Properties

Label 225.4.a.k.1.2
Level $225$
Weight $4$
Character 225.1
Self dual yes
Analytic conductor $13.275$
Analytic rank $1$
Dimension $2$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,4,Mod(1,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.2754297513\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 45)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23607 q^{2} -3.00000 q^{4} -24.5967 q^{8} +O(q^{10})\) \(q+2.23607 q^{2} -3.00000 q^{4} -24.5967 q^{8} -31.0000 q^{16} -138.636 q^{17} -164.000 q^{19} +98.3870 q^{23} -232.000 q^{31} +127.456 q^{32} -310.000 q^{34} -366.715 q^{38} +220.000 q^{46} +545.601 q^{47} -343.000 q^{49} +621.627 q^{53} -358.000 q^{61} -518.768 q^{62} +533.000 q^{64} +415.909 q^{68} +492.000 q^{76} +304.000 q^{79} -1270.09 q^{83} -295.161 q^{92} +1220.00 q^{94} -766.971 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{4} - 62 q^{16} - 328 q^{19} - 464 q^{31} - 620 q^{34} + 440 q^{46} - 686 q^{49} - 716 q^{61} + 1066 q^{64} + 984 q^{76} + 608 q^{79} + 2440 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.23607 0.790569 0.395285 0.918559i \(-0.370646\pi\)
0.395285 + 0.918559i \(0.370646\pi\)
\(3\) 0 0
\(4\) −3.00000 −0.375000
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −24.5967 −1.08703
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −31.0000 −0.484375
\(17\) −138.636 −1.97790 −0.988948 0.148265i \(-0.952631\pi\)
−0.988948 + 0.148265i \(0.952631\pi\)
\(18\) 0 0
\(19\) −164.000 −1.98022 −0.990110 0.140293i \(-0.955195\pi\)
−0.990110 + 0.140293i \(0.955195\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 98.3870 0.891961 0.445981 0.895043i \(-0.352855\pi\)
0.445981 + 0.895043i \(0.352855\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −232.000 −1.34414 −0.672071 0.740486i \(-0.734595\pi\)
−0.672071 + 0.740486i \(0.734595\pi\)
\(32\) 127.456 0.704101
\(33\) 0 0
\(34\) −310.000 −1.56366
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −366.715 −1.56550
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 220.000 0.705157
\(47\) 545.601 1.69328 0.846639 0.532168i \(-0.178623\pi\)
0.846639 + 0.532168i \(0.178623\pi\)
\(48\) 0 0
\(49\) −343.000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 621.627 1.61108 0.805538 0.592544i \(-0.201876\pi\)
0.805538 + 0.592544i \(0.201876\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −358.000 −0.751430 −0.375715 0.926735i \(-0.622603\pi\)
−0.375715 + 0.926735i \(0.622603\pi\)
\(62\) −518.768 −1.06264
\(63\) 0 0
\(64\) 533.000 1.04102
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 415.909 0.741711
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 492.000 0.742583
\(77\) 0 0
\(78\) 0 0
\(79\) 304.000 0.432945 0.216473 0.976289i \(-0.430545\pi\)
0.216473 + 0.976289i \(0.430545\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1270.09 −1.67964 −0.839820 0.542865i \(-0.817340\pi\)
−0.839820 + 0.542865i \(0.817340\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −295.161 −0.334485
\(93\) 0 0
\(94\) 1220.00 1.33865
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −766.971 −0.790569
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1390.00 1.27367
\(107\) −17.8885 −0.0161622 −0.00808108 0.999967i \(-0.502572\pi\)
−0.00808108 + 0.999967i \(0.502572\pi\)
\(108\) 0 0
\(109\) 1834.00 1.61161 0.805804 0.592182i \(-0.201733\pi\)
0.805804 + 0.592182i \(0.201733\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1426.61 1.18765 0.593824 0.804595i \(-0.297617\pi\)
0.593824 + 0.804595i \(0.297617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) −800.512 −0.594057
\(123\) 0 0
\(124\) 696.000 0.504054
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 172.177 0.118894
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 3410.00 2.15004
\(137\) −1990.10 −1.24106 −0.620532 0.784181i \(-0.713083\pi\)
−0.620532 + 0.784181i \(0.713083\pi\)
\(138\) 0 0
\(139\) −1604.00 −0.978773 −0.489387 0.872067i \(-0.662779\pi\)
−0.489387 + 0.872067i \(0.662779\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −3112.00 −1.67716 −0.838579 0.544779i \(-0.816613\pi\)
−0.838579 + 0.544779i \(0.816613\pi\)
\(152\) 4033.87 2.15256
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 679.765 0.342273
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −2840.00 −1.32787
\(167\) 3765.54 1.74483 0.872414 0.488769i \(-0.162554\pi\)
0.872414 + 0.488769i \(0.162554\pi\)
\(168\) 0 0
\(169\) −2197.00 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −424.853 −0.186711 −0.0933554 0.995633i \(-0.529759\pi\)
−0.0933554 + 0.995633i \(0.529759\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 1298.00 0.533036 0.266518 0.963830i \(-0.414127\pi\)
0.266518 + 0.963830i \(0.414127\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −2420.00 −0.969591
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −1636.80 −0.634979
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1029.00 0.375000
\(197\) −2553.59 −0.923532 −0.461766 0.887002i \(-0.652784\pi\)
−0.461766 + 0.887002i \(0.652784\pi\)
\(198\) 0 0
\(199\) −5456.00 −1.94355 −0.971773 0.235919i \(-0.924190\pi\)
−0.971773 + 0.235919i \(0.924190\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −4228.00 −1.37947 −0.689733 0.724063i \(-0.742272\pi\)
−0.689733 + 0.724063i \(0.742272\pi\)
\(212\) −1864.88 −0.604153
\(213\) 0 0
\(214\) −40.0000 −0.0127773
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 4100.95 1.27409
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3190.00 0.938919
\(227\) −6457.76 −1.88818 −0.944090 0.329688i \(-0.893057\pi\)
−0.944090 + 0.329688i \(0.893057\pi\)
\(228\) 0 0
\(229\) 286.000 0.0825302 0.0412651 0.999148i \(-0.486861\pi\)
0.0412651 + 0.999148i \(0.486861\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4449.78 −1.25114 −0.625568 0.780170i \(-0.715133\pi\)
−0.625568 + 0.780170i \(0.715133\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −1438.00 −0.384356 −0.192178 0.981360i \(-0.561555\pi\)
−0.192178 + 0.981360i \(0.561555\pi\)
\(242\) −2976.21 −0.790569
\(243\) 0 0
\(244\) 1074.00 0.281786
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 5706.45 1.46113
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −3879.00 −0.947021
\(257\) 6542.73 1.58803 0.794017 0.607896i \(-0.207986\pi\)
0.794017 + 0.607896i \(0.207986\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6341.49 −1.48682 −0.743409 0.668837i \(-0.766792\pi\)
−0.743409 + 0.668837i \(0.766792\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 6752.00 1.51349 0.756743 0.653712i \(-0.226789\pi\)
0.756743 + 0.653712i \(0.226789\pi\)
\(272\) 4297.72 0.958043
\(273\) 0 0
\(274\) −4450.00 −0.981147
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) −3586.65 −0.773788
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 14307.0 2.91207
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3161.80 −0.630424 −0.315212 0.949021i \(-0.602076\pi\)
−0.315212 + 0.949021i \(0.602076\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −6958.64 −1.32591
\(303\) 0 0
\(304\) 5084.00 0.959169
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −912.000 −0.162354
\(317\) 10084.7 1.78679 0.893393 0.449276i \(-0.148318\pi\)
0.893393 + 0.449276i \(0.148318\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 22736.3 3.91667
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 5852.00 0.971767 0.485884 0.874023i \(-0.338498\pi\)
0.485884 + 0.874023i \(0.338498\pi\)
\(332\) 3810.26 0.629865
\(333\) 0 0
\(334\) 8420.00 1.37941
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) −4912.64 −0.790569
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −950.000 −0.147608
\(347\) −8550.72 −1.32284 −0.661422 0.750014i \(-0.730047\pi\)
−0.661422 + 0.750014i \(0.730047\pi\)
\(348\) 0 0
\(349\) 3706.00 0.568417 0.284209 0.958762i \(-0.408269\pi\)
0.284209 + 0.958762i \(0.408269\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2473.09 0.372888 0.186444 0.982466i \(-0.440304\pi\)
0.186444 + 0.982466i \(0.440304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 20037.0 2.92127
\(362\) 2902.42 0.421402
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −3050.00 −0.432044
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −13420.0 −1.84065
\(377\) 0 0
\(378\) 0 0
\(379\) −4484.00 −0.607725 −0.303862 0.952716i \(-0.598276\pi\)
−0.303862 + 0.952716i \(0.598276\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9561.43 −1.27563 −0.637815 0.770190i \(-0.720161\pi\)
−0.637815 + 0.770190i \(0.720161\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) −13640.0 −1.76421
\(392\) 8436.68 1.08703
\(393\) 0 0
\(394\) −5710.00 −0.730116
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) −12200.0 −1.53651
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 14326.0 1.73197 0.865984 0.500071i \(-0.166693\pi\)
0.865984 + 0.500071i \(0.166693\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 6878.00 0.796231 0.398115 0.917335i \(-0.369664\pi\)
0.398115 + 0.917335i \(0.369664\pi\)
\(422\) −9454.10 −1.09056
\(423\) 0 0
\(424\) −15290.0 −1.75129
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 53.6656 0.00606081
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5502.00 −0.604353
\(437\) −16135.5 −1.76628
\(438\) 0 0
\(439\) −16976.0 −1.84560 −0.922802 0.385274i \(-0.874107\pi\)
−0.922802 + 0.385274i \(0.874107\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18049.5 1.93580 0.967900 0.251335i \(-0.0808696\pi\)
0.967900 + 0.251335i \(0.0808696\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −4279.83 −0.445368
\(453\) 0 0
\(454\) −14440.0 −1.49274
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 639.515 0.0652458
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −9950.00 −0.989109
\(467\) 4329.03 0.428958 0.214479 0.976729i \(-0.431195\pi\)
0.214479 + 0.976729i \(0.431195\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −3215.47 −0.303860
\(483\) 0 0
\(484\) 3993.00 0.375000
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 8805.64 0.816829
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 7192.00 0.651069
\(497\) 0 0
\(498\) 0 0
\(499\) −19316.0 −1.73287 −0.866436 0.499289i \(-0.833595\pi\)
−0.866436 + 0.499289i \(0.833595\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −21958.2 −1.94646 −0.973228 0.229843i \(-0.926179\pi\)
−0.973228 + 0.229843i \(0.926179\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −10051.1 −0.867580
\(513\) 0 0
\(514\) 14630.0 1.25545
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −14180.0 −1.17543
\(527\) 32163.6 2.65857
\(528\) 0 0
\(529\) −2487.00 −0.204405
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3238.00 −0.257324 −0.128662 0.991688i \(-0.541068\pi\)
−0.128662 + 0.991688i \(0.541068\pi\)
\(542\) 15097.9 1.19652
\(543\) 0 0
\(544\) −17670.0 −1.39264
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 5970.30 0.465399
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 4812.00 0.367040
\(557\) 26184.4 1.99186 0.995931 0.0901226i \(-0.0287259\pi\)
0.995931 + 0.0901226i \(0.0287259\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14632.8 −1.09538 −0.547691 0.836681i \(-0.684493\pi\)
−0.547691 + 0.836681i \(0.684493\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 26012.0 1.90642 0.953212 0.302302i \(-0.0977551\pi\)
0.953212 + 0.302302i \(0.0977551\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 31991.4 2.30219
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −7070.00 −0.498394
\(587\) −25777.4 −1.81252 −0.906258 0.422725i \(-0.861074\pi\)
−0.906258 + 0.422725i \(0.861074\pi\)
\(588\) 0 0
\(589\) 38048.0 2.66170
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7866.49 0.544752 0.272376 0.962191i \(-0.412191\pi\)
0.272376 + 0.962191i \(0.412191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −13642.0 −0.925905 −0.462952 0.886383i \(-0.653210\pi\)
−0.462952 + 0.886383i \(0.653210\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 9336.00 0.628935
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) −20902.8 −1.39427
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27991.1 −1.82638 −0.913192 0.407529i \(-0.866391\pi\)
−0.913192 + 0.407529i \(0.866391\pi\)
\(618\) 0 0
\(619\) −3476.00 −0.225706 −0.112853 0.993612i \(-0.535999\pi\)
−0.112853 + 0.993612i \(0.535999\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −27808.0 −1.75439 −0.877194 0.480136i \(-0.840587\pi\)
−0.877194 + 0.480136i \(0.840587\pi\)
\(632\) −7477.41 −0.470626
\(633\) 0 0
\(634\) 22550.0 1.41258
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 50840.0 3.09640
\(647\) 2638.56 0.160328 0.0801642 0.996782i \(-0.474456\pi\)
0.0801642 + 0.996782i \(0.474456\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22678.2 1.35906 0.679530 0.733647i \(-0.262184\pi\)
0.679530 + 0.733647i \(0.262184\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 32978.0 1.94054 0.970269 0.242029i \(-0.0778130\pi\)
0.970269 + 0.242029i \(0.0778130\pi\)
\(662\) 13085.5 0.768250
\(663\) 0 0
\(664\) 31240.0 1.82582
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −11296.6 −0.654310
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 6591.00 0.375000
\(677\) −32901.5 −1.86781 −0.933905 0.357521i \(-0.883622\pi\)
−0.933905 + 0.357521i \(0.883622\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −27512.6 −1.54135 −0.770673 0.637231i \(-0.780080\pi\)
−0.770673 + 0.637231i \(0.780080\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −32812.0 −1.80641 −0.903204 0.429212i \(-0.858791\pi\)
−0.903204 + 0.429212i \(0.858791\pi\)
\(692\) 1274.56 0.0700166
\(693\) 0 0
\(694\) −19120.0 −1.04580
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 8286.87 0.449373
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 5530.00 0.294794
\(707\) 0 0
\(708\) 0 0
\(709\) 37726.0 1.99835 0.999175 0.0406201i \(-0.0129334\pi\)
0.999175 + 0.0406201i \(0.0129334\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −22825.8 −1.19892
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 44804.1 2.30947
\(723\) 0 0
\(724\) −3894.00 −0.199889
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 12540.0 0.628031
\(737\) 0 0
\(738\) 0 0
\(739\) −8804.00 −0.438241 −0.219121 0.975698i \(-0.570319\pi\)
−0.219121 + 0.975698i \(0.570319\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10241.2 0.505670 0.252835 0.967509i \(-0.418637\pi\)
0.252835 + 0.967509i \(0.418637\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −17512.0 −0.850895 −0.425447 0.904983i \(-0.639883\pi\)
−0.425447 + 0.904983i \(0.639883\pi\)
\(752\) −16913.6 −0.820181
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) −10026.5 −0.480448
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −21380.0 −1.00847
\(767\) 0 0
\(768\) 0 0
\(769\) −8786.00 −0.412004 −0.206002 0.978552i \(-0.566045\pi\)
−0.206002 + 0.978552i \(0.566045\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10281.4 0.478393 0.239196 0.970971i \(-0.423116\pi\)
0.239196 + 0.970971i \(0.423116\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −30500.0 −1.39473
\(783\) 0 0
\(784\) 10633.0 0.484375
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 7660.77 0.346324
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 16368.0 0.728830
\(797\) −1426.61 −0.0634042 −0.0317021 0.999497i \(-0.510093\pi\)
−0.0317021 + 0.999497i \(0.510093\pi\)
\(798\) 0 0
\(799\) −75640.0 −3.34912
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −14092.0 −0.610157 −0.305078 0.952327i \(-0.598683\pi\)
−0.305078 + 0.952327i \(0.598683\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 32033.9 1.36924
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 42968.3 1.80672 0.903358 0.428888i \(-0.141095\pi\)
0.903358 + 0.428888i \(0.141095\pi\)
\(828\) 0 0
\(829\) −45254.0 −1.89594 −0.947971 0.318356i \(-0.896869\pi\)
−0.947971 + 0.318356i \(0.896869\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 47552.2 1.97790
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −24389.0 −1.00000
\(842\) 15379.7 0.629476
\(843\) 0 0
\(844\) 12684.0 0.517300
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −19270.4 −0.780365
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 440.000 0.0175688
\(857\) 47033.5 1.87472 0.937358 0.348367i \(-0.113264\pi\)
0.937358 + 0.348367i \(0.113264\pi\)
\(858\) 0 0
\(859\) 28204.0 1.12027 0.560133 0.828403i \(-0.310750\pi\)
0.560133 + 0.828403i \(0.310750\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26340.9 1.03900 0.519498 0.854472i \(-0.326119\pi\)
0.519498 + 0.854472i \(0.326119\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −45110.4 −1.75187
\(873\) 0 0
\(874\) −36080.0 −1.39637
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) −37959.5 −1.45908
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 40360.0 1.53038
\(887\) 23085.2 0.873871 0.436936 0.899493i \(-0.356064\pi\)
0.436936 + 0.899493i \(0.356064\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −89478.5 −3.35306
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −86180.0 −3.18654
\(902\) 0 0
\(903\) 0 0
\(904\) −35090.0 −1.29101
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 19373.3 0.708068
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −858.000 −0.0309488
\(917\) 0 0
\(918\) 0 0
\(919\) −21224.0 −0.761823 −0.380911 0.924612i \(-0.624390\pi\)
−0.380911 + 0.924612i \(0.624390\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 56252.0 1.98022
\(932\) 13349.3 0.469176
\(933\) 0 0
\(934\) 9680.00 0.339121
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −45097.0 −1.54747 −0.773736 0.633508i \(-0.781614\pi\)
−0.773736 + 0.633508i \(0.781614\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −30289.8 −1.02957 −0.514786 0.857319i \(-0.672129\pi\)
−0.514786 + 0.857319i \(0.672129\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 24033.0 0.806720
\(962\) 0 0
\(963\) 0 0
\(964\) 4314.00 0.144133
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 32738.3 1.08703
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 11098.0 0.363974
\(977\) −13018.4 −0.426300 −0.213150 0.977019i \(-0.568372\pi\)
−0.213150 + 0.977019i \(0.568372\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 60794.2 1.97257 0.986284 0.165057i \(-0.0527809\pi\)
0.986284 + 0.165057i \(0.0527809\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −62368.0 −1.99918 −0.999589 0.0286779i \(-0.990870\pi\)
−0.999589 + 0.0286779i \(0.990870\pi\)
\(992\) −29569.8 −0.946412
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) −43191.9 −1.36996
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.4.a.k.1.2 2
3.2 odd 2 inner 225.4.a.k.1.1 2
5.2 odd 4 45.4.b.a.19.2 yes 2
5.3 odd 4 45.4.b.a.19.1 2
5.4 even 2 inner 225.4.a.k.1.1 2
15.2 even 4 45.4.b.a.19.1 2
15.8 even 4 45.4.b.a.19.2 yes 2
15.14 odd 2 CM 225.4.a.k.1.2 2
20.3 even 4 720.4.f.d.289.1 2
20.7 even 4 720.4.f.d.289.2 2
60.23 odd 4 720.4.f.d.289.2 2
60.47 odd 4 720.4.f.d.289.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.b.a.19.1 2 5.3 odd 4
45.4.b.a.19.1 2 15.2 even 4
45.4.b.a.19.2 yes 2 5.2 odd 4
45.4.b.a.19.2 yes 2 15.8 even 4
225.4.a.k.1.1 2 3.2 odd 2 inner
225.4.a.k.1.1 2 5.4 even 2 inner
225.4.a.k.1.2 2 1.1 even 1 trivial
225.4.a.k.1.2 2 15.14 odd 2 CM
720.4.f.d.289.1 2 20.3 even 4
720.4.f.d.289.1 2 60.47 odd 4
720.4.f.d.289.2 2 20.7 even 4
720.4.f.d.289.2 2 60.23 odd 4