Defining parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 24 \) | ||
Sturm bound: | \(300\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(225))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 282 | 73 | 209 |
Cusp forms | 258 | 70 | 188 |
Eisenstein series | 24 | 3 | 21 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(69\) | \(13\) | \(56\) | \(63\) | \(13\) | \(50\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(71\) | \(16\) | \(55\) | \(65\) | \(16\) | \(49\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(72\) | \(21\) | \(51\) | \(66\) | \(20\) | \(46\) | \(6\) | \(1\) | \(5\) | |||
\(-\) | \(-\) | \(+\) | \(70\) | \(23\) | \(47\) | \(64\) | \(21\) | \(43\) | \(6\) | \(2\) | \(4\) | |||
Plus space | \(+\) | \(139\) | \(36\) | \(103\) | \(127\) | \(34\) | \(93\) | \(12\) | \(2\) | \(10\) | ||||
Minus space | \(-\) | \(143\) | \(37\) | \(106\) | \(131\) | \(36\) | \(95\) | \(12\) | \(1\) | \(11\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(225))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(225))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(225)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)