Newspace parameters
| Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 225.o (of order \(12\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.13080594811\) |
| Analytic rank: | \(0\) |
| Dimension: | \(64\) |
| Relative dimension: | \(16\) over \(\Q(\zeta_{12})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 7.1 | −3.77829 | + | 1.01239i | 0.609203 | − | 2.93749i | 9.78643 | − | 5.65020i | 0 | 0.672142 | + | 11.7154i | −3.12611 | + | 0.837640i | −20.1921 | + | 20.1921i | −8.25774 | − | 3.57906i | 0 | ||||
| 7.2 | −3.09389 | + | 0.829004i | −2.93358 | + | 0.627778i | 5.42078 | − | 3.12969i | 0 | 8.55573 | − | 4.37422i | −1.55916 | + | 0.417775i | −5.11721 | + | 5.11721i | 8.21179 | − | 3.68327i | 0 | ||||
| 7.3 | −2.83272 | + | 0.759025i | 2.79842 | − | 1.08112i | 3.98409 | − | 2.30022i | 0 | −7.10655 | + | 5.18660i | −9.40715 | + | 2.52064i | −1.24511 | + | 1.24511i | 6.66234 | − | 6.05088i | 0 | ||||
| 7.4 | −2.55363 | + | 0.684243i | −1.96512 | + | 2.26679i | 2.58873 | − | 1.49461i | 0 | 3.46714 | − | 7.13315i | −5.37715 | + | 1.44080i | 1.88955 | − | 1.88955i | −1.27665 | − | 8.90899i | 0 | ||||
| 7.5 | −1.86913 | + | 0.500832i | 1.04848 | + | 2.81082i | −0.221279 | + | 0.127756i | 0 | −3.36750 | − | 4.72867i | 12.1355 | − | 3.25169i | 5.82282 | − | 5.82282i | −6.80136 | + | 5.89419i | 0 | ||||
| 7.6 | −1.22704 | + | 0.328785i | −2.24709 | − | 1.98761i | −2.06657 | + | 1.19313i | 0 | 3.41077 | + | 1.70007i | 9.94163 | − | 2.66385i | 5.73651 | − | 5.73651i | 1.09881 | + | 8.93267i | 0 | ||||
| 7.7 | −0.944333 | + | 0.253033i | 2.74905 | − | 1.20114i | −2.63636 | + | 1.52210i | 0 | −2.29209 | + | 1.82988i | −2.68352 | + | 0.719047i | 4.86966 | − | 4.86966i | 6.11450 | − | 6.60400i | 0 | ||||
| 7.8 | −0.707555 | + | 0.189589i | −0.870705 | − | 2.87087i | −2.99941 | + | 1.73171i | 0 | 1.16036 | + | 1.86622i | −0.741289 | + | 0.198628i | 3.86580 | − | 3.86580i | −7.48375 | + | 4.99935i | 0 | ||||
| 7.9 | 0.707555 | − | 0.189589i | 0.870705 | + | 2.87087i | −2.99941 | + | 1.73171i | 0 | 1.16036 | + | 1.86622i | 0.741289 | − | 0.198628i | −3.86580 | + | 3.86580i | −7.48375 | + | 4.99935i | 0 | ||||
| 7.10 | 0.944333 | − | 0.253033i | −2.74905 | + | 1.20114i | −2.63636 | + | 1.52210i | 0 | −2.29209 | + | 1.82988i | 2.68352 | − | 0.719047i | −4.86966 | + | 4.86966i | 6.11450 | − | 6.60400i | 0 | ||||
| 7.11 | 1.22704 | − | 0.328785i | 2.24709 | + | 1.98761i | −2.06657 | + | 1.19313i | 0 | 3.41077 | + | 1.70007i | −9.94163 | + | 2.66385i | −5.73651 | + | 5.73651i | 1.09881 | + | 8.93267i | 0 | ||||
| 7.12 | 1.86913 | − | 0.500832i | −1.04848 | − | 2.81082i | −0.221279 | + | 0.127756i | 0 | −3.36750 | − | 4.72867i | −12.1355 | + | 3.25169i | −5.82282 | + | 5.82282i | −6.80136 | + | 5.89419i | 0 | ||||
| 7.13 | 2.55363 | − | 0.684243i | 1.96512 | − | 2.26679i | 2.58873 | − | 1.49461i | 0 | 3.46714 | − | 7.13315i | 5.37715 | − | 1.44080i | −1.88955 | + | 1.88955i | −1.27665 | − | 8.90899i | 0 | ||||
| 7.14 | 2.83272 | − | 0.759025i | −2.79842 | + | 1.08112i | 3.98409 | − | 2.30022i | 0 | −7.10655 | + | 5.18660i | 9.40715 | − | 2.52064i | 1.24511 | − | 1.24511i | 6.66234 | − | 6.05088i | 0 | ||||
| 7.15 | 3.09389 | − | 0.829004i | 2.93358 | − | 0.627778i | 5.42078 | − | 3.12969i | 0 | 8.55573 | − | 4.37422i | 1.55916 | − | 0.417775i | 5.11721 | − | 5.11721i | 8.21179 | − | 3.68327i | 0 | ||||
| 7.16 | 3.77829 | − | 1.01239i | −0.609203 | + | 2.93749i | 9.78643 | − | 5.65020i | 0 | 0.672142 | + | 11.7154i | 3.12611 | − | 0.837640i | 20.1921 | − | 20.1921i | −8.25774 | − | 3.57906i | 0 | ||||
| 43.1 | −1.01239 | − | 3.77829i | −2.93749 | − | 0.609203i | −9.78643 | + | 5.65020i | 0 | 0.672142 | + | 11.7154i | −0.837640 | − | 3.12611i | 20.1921 | + | 20.1921i | 8.25774 | + | 3.57906i | 0 | ||||
| 43.2 | −0.829004 | − | 3.09389i | 0.627778 | + | 2.93358i | −5.42078 | + | 3.12969i | 0 | 8.55573 | − | 4.37422i | −0.417775 | − | 1.55916i | 5.11721 | + | 5.11721i | −8.21179 | + | 3.68327i | 0 | ||||
| 43.3 | −0.759025 | − | 2.83272i | −1.08112 | − | 2.79842i | −3.98409 | + | 2.30022i | 0 | −7.10655 | + | 5.18660i | −2.52064 | − | 9.40715i | 1.24511 | + | 1.24511i | −6.66234 | + | 6.05088i | 0 | ||||
| 43.4 | −0.684243 | − | 2.55363i | 2.26679 | + | 1.96512i | −2.58873 | + | 1.49461i | 0 | 3.46714 | − | 7.13315i | −1.44080 | − | 5.37715i | −1.88955 | − | 1.88955i | 1.27665 | + | 8.90899i | 0 | ||||
| See all 64 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 5.c | odd | 4 | 2 | inner |
| 9.c | even | 3 | 1 | inner |
| 45.j | even | 6 | 1 | inner |
| 45.k | odd | 12 | 2 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 225.3.o.c | ✓ | 64 |
| 5.b | even | 2 | 1 | inner | 225.3.o.c | ✓ | 64 |
| 5.c | odd | 4 | 2 | inner | 225.3.o.c | ✓ | 64 |
| 9.c | even | 3 | 1 | inner | 225.3.o.c | ✓ | 64 |
| 45.j | even | 6 | 1 | inner | 225.3.o.c | ✓ | 64 |
| 45.k | odd | 12 | 2 | inner | 225.3.o.c | ✓ | 64 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 225.3.o.c | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
| 225.3.o.c | ✓ | 64 | 5.b | even | 2 | 1 | inner |
| 225.3.o.c | ✓ | 64 | 5.c | odd | 4 | 2 | inner |
| 225.3.o.c | ✓ | 64 | 9.c | even | 3 | 1 | inner |
| 225.3.o.c | ✓ | 64 | 45.j | even | 6 | 1 | inner |
| 225.3.o.c | ✓ | 64 | 45.k | odd | 12 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{64} - 480 T_{2}^{60} + 152172 T_{2}^{56} - 26498718 T_{2}^{52} + 3298617270 T_{2}^{48} + \cdots + 73\!\cdots\!61 \)
acting on \(S_{3}^{\mathrm{new}}(225, [\chi])\).