04i·14-s − 1.39·16-s + (−0.813 − 0.813i)17-s + 0.199i·19-s + (−1.03 − 1.03i)22-s + (−0.642 + 0.642i)23-s − 3.03·26-s + (1.73 − 1.73i)28-s + 0.535i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.154851927\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.154851927\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-5 - 5i)T + 16iT^{2} \) |
| 7 | \( 1 + (40 + 40i)T + 2.40e3iT^{2} \) |
| 11 | \( 1 + 100T + 1.46e4T^{2} \) |
| 13 | \( 1 + (205 - 205i)T - 2.85e4iT^{2} \) |
| 17 | \( 1 + (235 + 235i)T + 8.35e4iT^{2} \) |
| 19 | \( 1 - 72iT - 1.30e5T^{2} \) |
| 23 | \( 1 + (340 - 340i)T - 2.79e5iT^{2} \) |
| 29 | \( 1 - 450iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 428T + 9.23e5T^{2} \) |
| 37 | \( 1 + (-755 - 755i)T + 1.87e6iT^{2} \) |
| 41 | \( 1 - 950T + 2.82e6T^{2} \) |
| 43 | \( 1 + (-1.22e3 + 1.22e3i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + (-320 - 320i)T + 4.87e6iT^{2} \) |
| 53 | \( 1 + (505 - 505i)T - 7.89e6iT^{2} \) |
| 59 | \( 1 - 6.30e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 3.80e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (340 + 340i)T + 2.01e7iT^{2} \) |
| 71 | \( 1 + 3.40e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (415 - 415i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 + 6.73e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (-680 + 680i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 - 2.25e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (1.61e3 + 1.61e3i)T + 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.55421471218701869351066010068, −11.69213355904975717987345693736, −10.23430204421217441767462945683, −9.119588414941252156007962277407, −7.60390544468379299004763625416, −7.10114394777268596358748759672, −6.13959574203618738266371137518, −4.89533719470764430401358474290, −4.08933322307680087666755610289, −2.72800090046431820289679764458,
0.23231090340722660852265594036, 2.31446904081383294403819208594, 2.92995721537934280711402688583, 4.35928677832489144257749067065, 5.43413550648884262308046698042, 6.26406391894852383770534352395, 7.982799949614261600375029719650, 9.487072320517781640050936444603, 10.26974151151785631110932435666, 11.06389114268157560372897216401