Properties

Label 225.4.e.d.76.4
Level $225$
Weight $4$
Character 225.76
Analytic conductor $13.275$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,4,Mod(76,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.76"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} + 48 x^{12} - 60 x^{11} + 1605 x^{10} - 1800 x^{9} + 23232 x^{8} - 2346 x^{7} + \cdots + 82944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 76.4
Root \(0.112625 - 0.195072i\) of defining polynomial
Character \(\chi\) \(=\) 225.76
Dual form 225.4.e.d.151.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.112625 - 0.195072i) q^{2} +(-2.06755 - 4.76710i) q^{3} +(3.97463 - 6.88426i) q^{4} +(-0.697071 + 0.940215i) q^{6} +(-15.5970 - 27.0148i) q^{7} -3.59257 q^{8} +(-18.4505 + 19.7124i) q^{9} +(-9.06424 - 15.6997i) q^{11} +(-41.0357 - 4.71394i) q^{12} +(-25.0781 + 43.4366i) q^{13} +(-3.51322 + 6.08508i) q^{14} +(-31.3924 - 54.3733i) q^{16} +131.631 q^{17} +(5.92333 + 1.37907i) q^{18} +23.2428 q^{19} +(-96.5348 + 130.207i) q^{21} +(-2.04172 + 3.53636i) q^{22} +(-16.4928 + 28.5664i) q^{23} +(7.42780 + 17.1261i) q^{24} +11.2977 q^{26} +(132.118 + 47.1991i) q^{27} -247.969 q^{28} +(-62.9087 - 108.961i) q^{29} +(-62.5563 + 108.351i) q^{31} +(-21.4414 + 37.1376i) q^{32} +(-56.1014 + 75.6700i) q^{33} +(-14.8249 - 25.6775i) q^{34} +(62.3714 + 205.368i) q^{36} -99.9894 q^{37} +(-2.61772 - 4.53402i) q^{38} +(258.917 + 29.7428i) q^{39} +(-122.663 + 212.458i) q^{41} +(36.2720 + 4.16670i) q^{42} +(69.5882 + 120.530i) q^{43} -144.108 q^{44} +7.43001 q^{46} +(-236.480 - 409.596i) q^{47} +(-194.298 + 262.070i) q^{48} +(-315.033 + 545.654i) q^{49} +(-272.153 - 627.498i) q^{51} +(199.352 + 345.289i) q^{52} -421.529 q^{53} +(-5.67258 - 31.0884i) q^{54} +(56.0333 + 97.0526i) q^{56} +(-48.0556 - 110.801i) q^{57} +(-14.1702 + 24.5435i) q^{58} +(371.207 - 642.949i) q^{59} +(-4.48868 - 7.77462i) q^{61} +28.1816 q^{62} +(820.300 + 190.982i) q^{63} -492.620 q^{64} +(21.0795 + 2.42149i) q^{66} +(294.453 - 510.008i) q^{67} +(523.185 - 906.182i) q^{68} +(170.279 + 19.5606i) q^{69} -48.5526 q^{71} +(66.2847 - 70.8182i) q^{72} -409.800 q^{73} +(11.2613 + 19.5051i) q^{74} +(92.3816 - 160.010i) q^{76} +(-282.750 + 489.737i) q^{77} +(-23.3585 - 53.8572i) q^{78} +(-265.263 - 459.449i) q^{79} +(-48.1577 - 727.408i) q^{81} +55.2595 q^{82} +(-147.295 - 255.122i) q^{83} +(512.688 + 1182.10i) q^{84} +(15.6747 - 27.1494i) q^{86} +(-389.362 + 525.174i) q^{87} +(32.5639 + 56.4023i) q^{88} +852.817 q^{89} +1564.57 q^{91} +(131.106 + 227.082i) q^{92} +(645.857 + 74.1922i) q^{93} +(-53.2672 + 92.2615i) q^{94} +(221.370 + 25.4296i) q^{96} +(-194.045 - 336.096i) q^{97} +141.922 q^{98} +(476.719 + 110.990i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{2} + 5 q^{3} - 36 q^{4} - 31 q^{6} + 22 q^{7} + 36 q^{8} + 17 q^{9} + 23 q^{11} - 287 q^{12} + 96 q^{13} - 21 q^{14} - 324 q^{16} + 322 q^{17} + 89 q^{18} + 558 q^{19} + 180 q^{21} + 311 q^{22}+ \cdots + 2320 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.112625 0.195072i −0.0398189 0.0689684i 0.845429 0.534088i \(-0.179345\pi\)
−0.885248 + 0.465119i \(0.846011\pi\)
\(3\) −2.06755 4.76710i −0.397899 0.917429i
\(4\) 3.97463 6.88426i 0.496829 0.860533i
\(5\) 0 0
\(6\) −0.697071 + 0.940215i −0.0474297 + 0.0639735i
\(7\) −15.5970 27.0148i −0.842159 1.45866i −0.888066 0.459717i \(-0.847951\pi\)
0.0459062 0.998946i \(-0.485382\pi\)
\(8\) −3.59257 −0.158771
\(9\) −18.4505 + 19.7124i −0.683352 + 0.730089i
\(10\) 0 0
\(11\) −9.06424 15.6997i −0.248452 0.430331i 0.714645 0.699488i \(-0.246588\pi\)
−0.963096 + 0.269156i \(0.913255\pi\)
\(12\) −41.0357 4.71394i −0.987166 0.113400i
\(13\) −25.0781 + 43.4366i −0.535032 + 0.926702i 0.464130 + 0.885767i \(0.346367\pi\)
−0.999162 + 0.0409353i \(0.986966\pi\)
\(14\) −3.51322 + 6.08508i −0.0670678 + 0.116165i
\(15\) 0 0
\(16\) −31.3924 54.3733i −0.490507 0.849583i
\(17\) 131.631 1.87795 0.938977 0.343981i \(-0.111776\pi\)
0.938977 + 0.343981i \(0.111776\pi\)
\(18\) 5.92333 + 1.37907i 0.0775634 + 0.0180583i
\(19\) 23.2428 0.280646 0.140323 0.990106i \(-0.455186\pi\)
0.140323 + 0.990106i \(0.455186\pi\)
\(20\) 0 0
\(21\) −96.5348 + 130.207i −1.00312 + 1.35302i
\(22\) −2.04172 + 3.53636i −0.0197862 + 0.0342707i
\(23\) −16.4928 + 28.5664i −0.149521 + 0.258978i −0.931051 0.364890i \(-0.881107\pi\)
0.781529 + 0.623868i \(0.214440\pi\)
\(24\) 7.42780 + 17.1261i 0.0631747 + 0.145661i
\(25\) 0 0
\(26\) 11.2977 0.0852176
\(27\) 132.118 + 47.1991i 0.941710 + 0.336425i
\(28\) −247.969 −1.67364
\(29\) −62.9087 108.961i −0.402823 0.697709i 0.591243 0.806494i \(-0.298637\pi\)
−0.994065 + 0.108784i \(0.965304\pi\)
\(30\) 0 0
\(31\) −62.5563 + 108.351i −0.362434 + 0.627754i −0.988361 0.152128i \(-0.951387\pi\)
0.625927 + 0.779882i \(0.284721\pi\)
\(32\) −21.4414 + 37.1376i −0.118448 + 0.205158i
\(33\) −56.1014 + 75.6700i −0.295940 + 0.399166i
\(34\) −14.8249 25.6775i −0.0747781 0.129519i
\(35\) 0 0
\(36\) 62.3714 + 205.368i 0.288757 + 0.950776i
\(37\) −99.9894 −0.444274 −0.222137 0.975015i \(-0.571303\pi\)
−0.222137 + 0.975015i \(0.571303\pi\)
\(38\) −2.61772 4.53402i −0.0111750 0.0193557i
\(39\) 258.917 + 29.7428i 1.06307 + 0.122119i
\(40\) 0 0
\(41\) −122.663 + 212.458i −0.467237 + 0.809278i −0.999299 0.0374272i \(-0.988084\pi\)
0.532063 + 0.846705i \(0.321417\pi\)
\(42\) 36.2720 + 4.16670i 0.133259 + 0.0153080i
\(43\) 69.5882 + 120.530i 0.246793 + 0.427458i 0.962634 0.270805i \(-0.0872899\pi\)
−0.715841 + 0.698263i \(0.753957\pi\)
\(44\) −144.108 −0.493752
\(45\) 0 0
\(46\) 7.43001 0.0238151
\(47\) −236.480 409.596i −0.733919 1.27119i −0.955196 0.295975i \(-0.904356\pi\)
0.221276 0.975211i \(-0.428978\pi\)
\(48\) −194.298 + 262.070i −0.584259 + 0.788054i
\(49\) −315.033 + 545.654i −0.918465 + 1.59083i
\(50\) 0 0
\(51\) −272.153 627.498i −0.747237 1.72289i
\(52\) 199.352 + 345.289i 0.531639 + 0.920825i
\(53\) −421.529 −1.09248 −0.546240 0.837628i \(-0.683941\pi\)
−0.546240 + 0.837628i \(0.683941\pi\)
\(54\) −5.67258 31.0884i −0.0142952 0.0783443i
\(55\) 0 0
\(56\) 56.0333 + 97.0526i 0.133710 + 0.231593i
\(57\) −48.0556 110.801i −0.111669 0.257472i
\(58\) −14.1702 + 24.5435i −0.0320799 + 0.0555641i
\(59\) 371.207 642.949i 0.819101 1.41873i −0.0872437 0.996187i \(-0.527806\pi\)
0.906345 0.422538i \(-0.138861\pi\)
\(60\) 0 0
\(61\) −4.48868 7.77462i −0.00942158 0.0163187i 0.861276 0.508137i \(-0.169666\pi\)
−0.870698 + 0.491818i \(0.836332\pi\)
\(62\) 28.1816 0.0577269
\(63\) 820.300 + 190.982i 1.64044 + 0.381929i
\(64\) −492.620 −0.962148
\(65\) 0 0
\(66\) 21.0795 + 2.42149i 0.0393138 + 0.00451613i
\(67\) 294.453 510.008i 0.536913 0.929960i −0.462155 0.886799i \(-0.652924\pi\)
0.999068 0.0431613i \(-0.0137429\pi\)
\(68\) 523.185 906.182i 0.933021 1.61604i
\(69\) 170.279 + 19.5606i 0.297089 + 0.0341278i
\(70\) 0 0
\(71\) −48.5526 −0.0811568 −0.0405784 0.999176i \(-0.512920\pi\)
−0.0405784 + 0.999176i \(0.512920\pi\)
\(72\) 66.2847 70.8182i 0.108496 0.115917i
\(73\) −409.800 −0.657034 −0.328517 0.944498i \(-0.606549\pi\)
−0.328517 + 0.944498i \(0.606549\pi\)
\(74\) 11.2613 + 19.5051i 0.0176905 + 0.0306409i
\(75\) 0 0
\(76\) 92.3816 160.010i 0.139433 0.241505i
\(77\) −282.750 + 489.737i −0.418472 + 0.724815i
\(78\) −23.3585 53.8572i −0.0339080 0.0781811i
\(79\) −265.263 459.449i −0.377778 0.654330i 0.612961 0.790113i \(-0.289978\pi\)
−0.990739 + 0.135783i \(0.956645\pi\)
\(80\) 0 0
\(81\) −48.1577 727.408i −0.0660600 0.997816i
\(82\) 55.2595 0.0744195
\(83\) −147.295 255.122i −0.194792 0.337389i 0.752040 0.659117i \(-0.229070\pi\)
−0.946832 + 0.321728i \(0.895736\pi\)
\(84\) 512.688 + 1182.10i 0.665939 + 1.53544i
\(85\) 0 0
\(86\) 15.6747 27.1494i 0.0196541 0.0340418i
\(87\) −389.362 + 525.174i −0.479816 + 0.647179i
\(88\) 32.5639 + 56.4023i 0.0394469 + 0.0683240i
\(89\) 852.817 1.01571 0.507856 0.861442i \(-0.330438\pi\)
0.507856 + 0.861442i \(0.330438\pi\)
\(90\) 0 0
\(91\) 1564.57 1.80233
\(92\) 131.106 + 227.082i 0.148573 + 0.257336i
\(93\) 645.857 + 74.1922i 0.720132 + 0.0827244i
\(94\) −53.2672 + 92.2615i −0.0584478 + 0.101234i
\(95\) 0 0
\(96\) 221.370 + 25.4296i 0.235349 + 0.0270354i
\(97\) −194.045 336.096i −0.203117 0.351808i 0.746414 0.665481i \(-0.231774\pi\)
−0.949531 + 0.313673i \(0.898440\pi\)
\(98\) 141.922 0.146289
\(99\) 476.719 + 110.990i 0.483960 + 0.112676i
\(100\) 0 0
\(101\) 539.997 + 935.302i 0.531997 + 0.921446i 0.999302 + 0.0373500i \(0.0118916\pi\)
−0.467305 + 0.884096i \(0.654775\pi\)
\(102\) −91.7562 + 123.761i −0.0890707 + 0.120139i
\(103\) −297.498 + 515.282i −0.284596 + 0.492935i −0.972511 0.232856i \(-0.925193\pi\)
0.687915 + 0.725791i \(0.258526\pi\)
\(104\) 90.0948 156.049i 0.0849473 0.147133i
\(105\) 0 0
\(106\) 47.4747 + 82.2286i 0.0435014 + 0.0753467i
\(107\) 498.693 0.450565 0.225282 0.974293i \(-0.427670\pi\)
0.225282 + 0.974293i \(0.427670\pi\)
\(108\) 850.053 721.938i 0.757374 0.643227i
\(109\) −959.301 −0.842976 −0.421488 0.906834i \(-0.638492\pi\)
−0.421488 + 0.906834i \(0.638492\pi\)
\(110\) 0 0
\(111\) 206.733 + 476.660i 0.176777 + 0.407590i
\(112\) −979.256 + 1696.12i −0.826170 + 1.43097i
\(113\) 864.396 1497.18i 0.719607 1.24640i −0.241549 0.970389i \(-0.577655\pi\)
0.961156 0.276007i \(-0.0890113\pi\)
\(114\) −16.2019 + 21.8532i −0.0133109 + 0.0179539i
\(115\) 0 0
\(116\) −1000.16 −0.800536
\(117\) −393.535 1295.78i −0.310960 1.02388i
\(118\) −167.228 −0.130463
\(119\) −2053.05 3555.99i −1.58154 2.73930i
\(120\) 0 0
\(121\) 501.179 868.068i 0.376543 0.652192i
\(122\) −1.01107 + 1.75123i −0.000750315 + 0.00129958i
\(123\) 1266.42 + 145.479i 0.928368 + 0.106645i
\(124\) 497.277 + 861.309i 0.360135 + 0.623773i
\(125\) 0 0
\(126\) −55.1308 181.527i −0.0389797 0.128347i
\(127\) −1019.95 −0.712647 −0.356324 0.934363i \(-0.615970\pi\)
−0.356324 + 0.934363i \(0.615970\pi\)
\(128\) 227.013 + 393.197i 0.156760 + 0.271516i
\(129\) 430.703 580.936i 0.293964 0.396500i
\(130\) 0 0
\(131\) 851.196 1474.31i 0.567705 0.983294i −0.429088 0.903263i \(-0.641165\pi\)
0.996792 0.0800308i \(-0.0255019\pi\)
\(132\) 297.950 + 686.977i 0.196464 + 0.452983i
\(133\) −362.518 627.900i −0.236348 0.409367i
\(134\) −132.651 −0.0855172
\(135\) 0 0
\(136\) −472.893 −0.298164
\(137\) −524.839 909.049i −0.327300 0.566900i 0.654675 0.755910i \(-0.272805\pi\)
−0.981975 + 0.189010i \(0.939472\pi\)
\(138\) −15.3619 35.4196i −0.00947602 0.0218487i
\(139\) −717.411 + 1242.59i −0.437770 + 0.758240i −0.997517 0.0704236i \(-0.977565\pi\)
0.559747 + 0.828663i \(0.310898\pi\)
\(140\) 0 0
\(141\) −1463.65 + 1974.18i −0.874197 + 1.17912i
\(142\) 5.46823 + 9.47126i 0.00323158 + 0.00559726i
\(143\) 909.256 0.531719
\(144\) 1651.03 + 384.394i 0.955460 + 0.222450i
\(145\) 0 0
\(146\) 46.1537 + 79.9406i 0.0261624 + 0.0453146i
\(147\) 3252.53 + 373.631i 1.82493 + 0.209637i
\(148\) −397.421 + 688.353i −0.220728 + 0.382313i
\(149\) −609.231 + 1055.22i −0.334968 + 0.580181i −0.983479 0.181024i \(-0.942059\pi\)
0.648511 + 0.761205i \(0.275392\pi\)
\(150\) 0 0
\(151\) −804.751 1393.87i −0.433707 0.751202i 0.563482 0.826128i \(-0.309461\pi\)
−0.997189 + 0.0749258i \(0.976128\pi\)
\(152\) −83.5014 −0.0445583
\(153\) −2428.66 + 2594.76i −1.28330 + 1.37107i
\(154\) 127.379 0.0666524
\(155\) 0 0
\(156\) 1233.86 1664.23i 0.633253 0.854137i
\(157\) 643.168 1114.00i 0.326945 0.566286i −0.654959 0.755664i \(-0.727314\pi\)
0.981904 + 0.189379i \(0.0606474\pi\)
\(158\) −59.7505 + 103.491i −0.0300854 + 0.0521095i
\(159\) 871.531 + 2009.47i 0.434698 + 1.00227i
\(160\) 0 0
\(161\) 1028.95 0.503683
\(162\) −136.473 + 91.3185i −0.0661873 + 0.0442880i
\(163\) −1416.84 −0.680830 −0.340415 0.940275i \(-0.610568\pi\)
−0.340415 + 0.940275i \(0.610568\pi\)
\(164\) 975.079 + 1688.89i 0.464273 + 0.804145i
\(165\) 0 0
\(166\) −33.1782 + 57.4663i −0.0155128 + 0.0268690i
\(167\) 447.487 775.071i 0.207351 0.359142i −0.743528 0.668704i \(-0.766849\pi\)
0.950879 + 0.309562i \(0.100182\pi\)
\(168\) 346.808 467.777i 0.159267 0.214820i
\(169\) −159.323 275.955i −0.0725183 0.125605i
\(170\) 0 0
\(171\) −428.842 + 458.172i −0.191780 + 0.204896i
\(172\) 1106.35 0.490456
\(173\) −867.548 1502.64i −0.381263 0.660367i 0.609980 0.792417i \(-0.291177\pi\)
−0.991243 + 0.132050i \(0.957844\pi\)
\(174\) 146.299 + 16.8059i 0.0637407 + 0.00732214i
\(175\) 0 0
\(176\) −569.097 + 985.705i −0.243735 + 0.422161i
\(177\) −3832.49 440.253i −1.62750 0.186957i
\(178\) −96.0485 166.361i −0.0404446 0.0700521i
\(179\) 2133.37 0.890815 0.445408 0.895328i \(-0.353059\pi\)
0.445408 + 0.895328i \(0.353059\pi\)
\(180\) 0 0
\(181\) −3611.98 −1.48330 −0.741648 0.670789i \(-0.765955\pi\)
−0.741648 + 0.670789i \(0.765955\pi\)
\(182\) −176.210 305.205i −0.0717668 0.124304i
\(183\) −27.7819 + 37.4724i −0.0112224 + 0.0151368i
\(184\) 59.2516 102.627i 0.0237396 0.0411182i
\(185\) 0 0
\(186\) −58.2668 134.345i −0.0229695 0.0529603i
\(187\) −1193.13 2066.57i −0.466581 0.808142i
\(188\) −3759.69 −1.45853
\(189\) −785.575 4305.32i −0.302340 1.65696i
\(190\) 0 0
\(191\) 298.495 + 517.008i 0.113080 + 0.195861i 0.917011 0.398863i \(-0.130595\pi\)
−0.803930 + 0.594723i \(0.797262\pi\)
\(192\) 1018.51 + 2348.37i 0.382838 + 0.882702i
\(193\) −603.872 + 1045.94i −0.225221 + 0.390094i −0.956386 0.292107i \(-0.905644\pi\)
0.731165 + 0.682201i \(0.238977\pi\)
\(194\) −43.7087 + 75.7056i −0.0161758 + 0.0280173i
\(195\) 0 0
\(196\) 2504.28 + 4337.54i 0.912639 + 1.58074i
\(197\) 3268.56 1.18211 0.591054 0.806632i \(-0.298712\pi\)
0.591054 + 0.806632i \(0.298712\pi\)
\(198\) −32.0394 105.495i −0.0114997 0.0378646i
\(199\) −2109.88 −0.751585 −0.375793 0.926704i \(-0.622629\pi\)
−0.375793 + 0.926704i \(0.622629\pi\)
\(200\) 0 0
\(201\) −3040.05 349.223i −1.06681 0.122549i
\(202\) 121.634 210.677i 0.0423671 0.0733820i
\(203\) −1962.38 + 3398.93i −0.678482 + 1.17516i
\(204\) −5401.57 620.500i −1.85385 0.212959i
\(205\) 0 0
\(206\) 134.023 0.0453292
\(207\) −258.811 852.177i −0.0869017 0.286137i
\(208\) 3149.05 1.04975
\(209\) −210.678 364.906i −0.0697269 0.120771i
\(210\) 0 0
\(211\) −329.321 + 570.400i −0.107447 + 0.186104i −0.914735 0.404053i \(-0.867601\pi\)
0.807288 + 0.590157i \(0.200934\pi\)
\(212\) −1675.42 + 2901.92i −0.542776 + 0.940116i
\(213\) 100.385 + 231.455i 0.0322923 + 0.0744556i
\(214\) −56.1652 97.2810i −0.0179410 0.0310747i
\(215\) 0 0
\(216\) −474.644 169.566i −0.149516 0.0534144i
\(217\) 3902.77 1.22091
\(218\) 108.041 + 187.133i 0.0335664 + 0.0581387i
\(219\) 847.281 + 1953.56i 0.261434 + 0.602783i
\(220\) 0 0
\(221\) −3301.06 + 5717.60i −1.00476 + 1.74030i
\(222\) 69.6997 94.0115i 0.0210718 0.0284218i
\(223\) 609.397 + 1055.51i 0.182997 + 0.316959i 0.942900 0.333077i \(-0.108087\pi\)
−0.759903 + 0.650036i \(0.774754\pi\)
\(224\) 1337.69 0.399009
\(225\) 0 0
\(226\) −389.410 −0.114616
\(227\) −762.785 1321.18i −0.223030 0.386299i 0.732697 0.680555i \(-0.238261\pi\)
−0.955727 + 0.294256i \(0.904928\pi\)
\(228\) −953.785 109.565i −0.277044 0.0318251i
\(229\) 3091.33 5354.33i 0.892055 1.54508i 0.0546469 0.998506i \(-0.482597\pi\)
0.837408 0.546578i \(-0.184070\pi\)
\(230\) 0 0
\(231\) 2919.23 + 335.343i 0.831476 + 0.0955150i
\(232\) 226.004 + 391.450i 0.0639564 + 0.110776i
\(233\) 2013.82 0.566222 0.283111 0.959087i \(-0.408633\pi\)
0.283111 + 0.959087i \(0.408633\pi\)
\(234\) −208.448 + 222.704i −0.0582336 + 0.0622164i
\(235\) 0 0
\(236\) −2950.82 5110.97i −0.813906 1.40973i
\(237\) −1641.80 + 2214.47i −0.449984 + 0.606942i
\(238\) −462.449 + 800.985i −0.125950 + 0.218152i
\(239\) −2543.15 + 4404.87i −0.688297 + 1.19216i 0.284092 + 0.958797i \(0.408308\pi\)
−0.972389 + 0.233368i \(0.925025\pi\)
\(240\) 0 0
\(241\) −1643.41 2846.47i −0.439259 0.760820i 0.558373 0.829590i \(-0.311426\pi\)
−0.997633 + 0.0687703i \(0.978092\pi\)
\(242\) −225.781 −0.0599742
\(243\) −3368.06 + 1733.52i −0.889140 + 0.457636i
\(244\) −71.3634 −0.0187237
\(245\) 0 0
\(246\) −114.252 263.428i −0.0296115 0.0682746i
\(247\) −582.886 + 1009.59i −0.150154 + 0.260075i
\(248\) 224.738 389.258i 0.0575439 0.0996689i
\(249\) −911.655 + 1229.65i −0.232023 + 0.312955i
\(250\) 0 0
\(251\) 3480.55 0.875260 0.437630 0.899155i \(-0.355818\pi\)
0.437630 + 0.899155i \(0.355818\pi\)
\(252\) 4575.16 4888.07i 1.14368 1.22190i
\(253\) 597.979 0.148595
\(254\) 114.872 + 198.964i 0.0283768 + 0.0491501i
\(255\) 0 0
\(256\) −1919.34 + 3324.40i −0.468590 + 0.811621i
\(257\) −3397.49 + 5884.62i −0.824628 + 1.42830i 0.0775746 + 0.996987i \(0.475282\pi\)
−0.902203 + 0.431312i \(0.858051\pi\)
\(258\) −161.832 18.5903i −0.0390513 0.00448598i
\(259\) 1559.54 + 2701.19i 0.374150 + 0.648047i
\(260\) 0 0
\(261\) 3308.58 + 770.305i 0.784659 + 0.182685i
\(262\) −383.464 −0.0904216
\(263\) 2682.12 + 4645.56i 0.628846 + 1.08919i 0.987784 + 0.155832i \(0.0498057\pi\)
−0.358938 + 0.933362i \(0.616861\pi\)
\(264\) 201.548 271.850i 0.0469865 0.0633758i
\(265\) 0 0
\(266\) −81.6572 + 141.434i −0.0188223 + 0.0326011i
\(267\) −1763.24 4065.47i −0.404152 0.931845i
\(268\) −2340.68 4054.18i −0.533508 0.924062i
\(269\) 48.4985 0.0109926 0.00549629 0.999985i \(-0.498250\pi\)
0.00549629 + 0.999985i \(0.498250\pi\)
\(270\) 0 0
\(271\) 7643.16 1.71324 0.856622 0.515945i \(-0.172559\pi\)
0.856622 + 0.515945i \(0.172559\pi\)
\(272\) −4132.22 7157.21i −0.921149 1.59548i
\(273\) −3234.83 7458.48i −0.717145 1.65351i
\(274\) −118.220 + 204.763i −0.0260654 + 0.0451467i
\(275\) 0 0
\(276\) 811.454 1094.50i 0.176970 0.238699i
\(277\) 2573.01 + 4456.59i 0.558113 + 0.966680i 0.997654 + 0.0684576i \(0.0218078\pi\)
−0.439541 + 0.898223i \(0.644859\pi\)
\(278\) 323.193 0.0697261
\(279\) −981.658 3232.26i −0.210646 0.693586i
\(280\) 0 0
\(281\) −2927.37 5070.35i −0.621467 1.07641i −0.989213 0.146486i \(-0.953204\pi\)
0.367746 0.929926i \(-0.380130\pi\)
\(282\) 549.952 + 63.1752i 0.116132 + 0.0133405i
\(283\) 4696.92 8135.31i 0.986583 1.70881i 0.351904 0.936036i \(-0.385534\pi\)
0.634679 0.772776i \(-0.281132\pi\)
\(284\) −192.979 + 334.249i −0.0403211 + 0.0698381i
\(285\) 0 0
\(286\) −102.405 177.370i −0.0211725 0.0366718i
\(287\) 7652.69 1.57395
\(288\) −336.467 1107.87i −0.0688420 0.226673i
\(289\) 12413.7 2.52671
\(290\) 0 0
\(291\) −1201.01 + 1619.93i −0.241939 + 0.326329i
\(292\) −1628.81 + 2821.17i −0.326434 + 0.565400i
\(293\) −890.291 + 1542.03i −0.177513 + 0.307462i −0.941028 0.338328i \(-0.890139\pi\)
0.763515 + 0.645790i \(0.223472\pi\)
\(294\) −293.431 676.559i −0.0582083 0.134210i
\(295\) 0 0
\(296\) 359.219 0.0705377
\(297\) −456.539 2502.04i −0.0891955 0.488833i
\(298\) 274.458 0.0533522
\(299\) −827.217 1432.78i −0.159997 0.277123i
\(300\) 0 0
\(301\) 2170.74 3759.82i 0.415678 0.719976i
\(302\) −181.270 + 313.969i −0.0345395 + 0.0598241i
\(303\) 3342.21 4508.00i 0.633680 0.854713i
\(304\) −729.649 1263.79i −0.137659 0.238432i
\(305\) 0 0
\(306\) 779.693 + 181.528i 0.145660 + 0.0339127i
\(307\) −8480.18 −1.57651 −0.788256 0.615347i \(-0.789016\pi\)
−0.788256 + 0.615347i \(0.789016\pi\)
\(308\) 2247.65 + 3893.05i 0.415818 + 0.720218i
\(309\) 3071.50 + 352.835i 0.565473 + 0.0649582i
\(310\) 0 0
\(311\) 3405.40 5898.32i 0.620908 1.07544i −0.368409 0.929664i \(-0.620097\pi\)
0.989317 0.145780i \(-0.0465692\pi\)
\(312\) −930.176 106.853i −0.168785 0.0193890i
\(313\) 4023.41 + 6968.74i 0.726570 + 1.25846i 0.958325 + 0.285682i \(0.0922200\pi\)
−0.231755 + 0.972774i \(0.574447\pi\)
\(314\) −289.747 −0.0520744
\(315\) 0 0
\(316\) −4217.30 −0.750764
\(317\) 783.112 + 1356.39i 0.138751 + 0.240323i 0.927024 0.375002i \(-0.122358\pi\)
−0.788273 + 0.615325i \(0.789025\pi\)
\(318\) 293.836 396.328i 0.0518160 0.0698898i
\(319\) −1140.44 + 1975.30i −0.200164 + 0.346694i
\(320\) 0 0
\(321\) −1031.07 2377.32i −0.179280 0.413361i
\(322\) −115.886 200.720i −0.0200561 0.0347382i
\(323\) 3059.47 0.527039
\(324\) −5199.07 2559.65i −0.891474 0.438897i
\(325\) 0 0
\(326\) 159.571 + 276.385i 0.0271099 + 0.0469557i
\(327\) 1983.40 + 4573.08i 0.335420 + 0.773371i
\(328\) 440.674 763.271i 0.0741835 0.128490i
\(329\) −7376.77 + 12776.9i −1.23615 + 2.14108i
\(330\) 0 0
\(331\) −1221.28 2115.32i −0.202802 0.351264i 0.746628 0.665242i \(-0.231672\pi\)
−0.949430 + 0.313978i \(0.898338\pi\)
\(332\) −2341.77 −0.387113
\(333\) 1844.85 1971.03i 0.303596 0.324360i
\(334\) −201.593 −0.0330260
\(335\) 0 0
\(336\) 10110.2 + 1161.40i 1.64154 + 0.188571i
\(337\) 4736.49 8203.84i 0.765617 1.32609i −0.174302 0.984692i \(-0.555767\pi\)
0.939920 0.341396i \(-0.110900\pi\)
\(338\) −35.8874 + 62.1588i −0.00577520 + 0.0100029i
\(339\) −8924.38 1025.18i −1.42981 0.164248i
\(340\) 0 0
\(341\) 2268.10 0.360190
\(342\) 137.675 + 32.0535i 0.0217678 + 0.00506799i
\(343\) 8954.76 1.40966
\(344\) −250.000 433.013i −0.0391835 0.0678678i
\(345\) 0 0
\(346\) −195.415 + 338.469i −0.0303630 + 0.0525902i
\(347\) −1656.23 + 2868.68i −0.256229 + 0.443801i −0.965229 0.261408i \(-0.915813\pi\)
0.709000 + 0.705209i \(0.249147\pi\)
\(348\) 2067.87 + 4767.84i 0.318533 + 0.734435i
\(349\) −2834.48 4909.46i −0.434745 0.753001i 0.562530 0.826777i \(-0.309828\pi\)
−0.997275 + 0.0737765i \(0.976495\pi\)
\(350\) 0 0
\(351\) −5363.44 + 4555.10i −0.815611 + 0.692687i
\(352\) 777.400 0.117715
\(353\) −869.541 1506.09i −0.131108 0.227085i 0.792996 0.609227i \(-0.208520\pi\)
−0.924104 + 0.382142i \(0.875187\pi\)
\(354\) 345.753 + 797.195i 0.0519111 + 0.119690i
\(355\) 0 0
\(356\) 3389.63 5871.02i 0.504636 0.874054i
\(357\) −12707.0 + 17139.3i −1.88382 + 2.54091i
\(358\) −240.271 416.162i −0.0354713 0.0614381i
\(359\) 8624.58 1.26793 0.633966 0.773361i \(-0.281426\pi\)
0.633966 + 0.773361i \(0.281426\pi\)
\(360\) 0 0
\(361\) −6318.77 −0.921238
\(362\) 406.799 + 704.597i 0.0590632 + 0.102301i
\(363\) −5174.38 594.401i −0.748166 0.0859449i
\(364\) 6218.60 10770.9i 0.895449 1.55096i
\(365\) 0 0
\(366\) 10.4387 + 1.19914i 0.00149083 + 0.000171257i
\(367\) −3054.59 5290.70i −0.434463 0.752513i 0.562788 0.826601i \(-0.309729\pi\)
−0.997252 + 0.0740883i \(0.976395\pi\)
\(368\) 2071.00 0.293365
\(369\) −1924.87 6337.94i −0.271558 0.894146i
\(370\) 0 0
\(371\) 6574.59 + 11387.5i 0.920043 + 1.59356i
\(372\) 3077.80 4151.36i 0.428969 0.578597i
\(373\) 3277.67 5677.08i 0.454990 0.788065i −0.543698 0.839281i \(-0.682976\pi\)
0.998688 + 0.0512159i \(0.0163097\pi\)
\(374\) −268.753 + 465.494i −0.0371575 + 0.0643587i
\(375\) 0 0
\(376\) 849.572 + 1471.50i 0.116525 + 0.201827i
\(377\) 6310.52 0.862092
\(378\) −751.372 + 638.130i −0.102239 + 0.0868303i
\(379\) 5032.40 0.682050 0.341025 0.940054i \(-0.389226\pi\)
0.341025 + 0.940054i \(0.389226\pi\)
\(380\) 0 0
\(381\) 2108.80 + 4862.22i 0.283562 + 0.653803i
\(382\) 67.2359 116.456i 0.00900547 0.0155979i
\(383\) 1831.49 3172.24i 0.244347 0.423222i −0.717601 0.696455i \(-0.754760\pi\)
0.961948 + 0.273233i \(0.0880930\pi\)
\(384\) 1405.05 1895.15i 0.186722 0.251852i
\(385\) 0 0
\(386\) 272.044 0.0358722
\(387\) −3659.88 852.094i −0.480729 0.111923i
\(388\) −3085.03 −0.403657
\(389\) 2435.48 + 4218.37i 0.317439 + 0.549820i 0.979953 0.199229i \(-0.0638438\pi\)
−0.662514 + 0.749049i \(0.730511\pi\)
\(390\) 0 0
\(391\) −2170.97 + 3760.22i −0.280794 + 0.486349i
\(392\) 1131.78 1960.30i 0.145825 0.252577i
\(393\) −8788.09 1009.52i −1.12799 0.129577i
\(394\) −368.121 637.605i −0.0470703 0.0815281i
\(395\) 0 0
\(396\) 2658.87 2840.72i 0.337407 0.360483i
\(397\) 3744.62 0.473393 0.236696 0.971584i \(-0.423935\pi\)
0.236696 + 0.971584i \(0.423935\pi\)
\(398\) 237.625 + 411.579i 0.0299273 + 0.0518356i
\(399\) −2243.74 + 3026.37i −0.281523 + 0.379720i
\(400\) 0 0
\(401\) 900.435 1559.60i 0.112134 0.194221i −0.804497 0.593957i \(-0.797565\pi\)
0.916630 + 0.399736i \(0.130898\pi\)
\(402\) 274.262 + 632.361i 0.0340272 + 0.0784559i
\(403\) −3137.59 5434.46i −0.387827 0.671737i
\(404\) 8585.16 1.05725
\(405\) 0 0
\(406\) 884.049 0.108066
\(407\) 906.328 + 1569.81i 0.110381 + 0.191185i
\(408\) 977.729 + 2254.33i 0.118639 + 0.273544i
\(409\) −7965.99 + 13797.5i −0.963064 + 1.66808i −0.248334 + 0.968675i \(0.579883\pi\)
−0.714730 + 0.699401i \(0.753450\pi\)
\(410\) 0 0
\(411\) −3248.40 + 4381.46i −0.389858 + 0.525843i
\(412\) 2364.89 + 4096.12i 0.282791 + 0.489809i
\(413\) −23158.8 −2.75926
\(414\) −137.087 + 146.463i −0.0162741 + 0.0173871i
\(415\) 0 0
\(416\) −1075.42 1862.68i −0.126747 0.219532i
\(417\) 7406.84 + 850.854i 0.869820 + 0.0999196i
\(418\) −47.4553 + 82.1949i −0.00555290 + 0.00961791i
\(419\) 1723.87 2985.84i 0.200995 0.348133i −0.747854 0.663863i \(-0.768916\pi\)
0.948849 + 0.315730i \(0.102249\pi\)
\(420\) 0 0
\(421\) −2807.99 4863.58i −0.325066 0.563032i 0.656459 0.754361i \(-0.272053\pi\)
−0.981526 + 0.191330i \(0.938720\pi\)
\(422\) 148.359 0.0171137
\(423\) 12437.3 + 2895.66i 1.42960 + 0.332841i
\(424\) 1514.37 0.173454
\(425\) 0 0
\(426\) 33.8446 45.6499i 0.00384924 0.00519189i
\(427\) −140.020 + 242.522i −0.0158689 + 0.0274858i
\(428\) 1982.12 3433.13i 0.223854 0.387726i
\(429\) −1879.93 4334.51i −0.211571 0.487814i
\(430\) 0 0
\(431\) −3534.04 −0.394962 −0.197481 0.980307i \(-0.563276\pi\)
−0.197481 + 0.980307i \(0.563276\pi\)
\(432\) −1581.14 8665.40i −0.176094 0.965080i
\(433\) −6674.80 −0.740809 −0.370405 0.928871i \(-0.620781\pi\)
−0.370405 + 0.928871i \(0.620781\pi\)
\(434\) −439.549 761.321i −0.0486153 0.0842041i
\(435\) 0 0
\(436\) −3812.87 + 6604.08i −0.418815 + 0.725408i
\(437\) −383.339 + 663.963i −0.0419625 + 0.0726812i
\(438\) 285.660 385.301i 0.0311629 0.0420328i
\(439\) 3271.76 + 5666.85i 0.355700 + 0.616091i 0.987238 0.159254i \(-0.0509090\pi\)
−0.631537 + 0.775346i \(0.717576\pi\)
\(440\) 0 0
\(441\) −4943.62 16277.7i −0.533811 1.75766i
\(442\) 1487.12 0.160035
\(443\) 7154.86 + 12392.6i 0.767353 + 1.32909i 0.938993 + 0.343935i \(0.111760\pi\)
−0.171640 + 0.985160i \(0.554907\pi\)
\(444\) 4103.14 + 471.344i 0.438573 + 0.0503806i
\(445\) 0 0
\(446\) 137.267 237.753i 0.0145734 0.0252420i
\(447\) 6289.95 + 722.552i 0.665558 + 0.0764553i
\(448\) 7683.39 + 13308.0i 0.810282 + 1.40345i
\(449\) −14587.4 −1.53324 −0.766618 0.642104i \(-0.778062\pi\)
−0.766618 + 0.642104i \(0.778062\pi\)
\(450\) 0 0
\(451\) 4447.38 0.464343
\(452\) −6871.31 11901.5i −0.715043 1.23849i
\(453\) −4980.86 + 6718.22i −0.516603 + 0.696798i
\(454\) −171.817 + 297.596i −0.0177616 + 0.0307640i
\(455\) 0 0
\(456\) 172.643 + 398.060i 0.0177297 + 0.0408791i
\(457\) 1012.89 + 1754.37i 0.103678 + 0.179576i 0.913197 0.407518i \(-0.133606\pi\)
−0.809519 + 0.587093i \(0.800272\pi\)
\(458\) −1392.64 −0.142083
\(459\) 17390.9 + 6212.87i 1.76849 + 0.631790i
\(460\) 0 0
\(461\) 1778.09 + 3079.75i 0.179640 + 0.311146i 0.941757 0.336293i \(-0.109173\pi\)
−0.762117 + 0.647439i \(0.775840\pi\)
\(462\) −263.362 607.228i −0.0265210 0.0611489i
\(463\) −5141.34 + 8905.07i −0.516066 + 0.893852i 0.483760 + 0.875201i \(0.339271\pi\)
−0.999826 + 0.0186517i \(0.994063\pi\)
\(464\) −3949.72 + 6841.11i −0.395174 + 0.684462i
\(465\) 0 0
\(466\) −226.806 392.840i −0.0225464 0.0390514i
\(467\) −8217.44 −0.814256 −0.407128 0.913371i \(-0.633470\pi\)
−0.407128 + 0.913371i \(0.633470\pi\)
\(468\) −10484.6 2441.03i −1.03558 0.241104i
\(469\) −18370.3 −1.80866
\(470\) 0 0
\(471\) −6640.33 762.801i −0.649618 0.0746242i
\(472\) −1333.59 + 2309.84i −0.130049 + 0.225252i
\(473\) 1261.53 2185.03i 0.122632 0.212406i
\(474\) 616.889 + 70.8645i 0.0597777 + 0.00686690i
\(475\) 0 0
\(476\) −32640.5 −3.14301
\(477\) 7777.43 8309.35i 0.746549 0.797608i
\(478\) 1145.69 0.109629
\(479\) −6842.59 11851.7i −0.652705 1.13052i −0.982464 0.186453i \(-0.940301\pi\)
0.329759 0.944065i \(-0.393033\pi\)
\(480\) 0 0
\(481\) 2507.54 4343.19i 0.237701 0.411710i
\(482\) −370.178 + 641.168i −0.0349817 + 0.0605900i
\(483\) −2127.41 4905.13i −0.200415 0.462093i
\(484\) −3984.00 6900.50i −0.374155 0.648056i
\(485\) 0 0
\(486\) 717.489 + 461.776i 0.0669670 + 0.0431000i
\(487\) 3239.59 0.301437 0.150718 0.988577i \(-0.451841\pi\)
0.150718 + 0.988577i \(0.451841\pi\)
\(488\) 16.1259 + 27.9309i 0.00149587 + 0.00259092i
\(489\) 2929.38 + 6754.21i 0.270902 + 0.624613i
\(490\) 0 0
\(491\) −5564.04 + 9637.20i −0.511409 + 0.885786i 0.488504 + 0.872562i \(0.337543\pi\)
−0.999913 + 0.0132239i \(0.995791\pi\)
\(492\) 6035.07 8140.15i 0.553012 0.745907i
\(493\) −8280.74 14342.7i −0.756482 1.31027i
\(494\) 262.590 0.0239159
\(495\) 0 0
\(496\) 7855.18 0.711105
\(497\) 757.276 + 1311.64i 0.0683470 + 0.118380i
\(498\) 342.545 + 39.3495i 0.0308229 + 0.00354075i
\(499\) 2713.61 4700.11i 0.243443 0.421655i −0.718250 0.695785i \(-0.755057\pi\)
0.961693 + 0.274130i \(0.0883899\pi\)
\(500\) 0 0
\(501\) −4620.04 530.723i −0.411992 0.0473272i
\(502\) −391.997 678.958i −0.0348519 0.0603653i
\(503\) 9600.22 0.850999 0.425500 0.904959i \(-0.360098\pi\)
0.425500 + 0.904959i \(0.360098\pi\)
\(504\) −2946.98 686.117i −0.260454 0.0606391i
\(505\) 0 0
\(506\) −67.3474 116.649i −0.00591691 0.0102484i
\(507\) −986.098 + 1330.06i −0.0863790 + 0.116509i
\(508\) −4053.94 + 7021.62i −0.354064 + 0.613256i
\(509\) 9469.94 16402.4i 0.824652 1.42834i −0.0775333 0.996990i \(-0.524704\pi\)
0.902185 0.431349i \(-0.141962\pi\)
\(510\) 0 0
\(511\) 6391.66 + 11070.7i 0.553328 + 0.958392i
\(512\) 4496.87 0.388155
\(513\) 3070.80 + 1097.04i 0.264287 + 0.0944162i
\(514\) 1530.57 0.131343
\(515\) 0 0
\(516\) −2287.43 5274.08i −0.195152 0.449958i
\(517\) −4287.03 + 7425.35i −0.364687 + 0.631657i
\(518\) 351.285 608.444i 0.0297965 0.0516090i
\(519\) −5369.53 + 7242.46i −0.454135 + 0.612541i
\(520\) 0 0
\(521\) 19292.6 1.62231 0.811155 0.584831i \(-0.198839\pi\)
0.811155 + 0.584831i \(0.198839\pi\)
\(522\) −222.364 732.168i −0.0186448 0.0613910i
\(523\) −17967.5 −1.50223 −0.751114 0.660172i \(-0.770483\pi\)
−0.751114 + 0.660172i \(0.770483\pi\)
\(524\) −6766.38 11719.7i −0.564104 0.977057i
\(525\) 0 0
\(526\) 604.147 1046.41i 0.0500799 0.0867410i
\(527\) −8234.35 + 14262.3i −0.680634 + 1.17889i
\(528\) 5875.59 + 674.952i 0.484285 + 0.0556317i
\(529\) 5539.47 + 9594.65i 0.455287 + 0.788580i
\(530\) 0 0
\(531\) 5825.11 + 19180.1i 0.476061 + 1.56751i
\(532\) −5763.51 −0.469699
\(533\) −6152.30 10656.1i −0.499973 0.865979i
\(534\) −594.474 + 801.832i −0.0481749 + 0.0649787i
\(535\) 0 0
\(536\) −1057.84 + 1832.24i −0.0852460 + 0.147650i
\(537\) −4410.85 10170.0i −0.354455 0.817260i
\(538\) −5.46214 9.46070i −0.000437713 0.000758141i
\(539\) 11422.1 0.912777
\(540\) 0 0
\(541\) −8299.36 −0.659552 −0.329776 0.944059i \(-0.606973\pi\)
−0.329776 + 0.944059i \(0.606973\pi\)
\(542\) −860.811 1490.97i −0.0682195 0.118160i
\(543\) 7467.94 + 17218.7i 0.590203 + 1.36082i
\(544\) −2822.35 + 4888.46i −0.222440 + 0.385278i
\(545\) 0 0
\(546\) −1090.62 + 1471.04i −0.0854839 + 0.115301i
\(547\) 42.3605 + 73.3706i 0.00331116 + 0.00573510i 0.867676 0.497130i \(-0.165613\pi\)
−0.864365 + 0.502865i \(0.832279\pi\)
\(548\) −8344.17 −0.650448
\(549\) 236.075 + 54.9630i 0.0183523 + 0.00427280i
\(550\) 0 0
\(551\) −1462.18 2532.56i −0.113050 0.195809i
\(552\) −611.737 70.2727i −0.0471690 0.00541849i
\(553\) −8274.63 + 14332.1i −0.636298 + 1.10210i
\(554\) 579.571 1003.85i 0.0444469 0.0769843i
\(555\) 0 0
\(556\) 5702.89 + 9877.69i 0.434994 + 0.753431i
\(557\) 20914.0 1.59094 0.795469 0.605994i \(-0.207224\pi\)
0.795469 + 0.605994i \(0.207224\pi\)
\(558\) −519.965 + 555.527i −0.0394478 + 0.0421458i
\(559\) −6980.56 −0.528169
\(560\) 0 0
\(561\) −7384.69 + 9960.52i −0.555761 + 0.749614i
\(562\) −659.389 + 1142.10i −0.0494923 + 0.0857231i
\(563\) 5520.48 9561.76i 0.413252 0.715773i −0.581991 0.813195i \(-0.697726\pi\)
0.995243 + 0.0974220i \(0.0310596\pi\)
\(564\) 7773.33 + 17922.8i 0.580348 + 1.33810i
\(565\) 0 0
\(566\) −2115.96 −0.157139
\(567\) −18899.7 + 12646.4i −1.39984 + 0.936679i
\(568\) 174.429 0.0128853
\(569\) 3007.31 + 5208.81i 0.221569 + 0.383770i 0.955285 0.295688i \(-0.0955487\pi\)
−0.733715 + 0.679457i \(0.762215\pi\)
\(570\) 0 0
\(571\) 10968.7 18998.3i 0.803896 1.39239i −0.113137 0.993579i \(-0.536090\pi\)
0.917034 0.398810i \(-0.130577\pi\)
\(572\) 3613.96 6259.56i 0.264173 0.457561i
\(573\) 1847.48 2491.89i 0.134694 0.181676i
\(574\) −861.884 1492.83i −0.0626730 0.108553i
\(575\) 0 0
\(576\) 9089.08 9710.72i 0.657486 0.702454i
\(577\) −473.507 −0.0341635 −0.0170818 0.999854i \(-0.505438\pi\)
−0.0170818 + 0.999854i \(0.505438\pi\)
\(578\) −1398.09 2421.57i −0.100611 0.174263i
\(579\) 6234.62 + 716.196i 0.447499 + 0.0514060i
\(580\) 0 0
\(581\) −4594.72 + 7958.29i −0.328092 + 0.568271i
\(582\) 451.266 + 51.8387i 0.0321402 + 0.00369207i
\(583\) 3820.84 + 6617.89i 0.271429 + 0.470129i
\(584\) 1472.24 0.104318
\(585\) 0 0
\(586\) 401.076 0.0282735
\(587\) 6510.17 + 11275.9i 0.457757 + 0.792859i 0.998842 0.0481093i \(-0.0153196\pi\)
−0.541085 + 0.840968i \(0.681986\pi\)
\(588\) 15499.8 20906.2i 1.08708 1.46626i
\(589\) −1453.99 + 2518.38i −0.101715 + 0.176176i
\(590\) 0 0
\(591\) −6757.90 15581.6i −0.470360 1.08450i
\(592\) 3138.91 + 5436.75i 0.217920 + 0.377448i
\(593\) 12887.3 0.892441 0.446220 0.894923i \(-0.352770\pi\)
0.446220 + 0.894923i \(0.352770\pi\)
\(594\) −436.661 + 370.851i −0.0301623 + 0.0256165i
\(595\) 0 0
\(596\) 4842.94 + 8388.22i 0.332843 + 0.576501i
\(597\) 4362.28 + 10058.0i 0.299055 + 0.689526i
\(598\) −186.330 + 322.734i −0.0127418 + 0.0220695i
\(599\) 4337.24 7512.32i 0.295851 0.512429i −0.679332 0.733832i \(-0.737730\pi\)
0.975182 + 0.221403i \(0.0710635\pi\)
\(600\) 0 0
\(601\) −5467.86 9470.61i −0.371112 0.642786i 0.618625 0.785687i \(-0.287690\pi\)
−0.989737 + 0.142901i \(0.954357\pi\)
\(602\) −977.916 −0.0662074
\(603\) 4620.67 + 15214.3i 0.312053 + 1.02748i
\(604\) −12794.4 −0.861913
\(605\) 0 0
\(606\) −1255.80 144.259i −0.0841806 0.00967016i
\(607\) 10835.2 18767.1i 0.724527 1.25492i −0.234641 0.972082i \(-0.575392\pi\)
0.959168 0.282836i \(-0.0912751\pi\)
\(608\) −498.359 + 863.183i −0.0332420 + 0.0575768i
\(609\) 20260.4 + 2327.39i 1.34810 + 0.154861i
\(610\) 0 0
\(611\) 23721.9 1.57068
\(612\) 8210.01 + 27032.7i 0.542271 + 1.78551i
\(613\) 15571.2 1.02596 0.512982 0.858399i \(-0.328541\pi\)
0.512982 + 0.858399i \(0.328541\pi\)
\(614\) 955.079 + 1654.25i 0.0627750 + 0.108730i
\(615\) 0 0
\(616\) 1015.80 1759.42i 0.0664411 0.115079i
\(617\) 4863.27 8423.43i 0.317322 0.549618i −0.662606 0.748968i \(-0.730550\pi\)
0.979928 + 0.199350i \(0.0638829\pi\)
\(618\) −277.099 638.901i −0.0180365 0.0415864i
\(619\) −3148.79 5453.87i −0.204460 0.354135i 0.745501 0.666505i \(-0.232210\pi\)
−0.949961 + 0.312370i \(0.898877\pi\)
\(620\) 0 0
\(621\) −3527.31 + 2995.70i −0.227933 + 0.193580i
\(622\) −1534.13 −0.0988955
\(623\) −13301.4 23038.7i −0.855392 1.48158i
\(624\) −6510.81 15011.8i −0.417694 0.963069i
\(625\) 0 0
\(626\) 906.272 1569.71i 0.0578625 0.100221i
\(627\) −1303.95 + 1758.78i −0.0830541 + 0.112024i
\(628\) −5112.71 8855.47i −0.324872 0.562694i
\(629\) −13161.7 −0.834327
\(630\) 0 0
\(631\) −5670.98 −0.357778 −0.178889 0.983869i \(-0.557250\pi\)
−0.178889 + 0.983869i \(0.557250\pi\)
\(632\) 952.977 + 1650.60i 0.0599800 + 0.103888i
\(633\) 3400.04 + 390.576i 0.213491 + 0.0245245i
\(634\) 176.396 305.527i 0.0110498 0.0191388i
\(635\) 0 0
\(636\) 17297.7 + 1987.06i 1.07846 + 0.123887i
\(637\) −15800.9 27367.9i −0.982816 1.70229i
\(638\) 513.767 0.0318813
\(639\) 895.820 957.089i 0.0554587 0.0592517i
\(640\) 0 0
\(641\) −10832.3 18762.0i −0.667470 1.15609i −0.978609 0.205727i \(-0.934044\pi\)
0.311140 0.950364i \(-0.399289\pi\)
\(642\) −347.624 + 468.878i −0.0213701 + 0.0288242i
\(643\) 3111.86 5389.90i 0.190855 0.330570i −0.754679 0.656094i \(-0.772207\pi\)
0.945534 + 0.325524i \(0.105541\pi\)
\(644\) 4089.71 7083.59i 0.250244 0.433436i
\(645\) 0 0
\(646\) −344.573 596.818i −0.0209861 0.0363491i
\(647\) −20451.9 −1.24273 −0.621365 0.783521i \(-0.713422\pi\)
−0.621365 + 0.783521i \(0.713422\pi\)
\(648\) 173.010 + 2613.26i 0.0104884 + 0.158424i
\(649\) −13458.8 −0.814029
\(650\) 0 0
\(651\) −8069.15 18604.9i −0.485799 1.12010i
\(652\) −5631.41 + 9753.88i −0.338256 + 0.585876i
\(653\) 3724.22 6450.54i 0.223185 0.386568i −0.732588 0.680672i \(-0.761688\pi\)
0.955773 + 0.294104i \(0.0950211\pi\)
\(654\) 668.701 901.949i 0.0399821 0.0539281i
\(655\) 0 0
\(656\) 15402.7 0.916731
\(657\) 7561.03 8078.15i 0.448986 0.479694i
\(658\) 3323.23 0.196889
\(659\) −413.185 715.658i −0.0244240 0.0423036i 0.853555 0.521003i \(-0.174442\pi\)
−0.877979 + 0.478699i \(0.841109\pi\)
\(660\) 0 0
\(661\) 3129.11 5419.77i 0.184127 0.318918i −0.759155 0.650910i \(-0.774387\pi\)
0.943282 + 0.331992i \(0.107721\pi\)
\(662\) −275.093 + 476.475i −0.0161507 + 0.0279739i
\(663\) 34081.4 + 3915.07i 1.99640 + 0.229334i
\(664\) 529.167 + 916.545i 0.0309272 + 0.0535675i
\(665\) 0 0
\(666\) −592.270 137.892i −0.0344594 0.00802286i
\(667\) 4150.17 0.240922
\(668\) −3557.19 6161.24i −0.206036 0.356865i
\(669\) 3771.75 5087.36i 0.217973 0.294004i
\(670\) 0 0
\(671\) −81.3729 + 140.942i −0.00468162 + 0.00810880i
\(672\) −2765.73 6376.89i −0.158765 0.366062i
\(673\) −5039.90 8729.36i −0.288668 0.499988i 0.684824 0.728709i \(-0.259879\pi\)
−0.973492 + 0.228720i \(0.926546\pi\)
\(674\) −2133.79 −0.121944
\(675\) 0 0
\(676\) −2532.99 −0.144117
\(677\) −12855.2 22265.9i −0.729788 1.26403i −0.956973 0.290178i \(-0.906285\pi\)
0.227185 0.973852i \(-0.427048\pi\)
\(678\) 805.124 + 1856.36i 0.0456056 + 0.105152i
\(679\) −6053.05 + 10484.2i −0.342113 + 0.592557i
\(680\) 0 0
\(681\) −4721.11 + 6367.88i −0.265659 + 0.358322i
\(682\) −255.445 442.443i −0.0143424 0.0248417i
\(683\) 32091.0 1.79784 0.898922 0.438109i \(-0.144352\pi\)
0.898922 + 0.438109i \(0.144352\pi\)
\(684\) 1449.69 + 4773.32i 0.0810383 + 0.266831i
\(685\) 0 0
\(686\) −1008.53 1746.82i −0.0561310 0.0972217i
\(687\) −31916.1 3666.33i −1.77245 0.203609i
\(688\) 4369.09 7567.48i 0.242107 0.419342i
\(689\) 10571.2 18309.8i 0.584512 1.01240i
\(690\) 0 0
\(691\) −5282.87 9150.20i −0.290839 0.503748i 0.683169 0.730260i \(-0.260601\pi\)
−0.974008 + 0.226512i \(0.927268\pi\)
\(692\) −13792.7 −0.757690
\(693\) −4437.02 14609.6i −0.243216 0.800826i
\(694\) 746.133 0.0408110
\(695\) 0 0
\(696\) 1398.81 1886.72i 0.0761806 0.102753i
\(697\) −16146.2 + 27966.1i −0.877449 + 1.51979i
\(698\) −638.465 + 1105.85i −0.0346222 + 0.0599673i
\(699\) −4163.67 9600.09i −0.225300 0.519469i
\(700\) 0 0
\(701\) 13081.8 0.704837 0.352419 0.935842i \(-0.385359\pi\)
0.352419 + 0.935842i \(0.385359\pi\)
\(702\) 1492.63 + 533.240i 0.0802503 + 0.0286693i
\(703\) −2324.04 −0.124684
\(704\) 4465.22 + 7733.99i 0.239047 + 0.414042i
\(705\) 0 0
\(706\) −195.864 + 339.246i −0.0104411 + 0.0180846i
\(707\) 16844.7 29175.8i 0.896053 1.55201i
\(708\) −18263.5 + 24634.0i −0.969472 + 1.30763i
\(709\) 14110.6 + 24440.3i 0.747440 + 1.29460i 0.949046 + 0.315137i \(0.102051\pi\)
−0.201606 + 0.979467i \(0.564616\pi\)
\(710\) 0 0
\(711\) 13951.1 + 3248.10i 0.735875 + 0.171327i
\(712\) −3063.80 −0.161265
\(713\) −2063.46 3574.02i −0.108383 0.187725i
\(714\) 4774.51 + 548.467i 0.250254 + 0.0287477i
\(715\) 0 0
\(716\) 8479.38 14686.7i 0.442583 0.766576i
\(717\) 26256.5 + 3016.19i 1.36760 + 0.157102i
\(718\) −971.342 1682.41i −0.0504877 0.0874473i
\(719\) −11471.4 −0.595010 −0.297505 0.954720i \(-0.596154\pi\)
−0.297505 + 0.954720i \(0.596154\pi\)
\(720\) 0 0
\(721\) 18560.3 0.958701
\(722\) 711.651 + 1232.62i 0.0366827 + 0.0635363i
\(723\) −10171.6 + 13719.5i −0.523217 + 0.705719i
\(724\) −14356.3 + 24865.8i −0.736944 + 1.27642i
\(725\) 0 0
\(726\) 466.813 + 1076.32i 0.0238637 + 0.0550221i
\(727\) 10829.6 + 18757.5i 0.552475 + 0.956914i 0.998095 + 0.0616922i \(0.0196497\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(728\) −5620.84 −0.286157
\(729\) 15227.5 + 12471.7i 0.773636 + 0.633630i
\(730\) 0 0
\(731\) 9159.96 + 15865.5i 0.463466 + 0.802746i
\(732\) 147.547 + 340.197i 0.00745013 + 0.0171776i
\(733\) 2840.86 4920.51i 0.143151 0.247944i −0.785531 0.618823i \(-0.787610\pi\)
0.928682 + 0.370878i \(0.120943\pi\)
\(734\) −688.045 + 1191.73i −0.0345997 + 0.0599285i
\(735\) 0 0
\(736\) −707.259 1225.01i −0.0354211 0.0613511i
\(737\) −10676.0 −0.533588
\(738\) −1019.57 + 1089.30i −0.0508547 + 0.0543328i
\(739\) 261.324 0.0130080 0.00650402 0.999979i \(-0.497930\pi\)
0.00650402 + 0.999979i \(0.497930\pi\)
\(740\) 0 0
\(741\) 6017.95 + 691.306i 0.298347 + 0.0342723i
\(742\) 1480.93 2565.04i 0.0732702 0.126908i
\(743\) −8202.97 + 14208.0i −0.405031 + 0.701533i −0.994325 0.106385i \(-0.966072\pi\)
0.589294 + 0.807918i \(0.299406\pi\)
\(744\) −2320.29 266.541i −0.114336 0.0131342i
\(745\) 0 0
\(746\) −1476.59 −0.0724688
\(747\) 7746.74 + 1803.60i 0.379436 + 0.0883403i
\(748\) −18969.1 −0.927244
\(749\) −7778.11 13472.1i −0.379447 0.657222i
\(750\) 0 0
\(751\) −10737.3 + 18597.5i −0.521716 + 0.903639i 0.477965 + 0.878379i \(0.341375\pi\)
−0.999681 + 0.0252601i \(0.991959\pi\)
\(752\) −14847.4 + 25716.4i −0.719985 + 1.24705i
\(753\) −7196.20 16592.1i −0.348266 0.802989i
\(754\) −710.722 1231.01i −0.0343276 0.0594571i
\(755\) 0 0
\(756\) −32761.3 11703.9i −1.57608 0.563053i
\(757\) 13643.2 0.655046 0.327523 0.944843i \(-0.393786\pi\)
0.327523 + 0.944843i \(0.393786\pi\)
\(758\) −566.773 981.680i −0.0271585 0.0470399i
\(759\) −1236.35 2850.63i −0.0591260 0.136326i
\(760\) 0 0
\(761\) −13469.0 + 23328.9i −0.641589 + 1.11127i 0.343489 + 0.939157i \(0.388391\pi\)
−0.985078 + 0.172109i \(0.944942\pi\)
\(762\) 710.980 958.975i 0.0338006 0.0455905i
\(763\) 14962.2 + 25915.3i 0.709920 + 1.22962i
\(764\) 4745.63 0.224726
\(765\) 0 0
\(766\) −825.088 −0.0389186
\(767\) 18618.3 + 32247.9i 0.876491 + 1.51813i
\(768\) 19816.1 + 2276.35i 0.931057 + 0.106954i
\(769\) 14442.7 25015.5i 0.677265 1.17306i −0.298536 0.954398i \(-0.596498\pi\)
0.975801 0.218659i \(-0.0701683\pi\)
\(770\) 0 0
\(771\) 35077.1 + 4029.44i 1.63848 + 0.188219i
\(772\) 4800.34 + 8314.43i 0.223793 + 0.387620i
\(773\) −3031.34 −0.141048 −0.0705238 0.997510i \(-0.522467\pi\)
−0.0705238 + 0.997510i \(0.522467\pi\)
\(774\) 245.974 + 809.907i 0.0114229 + 0.0376118i
\(775\) 0 0
\(776\) 697.121 + 1207.45i 0.0322490 + 0.0558568i
\(777\) 9652.46 13019.3i 0.445663 0.601113i
\(778\) 548.591 950.188i 0.0252801 0.0437865i
\(779\) −2851.03 + 4938.13i −0.131128 + 0.227120i
\(780\) 0 0
\(781\) 440.092 + 762.262i 0.0201636 + 0.0349243i
\(782\) 978.019 0.0447236
\(783\) −3168.52 17365.0i −0.144615 0.792559i
\(784\) 39558.7 1.80205
\(785\) 0 0
\(786\) 792.829 + 1828.01i 0.0359787 + 0.0829554i
\(787\) 7577.38 13124.4i 0.343208 0.594453i −0.641819 0.766856i \(-0.721820\pi\)
0.985026 + 0.172403i \(0.0551532\pi\)
\(788\) 12991.3 22501.6i 0.587306 1.01724i
\(789\) 16600.5 22390.8i 0.749040 1.01031i
\(790\) 0 0
\(791\) −53928.0 −2.42409
\(792\) −1712.65 398.739i −0.0768387 0.0178896i
\(793\) 450.270 0.0201634
\(794\) −421.737 730.470i −0.0188500 0.0326491i
\(795\) 0 0
\(796\) −8386.00 + 14525.0i −0.373409 + 0.646764i
\(797\) 14190.3 24578.3i 0.630673 1.09236i −0.356741 0.934203i \(-0.616112\pi\)
0.987414 0.158155i \(-0.0505546\pi\)
\(798\) 843.062 + 96.8459i 0.0373986 + 0.00429613i
\(799\) −31128.1 53915.5i −1.37827 2.38723i
\(800\) 0 0
\(801\) −15734.9 + 16811.1i −0.694089 + 0.741561i
\(802\) −405.646 −0.0178602
\(803\) 3714.53 + 6433.75i 0.163241 + 0.282742i
\(804\) −14487.2 + 19540.5i −0.635479 + 0.857139i
\(805\) 0 0
\(806\) −706.741 + 1224.11i −0.0308857 + 0.0534957i
\(807\) −100.273 231.197i −0.00437394 0.0100849i
\(808\) −1939.98 3360.14i −0.0844655 0.146299i
\(809\) −14569.6 −0.633175 −0.316588 0.948563i \(-0.602537\pi\)
−0.316588 + 0.948563i \(0.602537\pi\)
\(810\) 0 0
\(811\) 27927.7 1.20921 0.604607 0.796524i \(-0.293330\pi\)
0.604607 + 0.796524i \(0.293330\pi\)
\(812\) 15599.4 + 27019.0i 0.674178 + 1.16771i
\(813\) −15802.6 36435.7i −0.681699 1.57178i
\(814\) 204.150 353.598i 0.00879049 0.0152256i
\(815\) 0 0
\(816\) −25575.6 + 34496.6i −1.09721 + 1.47993i
\(817\) 1617.43 + 2801.46i 0.0692614 + 0.119964i
\(818\) 3588.68 0.153393
\(819\) −28867.2 + 30841.5i −1.23162 + 1.31586i
\(820\) 0 0
\(821\) −9022.03 15626.6i −0.383521 0.664279i 0.608041 0.793905i \(-0.291955\pi\)
−0.991563 + 0.129627i \(0.958622\pi\)
\(822\) 1220.55 + 140.210i 0.0517903 + 0.00594936i
\(823\) −16126.4 + 27931.8i −0.683028 + 1.18304i 0.291025 + 0.956716i \(0.406004\pi\)
−0.974052 + 0.226323i \(0.927330\pi\)
\(824\) 1068.78 1851.19i 0.0451855 0.0782636i
\(825\) 0 0
\(826\) 2608.26 + 4517.64i 0.109871 + 0.190301i
\(827\) −13569.5 −0.570566 −0.285283 0.958443i \(-0.592088\pi\)
−0.285283 + 0.958443i \(0.592088\pi\)
\(828\) −6895.29 1605.36i −0.289406 0.0673795i
\(829\) 742.559 0.0311099 0.0155550 0.999879i \(-0.495049\pi\)
0.0155550 + 0.999879i \(0.495049\pi\)
\(830\) 0 0
\(831\) 15925.2 21480.0i 0.664788 0.896671i
\(832\) 12354.0 21397.7i 0.514780 0.891625i
\(833\) −41468.1 + 71824.9i −1.72483 + 2.98750i
\(834\) −668.217 1540.70i −0.0277440 0.0639688i
\(835\) 0 0
\(836\) −3349.48 −0.138569
\(837\) −13378.9 + 11362.5i −0.552500 + 0.469231i
\(838\) −776.605 −0.0320136
\(839\) 17752.3 + 30747.9i 0.730487 + 1.26524i 0.956675 + 0.291157i \(0.0940401\pi\)
−0.226189 + 0.974083i \(0.572627\pi\)
\(840\) 0 0
\(841\) 4279.49 7412.29i 0.175468 0.303919i
\(842\) −632.499 + 1095.52i −0.0258876 + 0.0448386i
\(843\) −18118.4 + 24438.2i −0.740250 + 0.998455i
\(844\) 2617.86 + 4534.26i 0.106766 + 0.184924i
\(845\) 0 0
\(846\) −835.889 2752.29i −0.0339698 0.111851i
\(847\) −31267.6 −1.26844
\(848\) 13232.8 + 22919.9i 0.535869 + 0.928153i
\(849\) −48492.9 5570.58i −1.96027 0.225185i
\(850\) 0 0
\(851\) 1649.11 2856.34i 0.0664285 0.115058i
\(852\) 1992.39 + 228.874i 0.0801153 + 0.00920316i
\(853\) 187.524 + 324.801i 0.00752719 + 0.0130375i 0.869764 0.493467i \(-0.164271\pi\)
−0.862237 + 0.506505i \(0.830937\pi\)
\(854\) 63.0790 0.00252754
\(855\) 0 0
\(856\) −1791.59 −0.0715365
\(857\) 16097.4 + 27881.5i 0.641629 + 1.11133i 0.985069 + 0.172159i \(0.0550743\pi\)
−0.343440 + 0.939174i \(0.611592\pi\)
\(858\) −633.816 + 854.896i −0.0252192 + 0.0340159i
\(859\) 14068.8 24367.8i 0.558813 0.967893i −0.438783 0.898593i \(-0.644590\pi\)
0.997596 0.0692994i \(-0.0220764\pi\)
\(860\) 0 0
\(861\) −15822.3 36481.1i −0.626274 1.44399i
\(862\) 398.021 + 689.392i 0.0157270 + 0.0272399i
\(863\) −15724.6 −0.620244 −0.310122 0.950697i \(-0.600370\pi\)
−0.310122 + 0.950697i \(0.600370\pi\)
\(864\) −4585.67 + 3894.54i −0.180564 + 0.153351i
\(865\) 0 0
\(866\) 751.749 + 1302.07i 0.0294982 + 0.0510924i
\(867\) −25665.9 59177.4i −1.00538 2.31807i
\(868\) 15512.1 26867.7i 0.606583 1.05063i
\(869\) −4808.82 + 8329.12i −0.187719 + 0.325139i
\(870\) 0 0
\(871\) 14768.6 + 25580.0i 0.574531 + 0.995117i
\(872\) 3446.35 0.133840
\(873\) 10205.5 + 2376.05i 0.395652 + 0.0921157i
\(874\) 172.694 0.00668361
\(875\) 0 0
\(876\) 16816.5 + 1931.77i 0.648602 + 0.0745075i
\(877\) 7640.23 13233.3i 0.294176 0.509528i −0.680617 0.732639i \(-0.738288\pi\)
0.974793 + 0.223112i \(0.0716215\pi\)
\(878\) 736.963 1276.46i 0.0283272 0.0490642i
\(879\) 9191.72 + 1055.89i 0.352707 + 0.0405168i
\(880\) 0 0
\(881\) −24687.6 −0.944092 −0.472046 0.881574i \(-0.656484\pi\)
−0.472046 + 0.881574i \(0.656484\pi\)
\(882\) −2618.54 + 2797.63i −0.0999669 + 0.106804i
\(883\) −6562.59 −0.250112 −0.125056 0.992150i \(-0.539911\pi\)
−0.125056 + 0.992150i \(0.539911\pi\)
\(884\) 26241.0 + 45450.7i 0.998392 + 1.72927i
\(885\) 0 0
\(886\) 1611.63 2791.43i 0.0611104 0.105846i
\(887\) 25255.5 43743.9i 0.956030 1.65589i 0.224035 0.974581i \(-0.428077\pi\)
0.731994 0.681311i \(-0.238590\pi\)
\(888\) −742.702 1712.43i −0.0280669 0.0647134i
\(889\) 15908.2 + 27553.8i 0.600162 + 1.03951i
\(890\) 0 0
\(891\) −10983.6 + 7349.46i −0.412979 + 0.276337i
\(892\) 9688.51 0.363672
\(893\) −5496.47 9520.17i −0.205971 0.356753i
\(894\) −567.456 1308.37i −0.0212288 0.0489468i
\(895\) 0 0
\(896\) 7081.43 12265.4i 0.264034 0.457320i
\(897\) −5119.91 + 6905.77i −0.190578 + 0.257053i
\(898\) 1642.91 + 2845.60i 0.0610518 + 0.105745i
\(899\) 15741.4 0.583986
\(900\) 0 0
\(901\) −55486.3 −2.05163
\(902\) −500.886 867.559i −0.0184897 0.0320250i
\(903\) −22411.6 2574.51i −0.825925 0.0948773i
\(904\) −3105.40 + 5378.72i −0.114252 + 0.197891i
\(905\) 0 0
\(906\) 1871.51 + 214.987i 0.0686276 + 0.00788353i
\(907\) −3508.72 6077.28i −0.128451 0.222484i 0.794626 0.607100i \(-0.207667\pi\)
−0.923077 + 0.384616i \(0.874334\pi\)
\(908\) −12127.2 −0.443231
\(909\) −28400.3 6612.16i −1.03628 0.241267i
\(910\) 0 0
\(911\) 3062.30 + 5304.05i 0.111370 + 0.192899i 0.916323 0.400440i \(-0.131143\pi\)
−0.804953 + 0.593339i \(0.797809\pi\)
\(912\) −4516.02 + 6091.25i −0.163970 + 0.221164i
\(913\) −2670.23 + 4624.98i −0.0967928 + 0.167650i
\(914\) 228.153 395.172i 0.00825669 0.0143010i
\(915\) 0 0
\(916\) −24573.8 42563.0i −0.886397 1.53528i
\(917\) −53104.4 −1.91239
\(918\) −746.688 4092.19i −0.0268457 0.147127i
\(919\) 23780.7 0.853594 0.426797 0.904347i \(-0.359642\pi\)
0.426797 + 0.904347i \(0.359642\pi\)
\(920\) 0 0
\(921\) 17533.2 + 40425.9i 0.627293 + 1.44634i
\(922\) 400.515 693.713i 0.0143062 0.0247790i
\(923\) 1217.61 2108.96i 0.0434215 0.0752082i
\(924\) 13911.4 18763.9i 0.495295 0.668058i
\(925\) 0 0
\(926\) 2316.17 0.0821967
\(927\) −4668.46 15371.6i −0.165407 0.544628i
\(928\) 5395.41 0.190854
\(929\) −5094.54 8824.01i −0.179921 0.311632i 0.761932 0.647657i \(-0.224251\pi\)
−0.941853 + 0.336024i \(0.890918\pi\)
\(930\) 0 0
\(931\) −7322.26 + 12682.5i −0.257763 + 0.446459i
\(932\) 8004.19 13863.7i 0.281316 0.487253i
\(933\) −35158.7 4038.82i −1.23370 0.141720i
\(934\) 925.488 + 1602.99i 0.0324228 + 0.0561579i
\(935\) 0 0
\(936\) 1413.80 + 4655.16i 0.0493713 + 0.162563i
\(937\) 3880.22 0.135284 0.0676421 0.997710i \(-0.478452\pi\)
0.0676421 + 0.997710i \(0.478452\pi\)
\(938\) 2068.96 + 3583.54i 0.0720191 + 0.124741i
\(939\) 24902.1 33588.2i 0.865442 1.16732i
\(940\) 0 0
\(941\) 19336.9 33492.6i 0.669890 1.16028i −0.308045 0.951372i \(-0.599675\pi\)
0.977935 0.208911i \(-0.0669919\pi\)
\(942\) 599.065 + 1381.25i 0.0207204 + 0.0477746i
\(943\) −4046.11 7008.07i −0.139724 0.242008i
\(944\) −46612.3 −1.60710
\(945\) 0 0
\(946\) −568.318 −0.0195324
\(947\) −3877.44 6715.92i −0.133052 0.230452i 0.791800 0.610781i \(-0.209144\pi\)
−0.924851 + 0.380328i \(0.875811\pi\)
\(948\) 8719.45 + 20104.3i 0.298729 + 0.688773i
\(949\) 10277.0 17800.3i 0.351534 0.608875i
\(950\) 0 0
\(951\) 4846.93 6537.58i 0.165271 0.222918i
\(952\) 7375.72 + 12775.1i 0.251101 + 0.434920i
\(953\) 22527.9 0.765739 0.382870 0.923802i \(-0.374936\pi\)
0.382870 + 0.923802i \(0.374936\pi\)
\(954\) −2496.85 581.318i −0.0847365 0.0197284i
\(955\) 0 0
\(956\) 20216.2 + 35015.5i 0.683931 + 1.18460i
\(957\) 11774.4 + 1352.57i 0.397713 + 0.0456868i
\(958\) −1541.29 + 2669.60i −0.0519800 + 0.0900321i
\(959\) −16371.9 + 28356.9i −0.551277 + 0.954840i
\(960\) 0 0
\(961\) 7068.91 + 12243.7i 0.237283 + 0.410987i
\(962\) −1129.65 −0.0378600
\(963\) −9201.13 + 9830.43i −0.307894 + 0.328952i
\(964\) −26127.8 −0.872947
\(965\) 0 0
\(966\) −717.254 + 967.438i −0.0238895 + 0.0322224i
\(967\) −2826.20 + 4895.13i −0.0939861 + 0.162789i −0.909185 0.416392i \(-0.863294\pi\)
0.815199 + 0.579181i \(0.196628\pi\)
\(968\) −1800.52 + 3118.59i −0.0597840 + 0.103549i
\(969\) −6325.60 14584.8i −0.209709 0.483521i
\(970\) 0 0
\(971\) 19612.4 0.648188 0.324094 0.946025i \(-0.394941\pi\)
0.324094 + 0.946025i \(0.394941\pi\)
\(972\) −1452.77 + 30076.7i −0.0479398 + 0.992501i
\(973\) 44757.9 1.47469
\(974\) −364.858 631.953i −0.0120029 0.0207896i
\(975\) 0 0
\(976\) −281.821 + 488.129i −0.00924270 + 0.0160088i
\(977\) −13841.8 + 23974.7i −0.453264 + 0.785076i −0.998587 0.0531500i \(-0.983074\pi\)
0.545323 + 0.838226i \(0.316407\pi\)
\(978\) 987.636 1332.13i 0.0322915 0.0435551i
\(979\) −7730.14 13389.0i −0.252356 0.437093i
\(980\) 0 0
\(981\) 17699.6 18910.1i 0.576049 0.615447i
\(982\) 2506.60 0.0814549
\(983\) −15308.2 26514.6i −0.496700 0.860310i 0.503293 0.864116i \(-0.332122\pi\)
−0.999993 + 0.00380619i \(0.998788\pi\)
\(984\) −4549.70 522.643i −0.147398 0.0169321i
\(985\) 0 0
\(986\) −1865.23 + 3230.68i −0.0602446 + 0.104347i
\(987\) 76160.8 + 8748.90i 2.45616 + 0.282148i
\(988\) 4633.51 + 8025.48i 0.149202 + 0.258426i
\(989\) −4590.82 −0.147603
\(990\) 0 0
\(991\) −14462.4 −0.463587 −0.231793 0.972765i \(-0.574459\pi\)
−0.231793 + 0.972765i \(0.574459\pi\)
\(992\) −2682.59 4646.39i −0.0858593 0.148713i
\(993\) −7558.88 + 10195.5i −0.241565 + 0.325824i
\(994\) 170.576 295.447i 0.00544301 0.00942756i
\(995\) 0 0
\(996\) 4841.72 + 11163.5i 0.154032 + 0.355149i
\(997\) −3448.63 5973.20i −0.109548 0.189743i 0.806039 0.591862i \(-0.201607\pi\)
−0.915587 + 0.402120i \(0.868274\pi\)
\(998\) −1222.48 −0.0387745
\(999\) −13210.4 4719.41i −0.418378 0.149465i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.4.e.d.76.4 14
5.2 odd 4 225.4.k.d.49.8 28
5.3 odd 4 225.4.k.d.49.7 28
5.4 even 2 45.4.e.c.31.4 yes 14
9.4 even 3 2025.4.a.bb.1.4 7
9.5 odd 6 2025.4.a.ba.1.4 7
9.7 even 3 inner 225.4.e.d.151.4 14
15.14 odd 2 135.4.e.c.91.4 14
45.4 even 6 405.4.a.m.1.4 7
45.7 odd 12 225.4.k.d.124.7 28
45.14 odd 6 405.4.a.n.1.4 7
45.29 odd 6 135.4.e.c.46.4 14
45.34 even 6 45.4.e.c.16.4 14
45.43 odd 12 225.4.k.d.124.8 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.e.c.16.4 14 45.34 even 6
45.4.e.c.31.4 yes 14 5.4 even 2
135.4.e.c.46.4 14 45.29 odd 6
135.4.e.c.91.4 14 15.14 odd 2
225.4.e.d.76.4 14 1.1 even 1 trivial
225.4.e.d.151.4 14 9.7 even 3 inner
225.4.k.d.49.7 28 5.3 odd 4
225.4.k.d.49.8 28 5.2 odd 4
225.4.k.d.124.7 28 45.7 odd 12
225.4.k.d.124.8 28 45.43 odd 12
405.4.a.m.1.4 7 45.4 even 6
405.4.a.n.1.4 7 45.14 odd 6
2025.4.a.ba.1.4 7 9.5 odd 6
2025.4.a.bb.1.4 7 9.4 even 3