Properties

Label 225.10.a.g
Level $225$
Weight $10$
Character orbit 225.a
Self dual yes
Analytic conductor $115.883$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,10,Mod(1,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-36,0,256,0,0,-3318] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.883063137\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 79 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 75)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{79}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 18) q^{2} + ( - 36 \beta + 128) q^{4} + (126 \beta - 1659) q^{7} + (264 \beta - 4464) q^{8} + ( - 1978 \beta - 12114) q^{11} + ( - 3816 \beta + 45467) q^{13} + ( - 3927 \beta + 69678) q^{14}+ \cdots + ( - 25059286 \beta + 454411692) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 36 q^{2} + 256 q^{4} - 3318 q^{7} - 8928 q^{8} - 24228 q^{11} + 90934 q^{13} + 139356 q^{14} + 196480 q^{16} + 124236 q^{17} - 1348846 q^{19} - 813992 q^{22} + 330444 q^{23} - 4048524 q^{26} - 3291456 q^{28}+ \cdots + 908823384 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.88819
8.88819
−35.7764 0 767.950 0 0 −3898.82 −9156.97 0 0
1.2 −0.223611 0 −511.950 0 0 580.825 228.967 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 225.10.a.g 2
3.b odd 2 1 75.10.a.h yes 2
5.b even 2 1 225.10.a.l 2
5.c odd 4 2 225.10.b.j 4
15.d odd 2 1 75.10.a.e 2
15.e even 4 2 75.10.b.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.10.a.e 2 15.d odd 2 1
75.10.a.h yes 2 3.b odd 2 1
75.10.b.g 4 15.e even 4 2
225.10.a.g 2 1.a even 1 1 trivial
225.10.a.l 2 5.b even 2 1
225.10.b.j 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(225))\):

\( T_{2}^{2} + 36T_{2} + 8 \) Copy content Toggle raw display
\( T_{7}^{2} + 3318T_{7} - 2264535 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 36T + 8 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 3318 T - 2264535 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 1089595948 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 2534298407 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 90389270476 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 273466881505 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 1307719531980 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 290780819500 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 38000674643175 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 47108368408220 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 214074226693600 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 993179978760551 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 789343287059876 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 180915167344240 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 11\!\cdots\!20 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 13\!\cdots\!21 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 24\!\cdots\!89 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 25\!\cdots\!56 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 17\!\cdots\!80 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 61\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 22\!\cdots\!68 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 18\!\cdots\!80 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 75\!\cdots\!29 \) Copy content Toggle raw display
show more
show less