Defining parameters
Level: | \( N \) | \(=\) | \( 224 = 2^{5} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 224.q (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 56 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(224, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 20 | 60 |
Cusp forms | 48 | 12 | 36 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(224, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
224.2.q.a | $12$ | $1.789$ | 12.0.\(\cdots\).2 | None | \(0\) | \(6\) | \(0\) | \(0\) | \(q+\beta _{8}q^{3}+(-\beta _{4}-\beta _{7})q^{5}+(\beta _{5}-\beta _{7}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(224, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(224, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 3}\)