Properties

Label 224.2
Level 224
Weight 2
Dimension 778
Nonzero newspaces 12
Newform subspaces 23
Sturm bound 6144
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 23 \)
Sturm bound: \(6144\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(224))\).

Total New Old
Modular forms 1728 878 850
Cusp forms 1345 778 567
Eisenstein series 383 100 283

Trace form

\( 778 q - 16 q^{2} - 10 q^{3} - 16 q^{4} - 12 q^{5} - 16 q^{6} - 14 q^{7} - 40 q^{8} - 22 q^{9} - 32 q^{10} - 10 q^{11} - 48 q^{12} - 28 q^{13} - 36 q^{14} - 36 q^{15} - 56 q^{16} - 16 q^{17} - 56 q^{18}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(224))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
224.2.a \(\chi_{224}(1, \cdot)\) 224.2.a.a 1 1
224.2.a.b 1
224.2.a.c 2
224.2.a.d 2
224.2.b \(\chi_{224}(113, \cdot)\) 224.2.b.a 2 1
224.2.b.b 4
224.2.e \(\chi_{224}(111, \cdot)\) 224.2.e.a 2 1
224.2.e.b 4
224.2.f \(\chi_{224}(223, \cdot)\) 224.2.f.a 8 1
224.2.i \(\chi_{224}(65, \cdot)\) 224.2.i.a 4 2
224.2.i.b 4
224.2.i.c 4
224.2.i.d 4
224.2.j \(\chi_{224}(55, \cdot)\) None 0 2
224.2.m \(\chi_{224}(57, \cdot)\) None 0 2
224.2.p \(\chi_{224}(31, \cdot)\) 224.2.p.a 16 2
224.2.q \(\chi_{224}(47, \cdot)\) 224.2.q.a 12 2
224.2.t \(\chi_{224}(81, \cdot)\) 224.2.t.a 12 2
224.2.u \(\chi_{224}(29, \cdot)\) 224.2.u.a 4 4
224.2.u.b 40
224.2.u.c 52
224.2.x \(\chi_{224}(27, \cdot)\) 224.2.x.a 8 4
224.2.x.b 112
224.2.z \(\chi_{224}(87, \cdot)\) None 0 4
224.2.ba \(\chi_{224}(9, \cdot)\) None 0 4
224.2.bd \(\chi_{224}(37, \cdot)\) 224.2.bd.a 240 8
224.2.be \(\chi_{224}(3, \cdot)\) 224.2.be.a 240 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(224))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(224)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 2}\)