Properties

Label 225.4.k.d.124.5
Level $225$
Weight $4$
Character 225.124
Analytic conductor $13.275$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,4,Mod(49,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 124.5
Character \(\chi\) \(=\) 225.124
Dual form 225.4.k.d.49.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.90044 - 1.09722i) q^{2} +(-5.19206 + 0.206141i) q^{3} +(-1.59221 - 2.75778i) q^{4} +(10.0934 + 5.30509i) q^{6} +(2.39547 + 1.38302i) q^{7} +24.5436i q^{8} +(26.9150 - 2.14059i) q^{9} +(26.3295 - 45.6040i) q^{11} +(8.83533 + 13.9904i) q^{12} +(17.7132 - 10.2267i) q^{13} +(-3.03497 - 5.25672i) q^{14} +(14.1921 - 24.5814i) q^{16} -3.66084i q^{17} +(-53.4992 - 25.4637i) q^{18} +95.6705 q^{19} +(-12.7225 - 6.68694i) q^{21} +(-100.075 + 57.7786i) q^{22} +(-77.8047 + 44.9206i) q^{23} +(-5.05943 - 127.432i) q^{24} -44.8840 q^{26} +(-139.303 + 16.6623i) q^{27} -8.80825i q^{28} +(-113.890 + 197.264i) q^{29} +(-139.569 - 241.741i) q^{31} +(116.100 - 67.0306i) q^{32} +(-127.303 + 242.206i) q^{33} +(-4.01675 + 6.95722i) q^{34} +(-48.7576 - 70.8175i) q^{36} -273.725i q^{37} +(-181.816 - 104.972i) q^{38} +(-89.8599 + 56.7492i) q^{39} +(-32.4323 - 56.1744i) q^{41} +(16.8414 + 26.6676i) q^{42} +(-362.658 - 209.381i) q^{43} -167.688 q^{44} +197.151 q^{46} +(120.125 + 69.3544i) q^{47} +(-68.6190 + 130.554i) q^{48} +(-167.674 - 290.421i) q^{49} +(0.754647 + 19.0073i) q^{51} +(-56.4062 - 32.5661i) q^{52} -197.063i q^{53} +(283.020 + 121.181i) q^{54} +(-33.9444 + 58.7934i) q^{56} +(-496.727 + 19.7216i) q^{57} +(432.884 - 249.926i) q^{58} +(370.552 + 641.814i) q^{59} +(-244.234 + 423.026i) q^{61} +612.554i q^{62} +(67.4346 + 32.0964i) q^{63} -521.263 q^{64} +(507.687 - 320.620i) q^{66} +(356.341 - 205.734i) q^{67} +(-10.0958 + 5.82882i) q^{68} +(394.707 - 249.269i) q^{69} -310.343 q^{71} +(52.5377 + 660.591i) q^{72} -51.0260i q^{73} +(-300.338 + 520.200i) q^{74} +(-152.327 - 263.839i) q^{76} +(126.143 - 72.8286i) q^{77} +(233.040 - 9.25240i) q^{78} +(603.999 - 1046.16i) q^{79} +(719.836 - 115.228i) q^{81} +142.342i q^{82} +(-783.945 - 452.611i) q^{83} +(1.81574 + 45.7330i) q^{84} +(459.475 + 795.833i) q^{86} +(550.661 - 1047.68i) q^{87} +(1119.29 + 646.220i) q^{88} -663.633 q^{89} +56.5752 q^{91} +(247.763 + 143.046i) q^{92} +(774.485 + 1226.36i) q^{93} +(-152.194 - 263.608i) q^{94} +(-588.982 + 371.960i) q^{96} +(-628.159 - 362.668i) q^{97} +735.905i q^{98} +(611.039 - 1283.79i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 72 q^{4} - 62 q^{6} - 34 q^{9} + 46 q^{11} + 42 q^{14} - 648 q^{16} - 1116 q^{19} + 360 q^{21} - 96 q^{24} + 1432 q^{26} + 592 q^{29} - 488 q^{31} + 250 q^{34} - 4798 q^{36} - 1268 q^{39} - 94 q^{41}+ \cdots - 4640 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.90044 1.09722i −0.671909 0.387927i 0.124891 0.992170i \(-0.460142\pi\)
−0.796799 + 0.604244i \(0.793475\pi\)
\(3\) −5.19206 + 0.206141i −0.999213 + 0.0396718i
\(4\) −1.59221 2.75778i −0.199026 0.344723i
\(5\) 0 0
\(6\) 10.0934 + 5.30509i 0.686769 + 0.360965i
\(7\) 2.39547 + 1.38302i 0.129343 + 0.0746763i 0.563275 0.826269i \(-0.309541\pi\)
−0.433932 + 0.900945i \(0.642874\pi\)
\(8\) 24.5436i 1.08468i
\(9\) 26.9150 2.14059i 0.996852 0.0792811i
\(10\) 0 0
\(11\) 26.3295 45.6040i 0.721694 1.25001i −0.238626 0.971112i \(-0.576697\pi\)
0.960320 0.278900i \(-0.0899698\pi\)
\(12\) 8.83533 + 13.9904i 0.212545 + 0.336556i
\(13\) 17.7132 10.2267i 0.377905 0.218183i −0.299002 0.954253i \(-0.596654\pi\)
0.676906 + 0.736069i \(0.263320\pi\)
\(14\) −3.03497 5.25672i −0.0579378 0.100351i
\(15\) 0 0
\(16\) 14.1921 24.5814i 0.221751 0.384085i
\(17\) 3.66084i 0.0522285i −0.999659 0.0261142i \(-0.991687\pi\)
0.999659 0.0261142i \(-0.00831336\pi\)
\(18\) −53.4992 25.4637i −0.700549 0.333436i
\(19\) 95.6705 1.15517 0.577587 0.816329i \(-0.303994\pi\)
0.577587 + 0.816329i \(0.303994\pi\)
\(20\) 0 0
\(21\) −12.7225 6.68694i −0.132204 0.0694862i
\(22\) −100.075 + 57.7786i −0.969825 + 0.559929i
\(23\) −77.8047 + 44.9206i −0.705365 + 0.407243i −0.809343 0.587337i \(-0.800176\pi\)
0.103977 + 0.994580i \(0.466843\pi\)
\(24\) −5.05943 127.432i −0.0430313 1.08383i
\(25\) 0 0
\(26\) −44.8840 −0.338556
\(27\) −139.303 + 16.6623i −0.992922 + 0.118766i
\(28\) 8.80825i 0.0594501i
\(29\) −113.890 + 197.264i −0.729272 + 1.26314i 0.227919 + 0.973680i \(0.426808\pi\)
−0.957191 + 0.289456i \(0.906526\pi\)
\(30\) 0 0
\(31\) −139.569 241.741i −0.808625 1.40058i −0.913816 0.406128i \(-0.866879\pi\)
0.105191 0.994452i \(-0.466455\pi\)
\(32\) 116.100 67.0306i 0.641370 0.370295i
\(33\) −127.303 + 242.206i −0.671536 + 1.27766i
\(34\) −4.01675 + 6.95722i −0.0202608 + 0.0350928i
\(35\) 0 0
\(36\) −48.7576 70.8175i −0.225730 0.327859i
\(37\) 273.725i 1.21622i −0.793852 0.608110i \(-0.791928\pi\)
0.793852 0.608110i \(-0.208072\pi\)
\(38\) −181.816 104.972i −0.776172 0.448123i
\(39\) −89.8599 + 56.7492i −0.368951 + 0.233004i
\(40\) 0 0
\(41\) −32.4323 56.1744i −0.123539 0.213975i 0.797622 0.603157i \(-0.206091\pi\)
−0.921161 + 0.389182i \(0.872758\pi\)
\(42\) 16.8414 + 26.6676i 0.0618733 + 0.0979738i
\(43\) −362.658 209.381i −1.28616 0.742565i −0.308193 0.951324i \(-0.599724\pi\)
−0.977967 + 0.208759i \(0.933057\pi\)
\(44\) −167.688 −0.574544
\(45\) 0 0
\(46\) 197.151 0.631921
\(47\) 120.125 + 69.3544i 0.372810 + 0.215242i 0.674685 0.738105i \(-0.264279\pi\)
−0.301875 + 0.953347i \(0.597613\pi\)
\(48\) −68.6190 + 130.554i −0.206339 + 0.392580i
\(49\) −167.674 290.421i −0.488847 0.846708i
\(50\) 0 0
\(51\) 0.754647 + 19.0073i 0.00207200 + 0.0521874i
\(52\) −56.4062 32.5661i −0.150426 0.0868483i
\(53\) 197.063i 0.510730i −0.966845 0.255365i \(-0.917804\pi\)
0.966845 0.255365i \(-0.0821957\pi\)
\(54\) 283.020 + 121.181i 0.713225 + 0.305381i
\(55\) 0 0
\(56\) −33.9444 + 58.7934i −0.0810001 + 0.140296i
\(57\) −496.727 + 19.7216i −1.15427 + 0.0458278i
\(58\) 432.884 249.926i 0.980008 0.565808i
\(59\) 370.552 + 641.814i 0.817656 + 1.41622i 0.907405 + 0.420257i \(0.138060\pi\)
−0.0897490 + 0.995964i \(0.528606\pi\)
\(60\) 0 0
\(61\) −244.234 + 423.026i −0.512639 + 0.887916i 0.487254 + 0.873260i \(0.337999\pi\)
−0.999893 + 0.0146560i \(0.995335\pi\)
\(62\) 612.554i 1.25475i
\(63\) 67.4346 + 32.0964i 0.134856 + 0.0641868i
\(64\) −521.263 −1.01809
\(65\) 0 0
\(66\) 507.687 320.620i 0.946848 0.597963i
\(67\) 356.341 205.734i 0.649762 0.375140i −0.138603 0.990348i \(-0.544261\pi\)
0.788365 + 0.615208i \(0.210928\pi\)
\(68\) −10.0958 + 5.82882i −0.0180044 + 0.0103948i
\(69\) 394.707 249.269i 0.688654 0.434905i
\(70\) 0 0
\(71\) −310.343 −0.518746 −0.259373 0.965777i \(-0.583516\pi\)
−0.259373 + 0.965777i \(0.583516\pi\)
\(72\) 52.5377 + 660.591i 0.0859948 + 1.08127i
\(73\) 51.0260i 0.0818101i −0.999163 0.0409051i \(-0.986976\pi\)
0.999163 0.0409051i \(-0.0130241\pi\)
\(74\) −300.338 + 520.200i −0.471804 + 0.817189i
\(75\) 0 0
\(76\) −152.327 263.839i −0.229910 0.398215i
\(77\) 126.143 72.8286i 0.186692 0.107787i
\(78\) 233.040 9.25240i 0.338290 0.0134311i
\(79\) 603.999 1046.16i 0.860193 1.48990i −0.0115496 0.999933i \(-0.503676\pi\)
0.871742 0.489964i \(-0.162990\pi\)
\(80\) 0 0
\(81\) 719.836 115.228i 0.987429 0.158063i
\(82\) 142.342i 0.191695i
\(83\) −783.945 452.611i −1.03674 0.598560i −0.117829 0.993034i \(-0.537594\pi\)
−0.918907 + 0.394474i \(0.870927\pi\)
\(84\) 1.81574 + 45.7330i 0.00235849 + 0.0594033i
\(85\) 0 0
\(86\) 459.475 + 795.833i 0.576121 + 0.997871i
\(87\) 550.661 1047.68i 0.678587 1.29107i
\(88\) 1119.29 + 646.220i 1.35587 + 0.782810i
\(89\) −663.633 −0.790393 −0.395197 0.918597i \(-0.629324\pi\)
−0.395197 + 0.918597i \(0.629324\pi\)
\(90\) 0 0
\(91\) 56.5752 0.0651725
\(92\) 247.763 + 143.046i 0.280772 + 0.162104i
\(93\) 774.485 + 1226.36i 0.863552 + 1.36740i
\(94\) −152.194 263.608i −0.166996 0.289246i
\(95\) 0 0
\(96\) −588.982 + 371.960i −0.626175 + 0.395448i
\(97\) −628.159 362.668i −0.657525 0.379622i 0.133809 0.991007i \(-0.457279\pi\)
−0.791333 + 0.611385i \(0.790613\pi\)
\(98\) 735.905i 0.758547i
\(99\) 611.039 1283.79i 0.620321 1.30329i
\(100\) 0 0
\(101\) −488.891 + 846.784i −0.481648 + 0.834239i −0.999778 0.0210629i \(-0.993295\pi\)
0.518130 + 0.855302i \(0.326628\pi\)
\(102\) 19.4211 36.9503i 0.0188527 0.0358689i
\(103\) 1374.99 793.852i 1.31536 0.759423i 0.332381 0.943145i \(-0.392148\pi\)
0.982978 + 0.183722i \(0.0588147\pi\)
\(104\) 251.000 + 434.745i 0.236660 + 0.409907i
\(105\) 0 0
\(106\) −216.222 + 374.507i −0.198126 + 0.343164i
\(107\) 897.731i 0.811093i −0.914074 0.405546i \(-0.867081\pi\)
0.914074 0.405546i \(-0.132919\pi\)
\(108\) 267.751 + 357.638i 0.238559 + 0.318646i
\(109\) −855.492 −0.751754 −0.375877 0.926669i \(-0.622659\pi\)
−0.375877 + 0.926669i \(0.622659\pi\)
\(110\) 0 0
\(111\) 56.4259 + 1421.20i 0.0482496 + 1.21526i
\(112\) 67.9934 39.2560i 0.0573640 0.0331191i
\(113\) 788.292 455.121i 0.656250 0.378886i −0.134597 0.990900i \(-0.542974\pi\)
0.790847 + 0.612014i \(0.209641\pi\)
\(114\) 965.641 + 507.540i 0.793339 + 0.416978i
\(115\) 0 0
\(116\) 725.348 0.580576
\(117\) 454.860 313.169i 0.359417 0.247457i
\(118\) 1626.31i 1.26876i
\(119\) 5.06303 8.76943i 0.00390023 0.00675539i
\(120\) 0 0
\(121\) −720.984 1248.78i −0.541686 0.938227i
\(122\) 928.306 535.958i 0.688893 0.397732i
\(123\) 179.971 + 284.976i 0.131930 + 0.208906i
\(124\) −444.447 + 769.804i −0.321875 + 0.557504i
\(125\) 0 0
\(126\) −92.9387 134.988i −0.0657114 0.0954420i
\(127\) 2038.25i 1.42414i 0.702111 + 0.712068i \(0.252241\pi\)
−0.702111 + 0.712068i \(0.747759\pi\)
\(128\) 61.8287 + 35.6968i 0.0426948 + 0.0246499i
\(129\) 1926.11 + 1012.36i 1.31461 + 0.690956i
\(130\) 0 0
\(131\) −117.823 204.075i −0.0785817 0.136108i 0.824057 0.566508i \(-0.191706\pi\)
−0.902638 + 0.430400i \(0.858372\pi\)
\(132\) 870.647 34.5673i 0.574091 0.0227932i
\(133\) 229.176 + 132.315i 0.149414 + 0.0862642i
\(134\) −902.942 −0.582107
\(135\) 0 0
\(136\) 89.8501 0.0566513
\(137\) −2574.60 1486.45i −1.60557 0.926975i −0.990345 0.138621i \(-0.955733\pi\)
−0.615222 0.788354i \(-0.710934\pi\)
\(138\) −1023.62 + 40.6409i −0.631424 + 0.0250694i
\(139\) −1047.32 1814.00i −0.639080 1.10692i −0.985635 0.168890i \(-0.945982\pi\)
0.346555 0.938030i \(-0.387352\pi\)
\(140\) 0 0
\(141\) −637.995 335.330i −0.381056 0.200283i
\(142\) 589.790 + 340.515i 0.348550 + 0.201235i
\(143\) 1077.06i 0.629847i
\(144\) 329.362 691.989i 0.190603 0.400456i
\(145\) 0 0
\(146\) −55.9868 + 96.9720i −0.0317363 + 0.0549689i
\(147\) 930.444 + 1473.32i 0.522052 + 0.826648i
\(148\) −754.876 + 435.828i −0.419259 + 0.242060i
\(149\) 136.969 + 237.237i 0.0753081 + 0.130437i 0.901220 0.433361i \(-0.142673\pi\)
−0.825912 + 0.563799i \(0.809339\pi\)
\(150\) 0 0
\(151\) 468.422 811.331i 0.252448 0.437253i −0.711751 0.702432i \(-0.752098\pi\)
0.964199 + 0.265179i \(0.0854310\pi\)
\(152\) 2348.10i 1.25300i
\(153\) −7.83635 98.5315i −0.00414073 0.0520641i
\(154\) −319.637 −0.167254
\(155\) 0 0
\(156\) 299.578 + 157.458i 0.153753 + 0.0808123i
\(157\) −345.055 + 199.218i −0.175404 + 0.101269i −0.585131 0.810938i \(-0.698957\pi\)
0.409728 + 0.912208i \(0.365624\pi\)
\(158\) −2295.73 + 1325.44i −1.15594 + 0.667383i
\(159\) 40.6227 + 1023.16i 0.0202616 + 0.510328i
\(160\) 0 0
\(161\) −248.505 −0.121646
\(162\) −1494.44 570.835i −0.724779 0.276846i
\(163\) 478.154i 0.229766i 0.993379 + 0.114883i \(0.0366493\pi\)
−0.993379 + 0.114883i \(0.963351\pi\)
\(164\) −103.278 + 178.883i −0.0491747 + 0.0851732i
\(165\) 0 0
\(166\) 993.229 + 1720.32i 0.464395 + 0.804355i
\(167\) 294.763 170.181i 0.136583 0.0788564i −0.430151 0.902757i \(-0.641540\pi\)
0.566735 + 0.823900i \(0.308206\pi\)
\(168\) 164.122 312.256i 0.0753705 0.143399i
\(169\) −889.328 + 1540.36i −0.404792 + 0.701120i
\(170\) 0 0
\(171\) 2574.97 204.791i 1.15154 0.0915835i
\(172\) 1333.51i 0.591159i
\(173\) −3270.17 1888.03i −1.43715 0.829738i −0.439497 0.898244i \(-0.644843\pi\)
−0.997651 + 0.0685065i \(0.978177\pi\)
\(174\) −2196.04 + 1386.87i −0.956790 + 0.604241i
\(175\) 0 0
\(176\) −747.341 1294.43i −0.320073 0.554384i
\(177\) −2056.23 3255.95i −0.873196 1.38267i
\(178\) 1261.20 + 728.153i 0.531072 + 0.306615i
\(179\) −186.652 −0.0779385 −0.0389693 0.999240i \(-0.512407\pi\)
−0.0389693 + 0.999240i \(0.512407\pi\)
\(180\) 0 0
\(181\) 1438.75 0.590837 0.295418 0.955368i \(-0.404541\pi\)
0.295418 + 0.955368i \(0.404541\pi\)
\(182\) −107.518 62.0756i −0.0437900 0.0252821i
\(183\) 1180.88 2246.72i 0.477010 0.907555i
\(184\) −1102.51 1909.61i −0.441729 0.765098i
\(185\) 0 0
\(186\) −126.272 3180.42i −0.0497781 1.25376i
\(187\) −166.949 96.3880i −0.0652862 0.0376930i
\(188\) 441.706i 0.171355i
\(189\) −356.741 152.746i −0.137297 0.0587863i
\(190\) 0 0
\(191\) 195.218 338.127i 0.0739552 0.128094i −0.826676 0.562678i \(-0.809771\pi\)
0.900631 + 0.434584i \(0.143104\pi\)
\(192\) 2706.43 107.453i 1.01729 0.0403895i
\(193\) −3390.53 + 1957.52i −1.26454 + 0.730081i −0.973949 0.226767i \(-0.927184\pi\)
−0.290588 + 0.956848i \(0.593851\pi\)
\(194\) 795.854 + 1378.46i 0.294531 + 0.510143i
\(195\) 0 0
\(196\) −533.945 + 924.820i −0.194586 + 0.337034i
\(197\) 892.680i 0.322847i 0.986885 + 0.161423i \(0.0516085\pi\)
−0.986885 + 0.161423i \(0.948392\pi\)
\(198\) −2569.85 + 1769.33i −0.922381 + 0.635055i
\(199\) 2770.50 0.986913 0.493457 0.869770i \(-0.335733\pi\)
0.493457 + 0.869770i \(0.335733\pi\)
\(200\) 0 0
\(201\) −1807.74 + 1141.64i −0.634368 + 0.400622i
\(202\) 1858.22 1072.84i 0.647247 0.373688i
\(203\) −545.641 + 315.026i −0.188653 + 0.108919i
\(204\) 51.2165 32.3447i 0.0175778 0.0111009i
\(205\) 0 0
\(206\) −3484.13 −1.17840
\(207\) −1997.96 + 1375.59i −0.670859 + 0.461883i
\(208\) 580.554i 0.193530i
\(209\) 2518.96 4362.96i 0.833683 1.44398i
\(210\) 0 0
\(211\) −2291.25 3968.57i −0.747566 1.29482i −0.948986 0.315318i \(-0.897889\pi\)
0.201420 0.979505i \(-0.435444\pi\)
\(212\) −543.458 + 313.765i −0.176060 + 0.101649i
\(213\) 1611.32 63.9743i 0.518338 0.0205796i
\(214\) −985.010 + 1706.09i −0.314644 + 0.544980i
\(215\) 0 0
\(216\) −408.953 3419.00i −0.128823 1.07701i
\(217\) 772.111i 0.241541i
\(218\) 1625.81 + 938.664i 0.505110 + 0.291626i
\(219\) 10.5185 + 264.930i 0.00324555 + 0.0817457i
\(220\) 0 0
\(221\) −37.4384 64.8452i −0.0113954 0.0197374i
\(222\) 1452.14 2762.82i 0.439014 0.835263i
\(223\) −3546.66 2047.67i −1.06503 0.614897i −0.138212 0.990403i \(-0.544136\pi\)
−0.926820 + 0.375506i \(0.877469\pi\)
\(224\) 370.820 0.110609
\(225\) 0 0
\(226\) −1997.47 −0.587920
\(227\) −3350.96 1934.68i −0.979784 0.565678i −0.0775789 0.996986i \(-0.524719\pi\)
−0.902205 + 0.431308i \(0.858052\pi\)
\(228\) 845.281 + 1338.47i 0.245527 + 0.388781i
\(229\) 618.006 + 1070.42i 0.178336 + 0.308887i 0.941311 0.337541i \(-0.109595\pi\)
−0.762975 + 0.646429i \(0.776262\pi\)
\(230\) 0 0
\(231\) −639.929 + 404.134i −0.182269 + 0.115109i
\(232\) −4841.56 2795.27i −1.37010 0.791029i
\(233\) 2207.05i 0.620552i 0.950647 + 0.310276i \(0.100421\pi\)
−0.950647 + 0.310276i \(0.899579\pi\)
\(234\) −1208.05 + 96.0781i −0.337491 + 0.0268411i
\(235\) 0 0
\(236\) 1179.99 2043.80i 0.325470 0.563730i
\(237\) −2920.35 + 5556.22i −0.800409 + 1.52285i
\(238\) −19.2440 + 11.1105i −0.00524119 + 0.00302600i
\(239\) 438.324 + 759.199i 0.118631 + 0.205475i 0.919225 0.393732i \(-0.128816\pi\)
−0.800594 + 0.599207i \(0.795483\pi\)
\(240\) 0 0
\(241\) 238.931 413.840i 0.0638626 0.110613i −0.832326 0.554286i \(-0.812991\pi\)
0.896189 + 0.443673i \(0.146325\pi\)
\(242\) 3164.32i 0.840537i
\(243\) −3713.68 + 746.658i −0.980381 + 0.197112i
\(244\) 1555.49 0.408114
\(245\) 0 0
\(246\) −29.3424 739.048i −0.00760490 0.191545i
\(247\) 1694.63 978.396i 0.436546 0.252040i
\(248\) 5933.19 3425.53i 1.51919 0.877102i
\(249\) 4163.59 + 2188.38i 1.05967 + 0.556960i
\(250\) 0 0
\(251\) 6892.28 1.73322 0.866608 0.498990i \(-0.166296\pi\)
0.866608 + 0.498990i \(0.166296\pi\)
\(252\) −18.8548 237.074i −0.00471327 0.0592630i
\(253\) 4730.94i 1.17562i
\(254\) 2236.41 3873.57i 0.552460 0.956889i
\(255\) 0 0
\(256\) 2006.72 + 3475.74i 0.489921 + 0.848568i
\(257\) 6284.49 3628.35i 1.52535 0.880664i 0.525806 0.850605i \(-0.323764\pi\)
0.999548 0.0300589i \(-0.00956949\pi\)
\(258\) −2549.67 4037.30i −0.615255 0.974230i
\(259\) 378.569 655.701i 0.0908229 0.157310i
\(260\) 0 0
\(261\) −2643.10 + 5553.15i −0.626834 + 1.31698i
\(262\) 517.110i 0.121936i
\(263\) 5471.16 + 3158.78i 1.28276 + 0.740603i 0.977352 0.211618i \(-0.0678733\pi\)
0.305409 + 0.952221i \(0.401207\pi\)
\(264\) −5944.61 3124.48i −1.38585 0.728404i
\(265\) 0 0
\(266\) −290.357 502.913i −0.0669283 0.115923i
\(267\) 3445.63 136.802i 0.789771 0.0313563i
\(268\) −1134.74 655.142i −0.258639 0.149325i
\(269\) −5746.22 −1.30243 −0.651214 0.758894i \(-0.725740\pi\)
−0.651214 + 0.758894i \(0.725740\pi\)
\(270\) 0 0
\(271\) 4925.20 1.10400 0.552001 0.833844i \(-0.313865\pi\)
0.552001 + 0.833844i \(0.313865\pi\)
\(272\) −89.9886 51.9550i −0.0200602 0.0115817i
\(273\) −293.742 + 11.6625i −0.0651212 + 0.00258551i
\(274\) 3261.92 + 5649.81i 0.719196 + 1.24568i
\(275\) 0 0
\(276\) −1315.89 691.629i −0.286982 0.150837i
\(277\) 2014.27 + 1162.94i 0.436917 + 0.252254i 0.702289 0.711892i \(-0.252161\pi\)
−0.265372 + 0.964146i \(0.585495\pi\)
\(278\) 4596.55i 0.991665i
\(279\) −4273.98 6207.70i −0.917119 1.33206i
\(280\) 0 0
\(281\) −1641.71 + 2843.52i −0.348527 + 0.603667i −0.985988 0.166816i \(-0.946652\pi\)
0.637461 + 0.770483i \(0.279985\pi\)
\(282\) 844.543 + 1337.30i 0.178340 + 0.282393i
\(283\) 1744.36 1007.11i 0.366400 0.211541i −0.305484 0.952197i \(-0.598818\pi\)
0.671885 + 0.740656i \(0.265485\pi\)
\(284\) 494.131 + 855.860i 0.103244 + 0.178824i
\(285\) 0 0
\(286\) −1181.77 + 2046.89i −0.244334 + 0.423199i
\(287\) 179.419i 0.0369016i
\(288\) 2981.36 2052.65i 0.609994 0.419978i
\(289\) 4899.60 0.997272
\(290\) 0 0
\(291\) 3336.20 + 1753.50i 0.672067 + 0.353238i
\(292\) −140.719 + 81.2440i −0.0282018 + 0.0162823i
\(293\) 416.295 240.348i 0.0830042 0.0479225i −0.457923 0.888992i \(-0.651407\pi\)
0.540928 + 0.841069i \(0.318073\pi\)
\(294\) −151.700 3820.86i −0.0300929 0.757950i
\(295\) 0 0
\(296\) 6718.20 1.31921
\(297\) −2907.91 + 6791.49i −0.568128 + 1.32688i
\(298\) 601.140i 0.116856i
\(299\) −918.781 + 1591.37i −0.177707 + 0.307798i
\(300\) 0 0
\(301\) −579.158 1003.13i −0.110904 0.192091i
\(302\) −1780.42 + 1027.93i −0.339244 + 0.195863i
\(303\) 2363.79 4497.33i 0.448173 0.852690i
\(304\) 1357.76 2351.72i 0.256162 0.443685i
\(305\) 0 0
\(306\) −93.2184 + 195.852i −0.0174148 + 0.0365886i
\(307\) 3222.21i 0.599026i −0.954092 0.299513i \(-0.903176\pi\)
0.954092 0.299513i \(-0.0968242\pi\)
\(308\) −401.691 231.917i −0.0743133 0.0429048i
\(309\) −6975.40 + 4405.17i −1.28420 + 0.811008i
\(310\) 0 0
\(311\) −1207.00 2090.59i −0.220074 0.381179i 0.734757 0.678331i \(-0.237296\pi\)
−0.954830 + 0.297152i \(0.903963\pi\)
\(312\) −1392.83 2205.48i −0.252735 0.400195i
\(313\) 2171.07 + 1253.47i 0.392065 + 0.226359i 0.683054 0.730368i \(-0.260651\pi\)
−0.290990 + 0.956726i \(0.593985\pi\)
\(314\) 874.344 0.157140
\(315\) 0 0
\(316\) −3846.77 −0.684803
\(317\) 3210.46 + 1853.56i 0.568825 + 0.328411i 0.756680 0.653786i \(-0.226820\pi\)
−0.187855 + 0.982197i \(0.560154\pi\)
\(318\) 1045.44 1989.04i 0.184356 0.350754i
\(319\) 5997.34 + 10387.7i 1.05262 + 1.82320i
\(320\) 0 0
\(321\) 185.059 + 4661.07i 0.0321775 + 0.810454i
\(322\) 472.270 + 272.665i 0.0817347 + 0.0471895i
\(323\) 350.234i 0.0603330i
\(324\) −1463.90 1801.69i −0.251012 0.308931i
\(325\) 0 0
\(326\) 524.641 908.704i 0.0891324 0.154382i
\(327\) 4441.77 176.352i 0.751163 0.0298234i
\(328\) 1378.72 796.005i 0.232095 0.134000i
\(329\) 191.838 + 332.272i 0.0321470 + 0.0556802i
\(330\) 0 0
\(331\) −1276.72 + 2211.35i −0.212009 + 0.367211i −0.952343 0.305029i \(-0.901334\pi\)
0.740334 + 0.672239i \(0.234667\pi\)
\(332\) 2882.60i 0.476516i
\(333\) −585.933 7367.32i −0.0964233 1.21239i
\(334\) −746.906 −0.122362
\(335\) 0 0
\(336\) −344.934 + 217.836i −0.0560050 + 0.0353688i
\(337\) −3076.89 + 1776.44i −0.497356 + 0.287148i −0.727621 0.685979i \(-0.759374\pi\)
0.230265 + 0.973128i \(0.426041\pi\)
\(338\) 3380.24 1951.58i 0.543966 0.314059i
\(339\) −3999.04 + 2525.51i −0.640702 + 0.404623i
\(340\) 0 0
\(341\) −14699.2 −2.33432
\(342\) −5118.29 2436.12i −0.809256 0.385177i
\(343\) 1876.35i 0.295374i
\(344\) 5138.95 8900.93i 0.805447 1.39508i
\(345\) 0 0
\(346\) 4143.19 + 7176.21i 0.643754 + 1.11502i
\(347\) 6727.30 3884.01i 1.04075 0.600878i 0.120705 0.992688i \(-0.461485\pi\)
0.920046 + 0.391811i \(0.128151\pi\)
\(348\) −3766.05 + 149.524i −0.580119 + 0.0230325i
\(349\) 348.003 602.760i 0.0533759 0.0924498i −0.838103 0.545512i \(-0.816335\pi\)
0.891479 + 0.453062i \(0.149669\pi\)
\(350\) 0 0
\(351\) −2297.10 + 1719.76i −0.349317 + 0.261521i
\(352\) 7059.52i 1.06896i
\(353\) 4721.46 + 2725.94i 0.711892 + 0.411011i 0.811761 0.583990i \(-0.198509\pi\)
−0.0998692 + 0.995001i \(0.531842\pi\)
\(354\) 335.248 + 8443.90i 0.0503340 + 1.26776i
\(355\) 0 0
\(356\) 1056.64 + 1830.16i 0.157309 + 0.272467i
\(357\) −24.4798 + 46.5751i −0.00362916 + 0.00690481i
\(358\) 354.721 + 204.798i 0.0523675 + 0.0302344i
\(359\) −4036.41 −0.593408 −0.296704 0.954969i \(-0.595887\pi\)
−0.296704 + 0.954969i \(0.595887\pi\)
\(360\) 0 0
\(361\) 2293.85 0.334429
\(362\) −2734.26 1578.63i −0.396988 0.229201i
\(363\) 4000.82 + 6335.12i 0.578481 + 0.915999i
\(364\) −90.0795 156.022i −0.0129710 0.0224665i
\(365\) 0 0
\(366\) −4709.34 + 2974.09i −0.672572 + 0.424749i
\(367\) 9734.06 + 5619.96i 1.38451 + 0.799345i 0.992689 0.120698i \(-0.0385134\pi\)
0.391817 + 0.920043i \(0.371847\pi\)
\(368\) 2550.07i 0.361227i
\(369\) −993.163 1442.51i −0.140114 0.203507i
\(370\) 0 0
\(371\) 272.543 472.059i 0.0381394 0.0660595i
\(372\) 2148.91 4088.49i 0.299504 0.569834i
\(373\) −5473.90 + 3160.36i −0.759860 + 0.438706i −0.829246 0.558884i \(-0.811230\pi\)
0.0693853 + 0.997590i \(0.477896\pi\)
\(374\) 211.518 + 366.360i 0.0292442 + 0.0506525i
\(375\) 0 0
\(376\) −1702.20 + 2948.30i −0.233469 + 0.404381i
\(377\) 4658.90i 0.636460i
\(378\) 510.370 + 681.708i 0.0694460 + 0.0927600i
\(379\) −9325.49 −1.26390 −0.631950 0.775009i \(-0.717745\pi\)
−0.631950 + 0.775009i \(0.717745\pi\)
\(380\) 0 0
\(381\) −420.165 10582.7i −0.0564980 1.42301i
\(382\) −742.000 + 428.394i −0.0993823 + 0.0573784i
\(383\) 9654.47 5574.01i 1.28804 0.743652i 0.309738 0.950822i \(-0.399759\pi\)
0.978305 + 0.207170i \(0.0664254\pi\)
\(384\) −328.377 172.595i −0.0436391 0.0229367i
\(385\) 0 0
\(386\) 8591.35 1.13287
\(387\) −10209.1 4859.19i −1.34098 0.638259i
\(388\) 2309.77i 0.302219i
\(389\) 3285.41 5690.49i 0.428218 0.741695i −0.568497 0.822685i \(-0.692475\pi\)
0.996715 + 0.0809902i \(0.0258082\pi\)
\(390\) 0 0
\(391\) 164.447 + 284.831i 0.0212697 + 0.0368402i
\(392\) 7127.96 4115.33i 0.918409 0.530244i
\(393\) 653.810 + 1035.28i 0.0839195 + 0.132883i
\(394\) 979.469 1696.49i 0.125241 0.216924i
\(395\) 0 0
\(396\) −4513.33 + 358.951i −0.572735 + 0.0455504i
\(397\) 3969.33i 0.501800i −0.968013 0.250900i \(-0.919273\pi\)
0.968013 0.250900i \(-0.0807266\pi\)
\(398\) −5265.19 3039.86i −0.663115 0.382850i
\(399\) −1217.17 639.743i −0.152719 0.0802687i
\(400\) 0 0
\(401\) −2187.35 3788.60i −0.272396 0.471804i 0.697079 0.716995i \(-0.254483\pi\)
−0.969475 + 0.245190i \(0.921150\pi\)
\(402\) 4688.13 186.133i 0.581649 0.0230932i
\(403\) −4944.44 2854.67i −0.611166 0.352857i
\(404\) 3113.66 0.383442
\(405\) 0 0
\(406\) 1382.61 0.169010
\(407\) −12483.0 7207.05i −1.52029 0.877740i
\(408\) −466.507 + 18.5217i −0.0566067 + 0.00224746i
\(409\) −4436.16 7683.66i −0.536318 0.928930i −0.999098 0.0424573i \(-0.986481\pi\)
0.462780 0.886473i \(-0.346852\pi\)
\(410\) 0 0
\(411\) 13673.9 + 7186.99i 1.64108 + 0.862550i
\(412\) −4378.55 2527.95i −0.523581 0.302290i
\(413\) 2049.93i 0.244238i
\(414\) 5306.33 422.020i 0.629932 0.0500994i
\(415\) 0 0
\(416\) 1371.01 2374.65i 0.161584 0.279872i
\(417\) 5811.67 + 9202.53i 0.682491 + 1.08069i
\(418\) −9574.27 + 5527.71i −1.12032 + 0.646816i
\(419\) −507.087 878.300i −0.0591236 0.102405i 0.834949 0.550328i \(-0.185497\pi\)
−0.894072 + 0.447923i \(0.852164\pi\)
\(420\) 0 0
\(421\) 7446.57 12897.8i 0.862051 1.49312i −0.00789511 0.999969i \(-0.502513\pi\)
0.869946 0.493147i \(-0.164154\pi\)
\(422\) 10056.1i 1.16000i
\(423\) 3381.63 + 1609.54i 0.388701 + 0.185008i
\(424\) 4836.63 0.553980
\(425\) 0 0
\(426\) −3132.42 1646.40i −0.356259 0.187249i
\(427\) −1170.11 + 675.563i −0.132613 + 0.0765639i
\(428\) −2475.75 + 1429.37i −0.279602 + 0.161429i
\(429\) 222.025 + 5592.15i 0.0249871 + 0.629351i
\(430\) 0 0
\(431\) −4363.90 −0.487707 −0.243853 0.969812i \(-0.578412\pi\)
−0.243853 + 0.969812i \(0.578412\pi\)
\(432\) −1567.42 + 3660.74i −0.174566 + 0.407703i
\(433\) 9301.59i 1.03235i 0.856484 + 0.516173i \(0.172644\pi\)
−0.856484 + 0.516173i \(0.827356\pi\)
\(434\) −847.177 + 1467.35i −0.0937000 + 0.162293i
\(435\) 0 0
\(436\) 1362.12 + 2359.26i 0.149619 + 0.259147i
\(437\) −7443.62 + 4297.57i −0.814820 + 0.470437i
\(438\) 270.697 515.026i 0.0295306 0.0561847i
\(439\) 760.076 1316.49i 0.0826343 0.143127i −0.821746 0.569853i \(-0.807000\pi\)
0.904381 + 0.426727i \(0.140333\pi\)
\(440\) 0 0
\(441\) −5134.63 7457.76i −0.554436 0.805286i
\(442\) 164.313i 0.0176823i
\(443\) −3864.62 2231.24i −0.414478 0.239299i 0.278234 0.960513i \(-0.410251\pi\)
−0.692712 + 0.721214i \(0.743584\pi\)
\(444\) 3829.52 2418.45i 0.409326 0.258502i
\(445\) 0 0
\(446\) 4493.49 + 7782.96i 0.477070 + 0.826309i
\(447\) −760.053 1203.51i −0.0804235 0.127347i
\(448\) −1248.67 720.919i −0.131683 0.0760273i
\(449\) 5371.66 0.564598 0.282299 0.959326i \(-0.408903\pi\)
0.282299 + 0.959326i \(0.408903\pi\)
\(450\) 0 0
\(451\) −3415.71 −0.356628
\(452\) −2510.25 1449.29i −0.261222 0.150816i
\(453\) −2264.83 + 4309.04i −0.234903 + 0.446923i
\(454\) 4245.54 + 7353.49i 0.438883 + 0.760168i
\(455\) 0 0
\(456\) −484.038 12191.5i −0.0497087 1.25201i
\(457\) 13445.4 + 7762.71i 1.37626 + 0.794583i 0.991707 0.128520i \(-0.0410228\pi\)
0.384551 + 0.923104i \(0.374356\pi\)
\(458\) 2712.36i 0.276725i
\(459\) 60.9982 + 509.966i 0.00620294 + 0.0518588i
\(460\) 0 0
\(461\) 28.2090 48.8594i 0.00284994 0.00493624i −0.864597 0.502466i \(-0.832426\pi\)
0.867447 + 0.497530i \(0.165760\pi\)
\(462\) 1659.57 65.8901i 0.167122 0.00663525i
\(463\) 11582.0 6686.89i 1.16255 0.671201i 0.210640 0.977564i \(-0.432445\pi\)
0.951915 + 0.306363i \(0.0991120\pi\)
\(464\) 3232.68 + 5599.17i 0.323434 + 0.560204i
\(465\) 0 0
\(466\) 2421.62 4194.37i 0.240729 0.416954i
\(467\) 2677.46i 0.265306i −0.991163 0.132653i \(-0.957650\pi\)
0.991163 0.132653i \(-0.0423496\pi\)
\(468\) −1587.88 755.776i −0.156838 0.0746490i
\(469\) 1138.14 0.112056
\(470\) 0 0
\(471\) 1750.48 1105.48i 0.171248 0.108148i
\(472\) −15752.4 + 9094.66i −1.53615 + 0.886898i
\(473\) −19097.2 + 11025.8i −1.85643 + 1.07181i
\(474\) 11646.4 7355.02i 1.12856 0.712716i
\(475\) 0 0
\(476\) −32.2456 −0.00310499
\(477\) −421.831 5303.96i −0.0404912 0.509123i
\(478\) 1923.75i 0.184080i
\(479\) −1734.96 + 3005.05i −0.165496 + 0.286647i −0.936831 0.349782i \(-0.886256\pi\)
0.771335 + 0.636429i \(0.219589\pi\)
\(480\) 0 0
\(481\) −2799.31 4848.55i −0.265359 0.459616i
\(482\) −908.149 + 524.320i −0.0858196 + 0.0495480i
\(483\) 1290.25 51.2270i 0.121550 0.00482589i
\(484\) −2295.91 + 3976.64i −0.215619 + 0.373463i
\(485\) 0 0
\(486\) 7876.89 + 2655.75i 0.735191 + 0.247875i
\(487\) 14040.6i 1.30645i 0.757165 + 0.653224i \(0.226584\pi\)
−0.757165 + 0.653224i \(0.773416\pi\)
\(488\) −10382.6 5994.38i −0.963108 0.556051i
\(489\) −98.5669 2482.60i −0.00911523 0.229585i
\(490\) 0 0
\(491\) −4907.72 8500.42i −0.451084 0.781301i 0.547369 0.836891i \(-0.315629\pi\)
−0.998454 + 0.0555902i \(0.982296\pi\)
\(492\) 499.351 950.060i 0.0457571 0.0870570i
\(493\) 722.151 + 416.934i 0.0659717 + 0.0380888i
\(494\) −4294.07 −0.391092
\(495\) 0 0
\(496\) −7923.12 −0.717255
\(497\) −743.418 429.212i −0.0670962 0.0387380i
\(498\) −5511.53 8727.28i −0.495939 0.785299i
\(499\) −6026.00 10437.3i −0.540603 0.936351i −0.998869 0.0475367i \(-0.984863\pi\)
0.458267 0.888815i \(-0.348470\pi\)
\(500\) 0 0
\(501\) −1495.34 + 944.354i −0.133347 + 0.0842128i
\(502\) −13098.4 7562.36i −1.16456 0.672360i
\(503\) 4695.09i 0.416191i −0.978109 0.208095i \(-0.933274\pi\)
0.978109 0.208095i \(-0.0667264\pi\)
\(504\) −787.760 + 1655.08i −0.0696223 + 0.146276i
\(505\) 0 0
\(506\) 5190.89 8990.89i 0.456054 0.789909i
\(507\) 4299.92 8180.98i 0.376659 0.716627i
\(508\) 5621.05 3245.31i 0.490932 0.283440i
\(509\) −409.907 709.979i −0.0356951 0.0618257i 0.847626 0.530594i \(-0.178031\pi\)
−0.883321 + 0.468769i \(0.844698\pi\)
\(510\) 0 0
\(511\) 70.5702 122.231i 0.00610928 0.0105816i
\(512\) 9378.41i 0.809514i
\(513\) −13327.2 + 1594.09i −1.14700 + 0.137195i
\(514\) −15924.4 −1.36653
\(515\) 0 0
\(516\) −274.891 6923.67i −0.0234523 0.590693i
\(517\) 6325.68 3652.13i 0.538110 0.310678i
\(518\) −1438.90 + 830.748i −0.122049 + 0.0704652i
\(519\) 17368.1 + 9128.68i 1.46893 + 0.772070i
\(520\) 0 0
\(521\) 3282.80 0.276050 0.138025 0.990429i \(-0.455925\pi\)
0.138025 + 0.990429i \(0.455925\pi\)
\(522\) 11116.1 7653.38i 0.932066 0.641723i
\(523\) 10768.1i 0.900300i −0.892953 0.450150i \(-0.851371\pi\)
0.892953 0.450150i \(-0.148629\pi\)
\(524\) −375.196 + 649.859i −0.0312796 + 0.0541779i
\(525\) 0 0
\(526\) −6931.76 12006.2i −0.574599 0.995235i
\(527\) −884.975 + 510.941i −0.0731502 + 0.0422333i
\(528\) 4147.07 + 6566.71i 0.341815 + 0.541249i
\(529\) −2047.78 + 3546.87i −0.168306 + 0.291515i
\(530\) 0 0
\(531\) 11347.3 + 16481.2i 0.927362 + 1.34694i
\(532\) 842.690i 0.0686752i
\(533\) −1148.96 663.353i −0.0933716 0.0539081i
\(534\) −6698.32 3520.63i −0.542818 0.285305i
\(535\) 0 0
\(536\) 5049.44 + 8745.89i 0.406908 + 0.704785i
\(537\) 969.106 38.4765i 0.0778771 0.00309196i
\(538\) 10920.4 + 6304.88i 0.875113 + 0.505247i
\(539\) −17659.1 −1.41119
\(540\) 0 0
\(541\) −16037.9 −1.27453 −0.637266 0.770644i \(-0.719935\pi\)
−0.637266 + 0.770644i \(0.719935\pi\)
\(542\) −9360.06 5404.04i −0.741788 0.428272i
\(543\) −7470.08 + 296.585i −0.590372 + 0.0234395i
\(544\) −245.388 425.025i −0.0193399 0.0334978i
\(545\) 0 0
\(546\) 571.037 + 300.137i 0.0447585 + 0.0235250i
\(547\) 1774.59 + 1024.56i 0.138713 + 0.0800862i 0.567751 0.823201i \(-0.307814\pi\)
−0.429037 + 0.903287i \(0.641147\pi\)
\(548\) 9466.92i 0.737968i
\(549\) −5668.04 + 11908.5i −0.440630 + 0.925764i
\(550\) 0 0
\(551\) −10895.9 + 18872.3i −0.842437 + 1.45914i
\(552\) 6117.95 + 9687.52i 0.471734 + 0.746971i
\(553\) 2893.72 1670.69i 0.222520 0.128472i
\(554\) −2552.01 4420.21i −0.195712 0.338983i
\(555\) 0 0
\(556\) −3335.09 + 5776.54i −0.254387 + 0.440611i
\(557\) 3644.07i 0.277207i −0.990348 0.138603i \(-0.955739\pi\)
0.990348 0.138603i \(-0.0442614\pi\)
\(558\) 1311.23 + 16486.9i 0.0994778 + 1.25080i
\(559\) −8565.12 −0.648061
\(560\) 0 0
\(561\) 886.679 + 466.038i 0.0667301 + 0.0350733i
\(562\) 6239.96 3602.64i 0.468357 0.270406i
\(563\) 303.746 175.368i 0.0227378 0.0131277i −0.488588 0.872515i \(-0.662488\pi\)
0.511326 + 0.859387i \(0.329155\pi\)
\(564\) 91.0536 + 2293.37i 0.00679796 + 0.171220i
\(565\) 0 0
\(566\) −4420.07 −0.328250
\(567\) 1883.71 + 719.525i 0.139521 + 0.0532932i
\(568\) 7616.93i 0.562675i
\(569\) −9724.34 + 16843.1i −0.716460 + 1.24095i 0.245934 + 0.969287i \(0.420905\pi\)
−0.962394 + 0.271658i \(0.912428\pi\)
\(570\) 0 0
\(571\) 7572.97 + 13116.8i 0.555024 + 0.961330i 0.997902 + 0.0647480i \(0.0206244\pi\)
−0.442877 + 0.896582i \(0.646042\pi\)
\(572\) −2970.29 + 1714.90i −0.217123 + 0.125356i
\(573\) −943.880 + 1795.82i −0.0688153 + 0.130927i
\(574\) −196.862 + 340.975i −0.0143151 + 0.0247945i
\(575\) 0 0
\(576\) −14029.8 + 1115.81i −1.01489 + 0.0807154i
\(577\) 6365.11i 0.459243i 0.973280 + 0.229621i \(0.0737488\pi\)
−0.973280 + 0.229621i \(0.926251\pi\)
\(578\) −9311.41 5375.95i −0.670076 0.386868i
\(579\) 17200.3 10862.5i 1.23458 0.779673i
\(580\) 0 0
\(581\) −1251.94 2168.43i −0.0893965 0.154839i
\(582\) −4416.28 6992.99i −0.314537 0.498056i
\(583\) −8986.87 5188.57i −0.638419 0.368591i
\(584\) 1252.36 0.0887381
\(585\) 0 0
\(586\) −1054.86 −0.0743617
\(587\) 8906.52 + 5142.18i 0.626254 + 0.361568i 0.779300 0.626651i \(-0.215575\pi\)
−0.153046 + 0.988219i \(0.548908\pi\)
\(588\) 2581.63 4911.79i 0.181063 0.344488i
\(589\) −13352.7 23127.5i −0.934103 1.61791i
\(590\) 0 0
\(591\) −184.018 4634.85i −0.0128079 0.322593i
\(592\) −6728.56 3884.73i −0.467132 0.269699i
\(593\) 666.566i 0.0461595i 0.999734 + 0.0230798i \(0.00734717\pi\)
−0.999734 + 0.0230798i \(0.992653\pi\)
\(594\) 12978.1 9716.23i 0.896461 0.671148i
\(595\) 0 0
\(596\) 436.165 755.460i 0.0299765 0.0519209i
\(597\) −14384.6 + 571.113i −0.986136 + 0.0391526i
\(598\) 3492.18 2016.21i 0.238806 0.137875i
\(599\) 12606.6 + 21835.3i 0.859922 + 1.48943i 0.872003 + 0.489501i \(0.162821\pi\)
−0.0120807 + 0.999927i \(0.503845\pi\)
\(600\) 0 0
\(601\) 10309.3 17856.3i 0.699712 1.21194i −0.268855 0.963181i \(-0.586645\pi\)
0.968566 0.248755i \(-0.0800215\pi\)
\(602\) 2541.86i 0.172090i
\(603\) 9150.54 6300.11i 0.617975 0.425473i
\(604\) −2983.30 −0.200975
\(605\) 0 0
\(606\) −9426.83 + 5953.32i −0.631912 + 0.399071i
\(607\) 4402.45 2541.76i 0.294382 0.169962i −0.345534 0.938406i \(-0.612302\pi\)
0.639916 + 0.768444i \(0.278969\pi\)
\(608\) 11107.4 6412.85i 0.740894 0.427755i
\(609\) 2768.06 1748.11i 0.184183 0.116317i
\(610\) 0 0
\(611\) 2837.07 0.187849
\(612\) −259.252 + 178.494i −0.0171236 + 0.0117895i
\(613\) 2625.18i 0.172969i 0.996253 + 0.0864845i \(0.0275633\pi\)
−0.996253 + 0.0864845i \(0.972437\pi\)
\(614\) −3535.47 + 6123.62i −0.232378 + 0.402491i
\(615\) 0 0
\(616\) 1787.48 + 3096.00i 0.116915 + 0.202502i
\(617\) 1412.76 815.659i 0.0921811 0.0532208i −0.453201 0.891408i \(-0.649718\pi\)
0.545382 + 0.838188i \(0.316385\pi\)
\(618\) 18089.8 718.220i 1.17747 0.0467493i
\(619\) 1592.33 2758.00i 0.103395 0.179085i −0.809687 0.586863i \(-0.800363\pi\)
0.913081 + 0.407778i \(0.133696\pi\)
\(620\) 0 0
\(621\) 10090.0 7553.99i 0.652007 0.488134i
\(622\) 5297.40i 0.341489i
\(623\) −1589.71 917.821i −0.102232 0.0590236i
\(624\) 119.676 + 3014.27i 0.00767767 + 0.193377i
\(625\) 0 0
\(626\) −2750.67 4764.29i −0.175621 0.304184i
\(627\) −12179.2 + 23172.0i −0.775742 + 1.47592i
\(628\) 1098.80 + 634.392i 0.0698199 + 0.0403105i
\(629\) −1002.06 −0.0635214
\(630\) 0 0
\(631\) 10436.7 0.658447 0.329223 0.944252i \(-0.393213\pi\)
0.329223 + 0.944252i \(0.393213\pi\)
\(632\) 25676.4 + 14824.3i 1.61607 + 0.933037i
\(633\) 12714.4 + 20132.7i 0.798346 + 1.26415i
\(634\) −4067.54 7045.18i −0.254799 0.441325i
\(635\) 0 0
\(636\) 2756.99 1741.12i 0.171889 0.108553i
\(637\) −5940.11 3429.52i −0.369475 0.213316i
\(638\) 26321.7i 1.63336i
\(639\) −8352.89 + 664.317i −0.517113 + 0.0411267i
\(640\) 0 0
\(641\) −4541.73 + 7866.50i −0.279856 + 0.484724i −0.971349 0.237659i \(-0.923620\pi\)
0.691493 + 0.722383i \(0.256953\pi\)
\(642\) 4762.54 9061.16i 0.292776 0.557034i
\(643\) 14884.9 8593.81i 0.912914 0.527071i 0.0315465 0.999502i \(-0.489957\pi\)
0.881368 + 0.472431i \(0.156623\pi\)
\(644\) 395.672 + 685.323i 0.0242106 + 0.0419340i
\(645\) 0 0
\(646\) −384.285 + 665.601i −0.0234048 + 0.0405383i
\(647\) 2359.17i 0.143352i −0.997428 0.0716758i \(-0.977165\pi\)
0.997428 0.0716758i \(-0.0228347\pi\)
\(648\) 2828.11 + 17667.3i 0.171448 + 1.07105i
\(649\) 39025.7 2.36039
\(650\) 0 0
\(651\) 159.163 + 4008.85i 0.00958234 + 0.241350i
\(652\) 1318.64 761.320i 0.0792057 0.0457294i
\(653\) 4707.81 2718.06i 0.282130 0.162888i −0.352257 0.935903i \(-0.614586\pi\)
0.634387 + 0.773015i \(0.281252\pi\)
\(654\) −8634.82 4538.46i −0.516282 0.271357i
\(655\) 0 0
\(656\) −1841.13 −0.109579
\(657\) −109.226 1373.36i −0.00648599 0.0815526i
\(658\) 841.954i 0.0498826i
\(659\) 1544.45 2675.07i 0.0912950 0.158128i −0.816761 0.576976i \(-0.804233\pi\)
0.908056 + 0.418848i \(0.137566\pi\)
\(660\) 0 0
\(661\) 9526.94 + 16501.2i 0.560598 + 0.970984i 0.997444 + 0.0714479i \(0.0227620\pi\)
−0.436846 + 0.899536i \(0.643905\pi\)
\(662\) 4852.68 2801.70i 0.284902 0.164488i
\(663\) 207.750 + 328.963i 0.0121694 + 0.0192698i
\(664\) 11108.7 19240.8i 0.649248 1.12453i
\(665\) 0 0
\(666\) −6970.05 + 14644.1i −0.405532 + 0.852022i
\(667\) 20464.1i 1.18796i
\(668\) −938.646 541.928i −0.0543672 0.0313889i
\(669\) 18836.6 + 9900.51i 1.08859 + 0.572161i
\(670\) 0 0
\(671\) 12861.1 + 22276.1i 0.739937 + 1.28161i
\(672\) −1925.32 + 76.4409i −0.110522 + 0.00438806i
\(673\) 25320.4 + 14618.7i 1.45027 + 0.837312i 0.998496 0.0548215i \(-0.0174590\pi\)
0.451771 + 0.892134i \(0.350792\pi\)
\(674\) 7796.61 0.445570
\(675\) 0 0
\(676\) 5663.98 0.322257
\(677\) 12532.5 + 7235.62i 0.711465 + 0.410764i 0.811603 0.584209i \(-0.198595\pi\)
−0.100138 + 0.994974i \(0.531929\pi\)
\(678\) 10371.0 411.760i 0.587457 0.0233238i
\(679\) −1003.16 1737.52i −0.0566975 0.0982030i
\(680\) 0 0
\(681\) 17797.2 + 9354.19i 1.00145 + 0.526363i
\(682\) 27934.9 + 16128.2i 1.56845 + 0.905545i
\(683\) 5782.94i 0.323980i 0.986792 + 0.161990i \(0.0517912\pi\)
−0.986792 + 0.161990i \(0.948209\pi\)
\(684\) −4664.66 6775.15i −0.260757 0.378734i
\(685\) 0 0
\(686\) −2058.77 + 3565.89i −0.114583 + 0.198464i
\(687\) −3429.38 5430.28i −0.190450 0.301569i
\(688\) −10293.8 + 5943.10i −0.570415 + 0.329329i
\(689\) −2015.31 3490.62i −0.111433 0.193007i
\(690\) 0 0
\(691\) −5527.56 + 9574.01i −0.304310 + 0.527080i −0.977107 0.212746i \(-0.931759\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(692\) 12024.6i 0.660557i
\(693\) 3239.24 2230.20i 0.177559 0.122249i
\(694\) −17046.5 −0.932386
\(695\) 0 0
\(696\) 25713.9 + 13515.2i 1.40041 + 0.736052i
\(697\) −205.646 + 118.730i −0.0111756 + 0.00645223i
\(698\) −1322.72 + 763.674i −0.0717275 + 0.0414119i
\(699\) −454.962 11459.1i −0.0246184 0.620064i
\(700\) 0 0
\(701\) −13554.2 −0.730294 −0.365147 0.930950i \(-0.618981\pi\)
−0.365147 + 0.930950i \(0.618981\pi\)
\(702\) 6252.48 747.872i 0.336160 0.0402088i
\(703\) 26187.4i 1.40495i
\(704\) −13724.6 + 23771.7i −0.734751 + 1.27263i
\(705\) 0 0
\(706\) −5981.91 10361.0i −0.318884 0.552324i
\(707\) −2342.25 + 1352.30i −0.124596 + 0.0719354i
\(708\) −5705.27 + 10854.8i −0.302849 + 0.576198i
\(709\) −4694.58 + 8131.26i −0.248672 + 0.430713i −0.963158 0.268937i \(-0.913328\pi\)
0.714485 + 0.699650i \(0.246661\pi\)
\(710\) 0 0
\(711\) 14017.3 29450.3i 0.739365 1.55340i
\(712\) 16287.9i 0.857326i
\(713\) 21718.3 + 12539.1i 1.14075 + 0.658614i
\(714\) 97.6258 61.6536i 0.00511702 0.00323155i
\(715\) 0 0
\(716\) 297.188 + 514.745i 0.0155118 + 0.0268672i
\(717\) −2432.31 3851.45i −0.126689 0.200607i
\(718\) 7670.97 + 4428.84i 0.398716 + 0.230199i
\(719\) 26301.8 1.36424 0.682122 0.731238i \(-0.261057\pi\)
0.682122 + 0.731238i \(0.261057\pi\)
\(720\) 0 0
\(721\) 4391.67 0.226844
\(722\) −4359.33 2516.86i −0.224705 0.129734i
\(723\) −1155.23 + 2197.94i −0.0594241 + 0.113060i
\(724\) −2290.79 3967.76i −0.117592 0.203675i
\(725\) 0 0
\(726\) −652.294 16429.3i −0.0333456 0.839876i
\(727\) −22117.1 12769.3i −1.12830 0.651427i −0.184797 0.982777i \(-0.559163\pi\)
−0.943508 + 0.331350i \(0.892496\pi\)
\(728\) 1388.56i 0.0706915i
\(729\) 19127.7 4642.23i 0.971789 0.235850i
\(730\) 0 0
\(731\) −766.510 + 1327.63i −0.0387830 + 0.0671742i
\(732\) −8076.18 + 320.649i −0.407792 + 0.0161906i
\(733\) 6046.70 3491.06i 0.304693 0.175914i −0.339856 0.940477i \(-0.610378\pi\)
0.644549 + 0.764563i \(0.277045\pi\)
\(734\) −12332.7 21360.8i −0.620174 1.07417i
\(735\) 0 0
\(736\) −6022.10 + 10430.6i −0.301600 + 0.522387i
\(737\) 21667.5i 1.08295i
\(738\) 304.695 + 3831.13i 0.0151978 + 0.191092i
\(739\) −8863.91 −0.441224 −0.220612 0.975362i \(-0.570805\pi\)
−0.220612 + 0.975362i \(0.570805\pi\)
\(740\) 0 0
\(741\) −8596.94 + 5429.22i −0.426203 + 0.269160i
\(742\) −1035.91 + 598.081i −0.0512524 + 0.0295906i
\(743\) −33727.3 + 19472.4i −1.66532 + 0.961473i −0.695211 + 0.718806i \(0.744689\pi\)
−0.970110 + 0.242668i \(0.921978\pi\)
\(744\) −30099.3 + 19008.6i −1.48319 + 0.936680i
\(745\) 0 0
\(746\) 13870.5 0.680742
\(747\) −22068.7 10503.9i −1.08093 0.514482i
\(748\) 613.879i 0.0300075i
\(749\) 1241.58 2150.49i 0.0605694 0.104909i
\(750\) 0 0
\(751\) −8795.16 15233.7i −0.427350 0.740192i 0.569287 0.822139i \(-0.307220\pi\)
−0.996637 + 0.0819470i \(0.973886\pi\)
\(752\) 3409.66 1968.57i 0.165342 0.0954604i
\(753\) −35785.2 + 1420.78i −1.73185 + 0.0687597i
\(754\) 5111.84 8853.97i 0.246900 0.427643i
\(755\) 0 0
\(756\) 146.766 + 1227.02i 0.00706062 + 0.0590293i
\(757\) 4075.85i 0.195693i 0.995202 + 0.0978463i \(0.0311954\pi\)
−0.995202 + 0.0978463i \(0.968805\pi\)
\(758\) 17722.6 + 10232.1i 0.849225 + 0.490300i
\(759\) −975.239 24563.3i −0.0466389 1.17469i
\(760\) 0 0
\(761\) −20268.5 35106.1i −0.965483 1.67227i −0.708312 0.705899i \(-0.750543\pi\)
−0.257171 0.966366i \(-0.582790\pi\)
\(762\) −10813.1 + 20572.9i −0.514064 + 0.978052i
\(763\) −2049.30 1183.17i −0.0972343 0.0561382i
\(764\) −1243.31 −0.0588761
\(765\) 0 0
\(766\) −24463.7 −1.15393
\(767\) 13127.3 + 7579.06i 0.617992 + 0.356798i
\(768\) −11135.5 17632.6i −0.523200 0.828464i
\(769\) 12016.3 + 20812.9i 0.563485 + 0.975985i 0.997189 + 0.0749293i \(0.0238731\pi\)
−0.433704 + 0.901056i \(0.642794\pi\)
\(770\) 0 0
\(771\) −31881.5 + 20134.1i −1.48922 + 0.940484i
\(772\) 10796.9 + 6233.57i 0.503351 + 0.290610i
\(773\) 20881.5i 0.971611i −0.874067 0.485805i \(-0.838526\pi\)
0.874067 0.485805i \(-0.161474\pi\)
\(774\) 14070.3 + 20436.3i 0.653420 + 0.949055i
\(775\) 0 0
\(776\) 8901.16 15417.3i 0.411770 0.713206i
\(777\) −1830.39 + 3482.48i −0.0845106 + 0.160789i
\(778\) −12487.5 + 7209.64i −0.575446 + 0.332234i
\(779\) −3102.82 5374.24i −0.142709 0.247179i
\(780\) 0 0
\(781\) −8171.18 + 14152.9i −0.374376 + 0.648439i
\(782\) 721.740i 0.0330043i
\(783\) 12578.4 29377.1i 0.574093 1.34081i
\(784\) −9518.60 −0.433610
\(785\) 0 0
\(786\) −106.597 2684.87i −0.00483741 0.121840i
\(787\) 4448.25 2568.20i 0.201478 0.116323i −0.395867 0.918308i \(-0.629556\pi\)
0.597345 + 0.801985i \(0.296223\pi\)
\(788\) 2461.82 1421.33i 0.111293 0.0642549i
\(789\) −29057.8 15272.7i −1.31113 0.689130i
\(790\) 0 0
\(791\) 2517.77 0.113175
\(792\) 31508.9 + 14997.1i 1.41366 + 0.672851i
\(793\) 9990.86i 0.447397i
\(794\) −4355.23 + 7543.48i −0.194662 + 0.337164i
\(795\) 0 0
\(796\) −4411.22 7640.45i −0.196421 0.340212i
\(797\) −19049.1 + 10998.0i −0.846615 + 0.488794i −0.859507 0.511123i \(-0.829230\pi\)
0.0128922 + 0.999917i \(0.495896\pi\)
\(798\) 1611.22 + 2551.30i 0.0714745 + 0.113177i
\(799\) 253.895 439.760i 0.0112418 0.0194713i
\(800\) 0 0
\(801\) −17861.7 + 1420.57i −0.787905 + 0.0626632i
\(802\) 9600.03i 0.422679i
\(803\) −2326.99 1343.49i −0.102264 0.0590419i
\(804\) 6026.69 + 3167.62i 0.264359 + 0.138947i
\(805\) 0 0
\(806\) 6264.42 + 10850.3i 0.273765 + 0.474175i
\(807\) 29834.7 1184.53i 1.30140 0.0516696i
\(808\) −20783.1 11999.1i −0.904885 0.522435i
\(809\) −31094.2 −1.35132 −0.675658 0.737215i \(-0.736140\pi\)
−0.675658 + 0.737215i \(0.736140\pi\)
\(810\) 0 0
\(811\) 19130.6 0.828320 0.414160 0.910204i \(-0.364075\pi\)
0.414160 + 0.910204i \(0.364075\pi\)
\(812\) 1737.55 + 1003.17i 0.0750936 + 0.0433553i
\(813\) −25571.9 + 1015.28i −1.10313 + 0.0437977i
\(814\) 15815.5 + 27393.2i 0.680997 + 1.17952i
\(815\) 0 0
\(816\) 477.937 + 251.203i 0.0205038 + 0.0107768i
\(817\) −34695.7 20031.6i −1.48574 0.857792i
\(818\) 19469.8i 0.832208i
\(819\) 1522.72 121.104i 0.0649674 0.00516694i
\(820\) 0 0
\(821\) 1778.81 3080.99i 0.0756162 0.130971i −0.825738 0.564054i \(-0.809241\pi\)
0.901354 + 0.433083i \(0.142574\pi\)
\(822\) −18100.7 28661.8i −0.768049 1.21617i
\(823\) 5325.52 3074.69i 0.225560 0.130227i −0.382962 0.923764i \(-0.625096\pi\)
0.608522 + 0.793537i \(0.291763\pi\)
\(824\) 19484.0 + 33747.2i 0.823733 + 1.42675i
\(825\) 0 0
\(826\) 2249.23 3895.77i 0.0947464 0.164106i
\(827\) 21152.8i 0.889425i −0.895673 0.444713i \(-0.853306\pi\)
0.895673 0.444713i \(-0.146694\pi\)
\(828\) 6974.73 + 3319.72i 0.292740 + 0.139334i
\(829\) 17402.4 0.729083 0.364541 0.931187i \(-0.381226\pi\)
0.364541 + 0.931187i \(0.381226\pi\)
\(830\) 0 0
\(831\) −10698.0 5622.84i −0.446580 0.234722i
\(832\) −9233.24 + 5330.81i −0.384742 + 0.222131i
\(833\) −1063.18 + 613.829i −0.0442222 + 0.0255317i
\(834\) −947.536 23865.6i −0.0393411 0.990884i
\(835\) 0 0
\(836\) −16042.8 −0.663698
\(837\) 23470.4 + 31349.7i 0.969243 + 1.29463i
\(838\) 2225.55i 0.0917425i
\(839\) −9037.12 + 15652.8i −0.371867 + 0.644092i −0.989853 0.142097i \(-0.954615\pi\)
0.617986 + 0.786189i \(0.287949\pi\)
\(840\) 0 0
\(841\) −13747.5 23811.3i −0.563675 0.976314i
\(842\) −28303.6 + 16341.1i −1.15844 + 0.668825i
\(843\) 7937.69 15102.2i 0.324304 0.617019i
\(844\) −7296.31 + 12637.6i −0.297570 + 0.515407i
\(845\) 0 0
\(846\) −4660.59 6769.23i −0.189402 0.275096i
\(847\) 3988.55i 0.161804i
\(848\) −4844.09 2796.74i −0.196164 0.113255i
\(849\) −8849.21 + 5588.54i −0.357720 + 0.225911i
\(850\) 0 0
\(851\) 12295.9 + 21297.1i 0.495297 + 0.857880i
\(852\) −2741.99 4341.82i −0.110257 0.174587i
\(853\) −35327.2 20396.1i −1.41803 0.818699i −0.421903 0.906641i \(-0.638638\pi\)
−0.996126 + 0.0879416i \(0.971971\pi\)
\(854\) 2964.97 0.118805
\(855\) 0 0
\(856\) 22033.5 0.879778
\(857\) −9576.39 5528.93i −0.381707 0.220379i 0.296854 0.954923i \(-0.404063\pi\)
−0.678561 + 0.734544i \(0.737396\pi\)
\(858\) 5713.88 10871.2i 0.227353 0.432559i
\(859\) −876.815 1518.69i −0.0348272 0.0603224i 0.848086 0.529858i \(-0.177755\pi\)
−0.882914 + 0.469535i \(0.844421\pi\)
\(860\) 0 0
\(861\) 36.9855 + 931.554i 0.00146395 + 0.0368725i
\(862\) 8293.35 + 4788.17i 0.327694 + 0.189194i
\(863\) 19186.5i 0.756796i −0.925643 0.378398i \(-0.876475\pi\)
0.925643 0.378398i \(-0.123525\pi\)
\(864\) −15056.3 + 11272.1i −0.592852 + 0.443847i
\(865\) 0 0
\(866\) 10205.9 17677.2i 0.400475 0.693642i
\(867\) −25439.0 + 1010.01i −0.996487 + 0.0395635i
\(868\) −2129.32 + 1229.36i −0.0832646 + 0.0480728i
\(869\) −31806.0 55089.6i −1.24159 2.15050i
\(870\) 0 0
\(871\) 4207.97 7288.41i 0.163699 0.283534i
\(872\) 20996.8i 0.815415i
\(873\) −17683.2 8416.58i −0.685552 0.326298i
\(874\) 18861.6 0.729980
\(875\) 0 0
\(876\) 713.872 450.831i 0.0275337 0.0173883i
\(877\) 7373.86 4257.30i 0.283920 0.163921i −0.351277 0.936272i \(-0.614252\pi\)
0.635197 + 0.772350i \(0.280919\pi\)
\(878\) −2888.96 + 1667.94i −0.111045 + 0.0641121i
\(879\) −2111.89 + 1333.72i −0.0810377 + 0.0511777i
\(880\) 0 0
\(881\) 41177.0 1.57467 0.787337 0.616522i \(-0.211459\pi\)
0.787337 + 0.616522i \(0.211459\pi\)
\(882\) 1575.27 + 19806.9i 0.0601384 + 0.756159i
\(883\) 32540.4i 1.24017i 0.784533 + 0.620086i \(0.212902\pi\)
−0.784533 + 0.620086i \(0.787098\pi\)
\(884\) −119.219 + 206.494i −0.00453595 + 0.00785650i
\(885\) 0 0
\(886\) 4896.34 + 8480.70i 0.185661 + 0.321574i
\(887\) −1875.90 + 1083.05i −0.0710106 + 0.0409980i −0.535085 0.844798i \(-0.679720\pi\)
0.464074 + 0.885796i \(0.346387\pi\)
\(888\) −34881.3 + 1384.89i −1.31818 + 0.0523356i
\(889\) −2818.95 + 4882.56i −0.106349 + 0.184202i
\(890\) 0 0
\(891\) 13698.1 35861.3i 0.515041 1.34837i
\(892\) 13041.2i 0.489522i
\(893\) 11492.4 + 6635.17i 0.430661 + 0.248642i
\(894\) 123.919 + 3121.15i 0.00463588 + 0.116764i
\(895\) 0 0
\(896\) 98.7391 + 171.021i 0.00368152 + 0.00637658i
\(897\) 4442.32 8451.92i 0.165356 0.314606i
\(898\) −10208.5 5893.91i −0.379358 0.219023i
\(899\) 63582.3 2.35883
\(900\) 0 0
\(901\) −721.416 −0.0266747
\(902\) 6491.36 + 3747.79i 0.239622 + 0.138346i
\(903\) 3213.81 + 5088.93i 0.118437 + 0.187540i
\(904\) 11170.3 + 19347.5i 0.410971 + 0.711823i
\(905\) 0 0
\(906\) 9032.15 5704.07i 0.331207 0.209167i
\(907\) −611.468 353.031i −0.0223853 0.0129241i 0.488766 0.872415i \(-0.337447\pi\)
−0.511151 + 0.859491i \(0.670781\pi\)
\(908\) 12321.6i 0.450339i
\(909\) −11345.9 + 23837.7i −0.413993 + 0.869799i
\(910\) 0 0
\(911\) 247.743 429.103i 0.00900997 0.0156057i −0.861485 0.507783i \(-0.830465\pi\)
0.870495 + 0.492177i \(0.163799\pi\)
\(912\) −6564.81 + 12490.1i −0.238358 + 0.453498i
\(913\) −41281.7 + 23834.0i −1.49641 + 0.863955i
\(914\) −17034.8 29505.2i −0.616480 1.06777i
\(915\) 0 0
\(916\) 1967.99 3408.66i 0.0709871 0.122953i
\(917\) 651.806i 0.0234728i
\(918\) 443.623 1036.09i 0.0159496 0.0372507i
\(919\) −20473.6 −0.734889 −0.367445 0.930045i \(-0.619767\pi\)
−0.367445 + 0.930045i \(0.619767\pi\)
\(920\) 0 0
\(921\) 664.227 + 16729.9i 0.0237644 + 0.598554i
\(922\) −107.219 + 61.9030i −0.00382980 + 0.00221114i
\(923\) −5497.17 + 3173.80i −0.196037 + 0.113182i
\(924\) 2133.41 + 1121.32i 0.0759569 + 0.0399229i
\(925\) 0 0
\(926\) −29348.0 −1.04151
\(927\) 35308.6 24309.8i 1.25101 0.861316i
\(928\) 30536.5i 1.08018i
\(929\) 24857.7 43054.7i 0.877883 1.52054i 0.0242231 0.999707i \(-0.492289\pi\)
0.853660 0.520831i \(-0.174378\pi\)
\(930\) 0 0
\(931\) −16041.5 27784.7i −0.564704 0.978095i
\(932\) 6086.57 3514.08i 0.213919 0.123506i
\(933\) 6697.79 + 10605.7i 0.235022 + 0.372148i
\(934\) −2937.77 + 5088.36i −0.102919 + 0.178261i
\(935\) 0 0
\(936\) 7686.29 + 11163.9i 0.268413 + 0.389854i
\(937\) 31524.9i 1.09912i 0.835454 + 0.549560i \(0.185204\pi\)
−0.835454 + 0.549560i \(0.814796\pi\)
\(938\) −2162.97 1248.79i −0.0752916 0.0434696i
\(939\) −11530.7 6060.54i −0.400736 0.210626i
\(940\) 0 0
\(941\) −18764.2 32500.6i −0.650050 1.12592i −0.983110 0.183014i \(-0.941415\pi\)
0.333060 0.942905i \(-0.391919\pi\)
\(942\) −4539.65 + 180.238i −0.157017 + 0.00623404i
\(943\) 5046.78 + 2913.76i 0.174280 + 0.100620i
\(944\) 21035.6 0.725265
\(945\) 0 0
\(946\) 48390.9 1.66313
\(947\) 22398.3 + 12931.7i 0.768582 + 0.443741i 0.832369 0.554222i \(-0.186984\pi\)
−0.0637862 + 0.997964i \(0.520318\pi\)
\(948\) 19972.7 792.975i 0.684264 0.0271673i
\(949\) −521.829 903.834i −0.0178496 0.0309164i
\(950\) 0 0
\(951\) −17051.0 8962.00i −0.581406 0.305586i
\(952\) 215.233 + 124.265i 0.00732746 + 0.00423051i
\(953\) 1060.03i 0.0360312i 0.999838 + 0.0180156i \(0.00573485\pi\)
−0.999838 + 0.0180156i \(0.994265\pi\)
\(954\) −5017.95 + 10542.7i −0.170296 + 0.357791i
\(955\) 0 0
\(956\) 1395.81 2417.61i 0.0472213 0.0817897i
\(957\) −33279.9 52697.3i −1.12412 1.78000i
\(958\) 6594.40 3807.28i 0.222396 0.128400i
\(959\) −4111.58 7121.46i −0.138446 0.239796i
\(960\) 0 0
\(961\) −24063.7 + 41679.5i −0.807750 + 1.39906i
\(962\) 12285.9i 0.411759i
\(963\) −1921.67 24162.4i −0.0643043 0.808540i
\(964\) −1521.71 −0.0508412
\(965\) 0 0
\(966\) −2508.26 1318.34i −0.0835424 0.0439098i
\(967\) 4490.35 2592.51i 0.149328 0.0862145i −0.423474 0.905908i \(-0.639190\pi\)
0.572802 + 0.819694i \(0.305856\pi\)
\(968\) 30649.5 17695.5i 1.01768 0.587557i
\(969\) 72.1975 + 1818.44i 0.00239352 + 0.0602855i
\(970\) 0 0
\(971\) 28314.9 0.935805 0.467903 0.883780i \(-0.345010\pi\)
0.467903 + 0.883780i \(0.345010\pi\)
\(972\) 7972.07 + 9052.69i 0.263070 + 0.298730i
\(973\) 5793.85i 0.190897i
\(974\) 15405.6 26683.4i 0.506806 0.877813i
\(975\) 0 0
\(976\) 6932.38 + 12007.2i 0.227357 + 0.393793i
\(977\) −38881.6 + 22448.3i −1.27322 + 0.735093i −0.975592 0.219590i \(-0.929528\pi\)
−0.297626 + 0.954683i \(0.596195\pi\)
\(978\) −2536.65 + 4826.20i −0.0829376 + 0.157796i
\(979\) −17473.1 + 30264.3i −0.570422 + 0.988001i
\(980\) 0 0
\(981\) −23025.6 + 1831.26i −0.749388 + 0.0595999i
\(982\) 21539.4i 0.699950i
\(983\) 12620.4 + 7286.40i 0.409490 + 0.236419i 0.690571 0.723265i \(-0.257360\pi\)
−0.281081 + 0.959684i \(0.590693\pi\)
\(984\) −6994.32 + 4417.12i −0.226596 + 0.143102i
\(985\) 0 0
\(986\) −914.938 1584.72i −0.0295513 0.0511843i
\(987\) −1064.53 1685.63i −0.0343306 0.0543610i
\(988\) −5396.41 3115.62i −0.173768 0.100325i
\(989\) 37622.0 1.20962
\(990\) 0 0
\(991\) 10602.1 0.339844 0.169922 0.985457i \(-0.445648\pi\)
0.169922 + 0.985457i \(0.445648\pi\)
\(992\) −32408.1 18710.8i −1.03726 0.598860i
\(993\) 6172.98 11744.6i 0.197274 0.375332i
\(994\) 941.882 + 1631.39i 0.0300550 + 0.0520568i
\(995\) 0 0
\(996\) −594.221 14966.6i −0.0189042 0.476141i
\(997\) 24159.5 + 13948.5i 0.767441 + 0.443082i 0.831961 0.554834i \(-0.187218\pi\)
−0.0645202 + 0.997916i \(0.520552\pi\)
\(998\) 26447.4i 0.838857i
\(999\) 4560.91 + 38130.8i 0.144445 + 1.20761i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.4.k.d.124.5 28
5.2 odd 4 45.4.e.c.16.5 14
5.3 odd 4 225.4.e.d.151.3 14
5.4 even 2 inner 225.4.k.d.124.10 28
9.4 even 3 inner 225.4.k.d.49.10 28
15.2 even 4 135.4.e.c.46.3 14
45.2 even 12 405.4.a.n.1.5 7
45.4 even 6 inner 225.4.k.d.49.5 28
45.7 odd 12 405.4.a.m.1.3 7
45.13 odd 12 225.4.e.d.76.3 14
45.22 odd 12 45.4.e.c.31.5 yes 14
45.32 even 12 135.4.e.c.91.3 14
45.38 even 12 2025.4.a.ba.1.3 7
45.43 odd 12 2025.4.a.bb.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.e.c.16.5 14 5.2 odd 4
45.4.e.c.31.5 yes 14 45.22 odd 12
135.4.e.c.46.3 14 15.2 even 4
135.4.e.c.91.3 14 45.32 even 12
225.4.e.d.76.3 14 45.13 odd 12
225.4.e.d.151.3 14 5.3 odd 4
225.4.k.d.49.5 28 45.4 even 6 inner
225.4.k.d.49.10 28 9.4 even 3 inner
225.4.k.d.124.5 28 1.1 even 1 trivial
225.4.k.d.124.10 28 5.4 even 2 inner
405.4.a.m.1.3 7 45.7 odd 12
405.4.a.n.1.5 7 45.2 even 12
2025.4.a.ba.1.3 7 45.38 even 12
2025.4.a.bb.1.5 7 45.43 odd 12