Properties

Label 222.2.j.b.175.4
Level $222$
Weight $2$
Character 222.175
Analytic conductor $1.773$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [222,2,Mod(85,222)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("222.85"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(222, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 222 = 2 \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 222.j (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.77267892487\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.303595776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 175.4
Root \(0.396143 + 1.68614i\) of defining polynomial
Character \(\chi\) \(=\) 222.175
Dual form 222.2.j.b.85.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(2.92048 - 1.68614i) q^{5} +1.00000i q^{6} +(-0.896143 - 1.55217i) q^{7} +1.00000i q^{8} +(-0.500000 + 0.866025i) q^{9} +3.37228 q^{10} -2.57999 q^{11} +(-0.500000 + 0.866025i) q^{12} +(-0.454090 + 0.262169i) q^{13} -1.79229i q^{14} +(2.92048 + 1.68614i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.41819 - 1.39614i) q^{17} +(-0.866025 + 0.500000i) q^{18} +(-3.60662 + 2.08228i) q^{19} +(2.92048 + 1.68614i) q^{20} +(0.896143 - 1.55217i) q^{21} +(-2.23434 - 1.29000i) q^{22} +8.63325i q^{23} +(-0.866025 + 0.500000i) q^{24} +(3.18614 - 5.51856i) q^{25} -0.524338 q^{26} -1.00000 q^{27} +(0.896143 - 1.55217i) q^{28} +2.83638i q^{29} +(1.68614 + 2.92048i) q^{30} -7.10433i q^{31} +(-0.866025 + 0.500000i) q^{32} +(-1.29000 - 2.23434i) q^{33} +(-1.39614 - 2.41819i) q^{34} +(-5.23434 - 3.02205i) q^{35} -1.00000 q^{36} +(5.70819 - 2.10157i) q^{37} -4.16457 q^{38} +(-0.454090 - 0.262169i) q^{39} +(1.68614 + 2.92048i) q^{40} +(0.0459101 + 0.0795187i) q^{41} +(1.55217 - 0.896143i) q^{42} -12.2735i q^{43} +(-1.29000 - 2.23434i) q^{44} +3.37228i q^{45} +(-4.31662 + 7.47661i) q^{46} -9.93278 q^{47} -1.00000 q^{48} +(1.89385 - 3.28025i) q^{49} +(5.51856 - 3.18614i) q^{50} -2.79229i q^{51} +(-0.454090 - 0.262169i) q^{52} +(0.847944 - 1.46868i) q^{53} +(-0.866025 - 0.500000i) q^{54} +(-7.53483 + 4.35023i) q^{55} +(1.55217 - 0.896143i) q^{56} +(-3.60662 - 2.08228i) q^{57} +(-1.41819 + 2.45638i) q^{58} +(8.48119 + 4.89662i) q^{59} +3.37228i q^{60} +(-3.36456 + 1.94253i) q^{61} +(3.55217 - 6.15253i) q^{62} +1.79229 q^{63} -1.00000 q^{64} +(-0.884107 + 1.53132i) q^{65} -2.57999i q^{66} +(4.79276 + 8.30131i) q^{67} -2.79229i q^{68} +(-7.47661 + 4.31662i) q^{69} +(-3.02205 - 5.23434i) q^{70} +(4.66228 + 8.07530i) q^{71} +(-0.866025 - 0.500000i) q^{72} +8.14050 q^{73} +(5.99422 + 1.03408i) q^{74} +6.37228 q^{75} +(-3.60662 - 2.08228i) q^{76} +(2.31205 + 4.00458i) q^{77} +(-0.262169 - 0.454090i) q^{78} +(0.964312 - 0.556746i) q^{79} +3.37228i q^{80} +(-0.500000 - 0.866025i) q^{81} +0.0918203i q^{82} +(0.316625 - 0.548410i) q^{83} +1.79229 q^{84} -9.41638 q^{85} +(6.13674 - 10.6291i) q^{86} +(-2.45638 + 1.41819i) q^{87} -2.57999i q^{88} +(-13.0755 - 7.54915i) q^{89} +(-1.68614 + 2.92048i) q^{90} +(0.813859 + 0.469882i) q^{91} +(-7.47661 + 4.31662i) q^{92} +(6.15253 - 3.55217i) q^{93} +(-8.60204 - 4.96639i) q^{94} +(-7.02205 + 12.1625i) q^{95} +(-0.866025 - 0.500000i) q^{96} +2.45159i q^{97} +(3.28025 - 1.89385i) q^{98} +(1.29000 - 2.23434i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 4 q^{4} - 4 q^{7} - 4 q^{9} + 4 q^{10} - 4 q^{11} - 4 q^{12} - 6 q^{13} - 4 q^{16} + 6 q^{17} + 6 q^{19} + 4 q^{21} - 6 q^{22} + 14 q^{25} + 16 q^{26} - 8 q^{27} + 4 q^{28} + 2 q^{30} - 2 q^{33}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/222\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(187\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 2.92048 1.68614i 1.30608 0.754065i 0.324640 0.945838i \(-0.394757\pi\)
0.981439 + 0.191773i \(0.0614237\pi\)
\(6\) 1.00000i 0.408248i
\(7\) −0.896143 1.55217i −0.338710 0.586664i 0.645480 0.763777i \(-0.276657\pi\)
−0.984190 + 0.177114i \(0.943324\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 3.37228 1.06641
\(11\) −2.57999 −0.777898 −0.388949 0.921259i \(-0.627162\pi\)
−0.388949 + 0.921259i \(0.627162\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) −0.454090 + 0.262169i −0.125942 + 0.0727126i −0.561647 0.827377i \(-0.689832\pi\)
0.435706 + 0.900089i \(0.356499\pi\)
\(14\) 1.79229i 0.479009i
\(15\) 2.92048 + 1.68614i 0.754065 + 0.435360i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.41819 1.39614i −0.586498 0.338615i 0.177214 0.984172i \(-0.443292\pi\)
−0.763711 + 0.645558i \(0.776625\pi\)
\(18\) −0.866025 + 0.500000i −0.204124 + 0.117851i
\(19\) −3.60662 + 2.08228i −0.827416 + 0.477709i −0.852967 0.521965i \(-0.825199\pi\)
0.0255512 + 0.999674i \(0.491866\pi\)
\(20\) 2.92048 + 1.68614i 0.653039 + 0.377033i
\(21\) 0.896143 1.55217i 0.195555 0.338710i
\(22\) −2.23434 1.29000i −0.476363 0.275028i
\(23\) 8.63325i 1.80016i 0.435728 + 0.900078i \(0.356491\pi\)
−0.435728 + 0.900078i \(0.643509\pi\)
\(24\) −0.866025 + 0.500000i −0.176777 + 0.102062i
\(25\) 3.18614 5.51856i 0.637228 1.10371i
\(26\) −0.524338 −0.102831
\(27\) −1.00000 −0.192450
\(28\) 0.896143 1.55217i 0.169355 0.293332i
\(29\) 2.83638i 0.526703i 0.964700 + 0.263352i \(0.0848279\pi\)
−0.964700 + 0.263352i \(0.915172\pi\)
\(30\) 1.68614 + 2.92048i 0.307846 + 0.533204i
\(31\) 7.10433i 1.27598i −0.770046 0.637988i \(-0.779767\pi\)
0.770046 0.637988i \(-0.220233\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) −1.29000 2.23434i −0.224560 0.388949i
\(34\) −1.39614 2.41819i −0.239437 0.414716i
\(35\) −5.23434 3.02205i −0.884765 0.510819i
\(36\) −1.00000 −0.166667
\(37\) 5.70819 2.10157i 0.938420 0.345495i
\(38\) −4.16457 −0.675582
\(39\) −0.454090 0.262169i −0.0727126 0.0419806i
\(40\) 1.68614 + 2.92048i 0.266602 + 0.461769i
\(41\) 0.0459101 + 0.0795187i 0.00716996 + 0.0124187i 0.869588 0.493778i \(-0.164384\pi\)
−0.862418 + 0.506197i \(0.831051\pi\)
\(42\) 1.55217 0.896143i 0.239504 0.138278i
\(43\) 12.2735i 1.87169i −0.352414 0.935844i \(-0.614639\pi\)
0.352414 0.935844i \(-0.385361\pi\)
\(44\) −1.29000 2.23434i −0.194474 0.336840i
\(45\) 3.37228i 0.502710i
\(46\) −4.31662 + 7.47661i −0.636452 + 1.10237i
\(47\) −9.93278 −1.44885 −0.724423 0.689356i \(-0.757894\pi\)
−0.724423 + 0.689356i \(0.757894\pi\)
\(48\) −1.00000 −0.144338
\(49\) 1.89385 3.28025i 0.270551 0.468607i
\(50\) 5.51856 3.18614i 0.780442 0.450588i
\(51\) 2.79229i 0.390998i
\(52\) −0.454090 0.262169i −0.0629709 0.0363563i
\(53\) 0.847944 1.46868i 0.116474 0.201739i −0.801894 0.597466i \(-0.796174\pi\)
0.918368 + 0.395727i \(0.129507\pi\)
\(54\) −0.866025 0.500000i −0.117851 0.0680414i
\(55\) −7.53483 + 4.35023i −1.01600 + 0.586585i
\(56\) 1.55217 0.896143i 0.207417 0.119752i
\(57\) −3.60662 2.08228i −0.477709 0.275805i
\(58\) −1.41819 + 2.45638i −0.186218 + 0.322538i
\(59\) 8.48119 + 4.89662i 1.10416 + 0.637486i 0.937310 0.348497i \(-0.113308\pi\)
0.166847 + 0.985983i \(0.446641\pi\)
\(60\) 3.37228i 0.435360i
\(61\) −3.36456 + 1.94253i −0.430788 + 0.248715i −0.699682 0.714454i \(-0.746675\pi\)
0.268894 + 0.963170i \(0.413342\pi\)
\(62\) 3.55217 6.15253i 0.451126 0.781372i
\(63\) 1.79229 0.225807
\(64\) −1.00000 −0.125000
\(65\) −0.884107 + 1.53132i −0.109660 + 0.189937i
\(66\) 2.57999i 0.317575i
\(67\) 4.79276 + 8.30131i 0.585529 + 1.01417i 0.994809 + 0.101757i \(0.0324466\pi\)
−0.409280 + 0.912409i \(0.634220\pi\)
\(68\) 2.79229i 0.338615i
\(69\) −7.47661 + 4.31662i −0.900078 + 0.519661i
\(70\) −3.02205 5.23434i −0.361204 0.625623i
\(71\) 4.66228 + 8.07530i 0.553311 + 0.958362i 0.998033 + 0.0626936i \(0.0199691\pi\)
−0.444722 + 0.895669i \(0.646698\pi\)
\(72\) −0.866025 0.500000i −0.102062 0.0589256i
\(73\) 8.14050 0.952773 0.476386 0.879236i \(-0.341946\pi\)
0.476386 + 0.879236i \(0.341946\pi\)
\(74\) 5.99422 + 1.03408i 0.696814 + 0.120210i
\(75\) 6.37228 0.735808
\(76\) −3.60662 2.08228i −0.413708 0.238854i
\(77\) 2.31205 + 4.00458i 0.263482 + 0.456364i
\(78\) −0.262169 0.454090i −0.0296848 0.0514156i
\(79\) 0.964312 0.556746i 0.108494 0.0626388i −0.444771 0.895644i \(-0.646715\pi\)
0.553265 + 0.833005i \(0.313382\pi\)
\(80\) 3.37228i 0.377033i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0.0918203i 0.0101399i
\(83\) 0.316625 0.548410i 0.0347541 0.0601958i −0.848125 0.529796i \(-0.822269\pi\)
0.882879 + 0.469600i \(0.155602\pi\)
\(84\) 1.79229 0.195555
\(85\) −9.41638 −1.02135
\(86\) 6.13674 10.6291i 0.661742 1.14617i
\(87\) −2.45638 + 1.41819i −0.263352 + 0.152046i
\(88\) 2.57999i 0.275028i
\(89\) −13.0755 7.54915i −1.38600 0.800208i −0.393140 0.919479i \(-0.628611\pi\)
−0.992862 + 0.119270i \(0.961945\pi\)
\(90\) −1.68614 + 2.92048i −0.177735 + 0.307846i
\(91\) 0.813859 + 0.469882i 0.0853156 + 0.0492570i
\(92\) −7.47661 + 4.31662i −0.779491 + 0.450039i
\(93\) 6.15253 3.55217i 0.637988 0.368342i
\(94\) −8.60204 4.96639i −0.887233 0.512244i
\(95\) −7.02205 + 12.1625i −0.720447 + 1.24785i
\(96\) −0.866025 0.500000i −0.0883883 0.0510310i
\(97\) 2.45159i 0.248921i 0.992225 + 0.124461i \(0.0397200\pi\)
−0.992225 + 0.124461i \(0.960280\pi\)
\(98\) 3.28025 1.89385i 0.331355 0.191308i
\(99\) 1.29000 2.23434i 0.129650 0.224560i
\(100\) 6.37228 0.637228
\(101\) 18.5855 1.84933 0.924664 0.380783i \(-0.124346\pi\)
0.924664 + 0.380783i \(0.124346\pi\)
\(102\) 1.39614 2.41819i 0.138239 0.239437i
\(103\) 0.348209i 0.0343100i 0.999853 + 0.0171550i \(0.00546088\pi\)
−0.999853 + 0.0171550i \(0.994539\pi\)
\(104\) −0.262169 0.454090i −0.0257078 0.0445272i
\(105\) 6.04410i 0.589843i
\(106\) 1.46868 0.847944i 0.142651 0.0823596i
\(107\) −2.53387 4.38880i −0.244959 0.424281i 0.717161 0.696907i \(-0.245441\pi\)
−0.962120 + 0.272626i \(0.912108\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) −5.99313 3.46014i −0.574038 0.331421i 0.184723 0.982791i \(-0.440861\pi\)
−0.758760 + 0.651370i \(0.774195\pi\)
\(110\) −8.70047 −0.829557
\(111\) 4.67410 + 3.89265i 0.443646 + 0.369474i
\(112\) 1.79229 0.169355
\(113\) 17.1962 + 9.92820i 1.61768 + 0.933967i 0.987519 + 0.157501i \(0.0503437\pi\)
0.630159 + 0.776466i \(0.282990\pi\)
\(114\) −2.08228 3.60662i −0.195024 0.337791i
\(115\) 14.5569 + 25.2132i 1.35744 + 2.35115i
\(116\) −2.45638 + 1.41819i −0.228069 + 0.131676i
\(117\) 0.524338i 0.0484750i
\(118\) 4.89662 + 8.48119i 0.450770 + 0.780757i
\(119\) 5.00458i 0.458769i
\(120\) −1.68614 + 2.92048i −0.153923 + 0.266602i
\(121\) −4.34363 −0.394875
\(122\) −3.88506 −0.351737
\(123\) −0.0459101 + 0.0795187i −0.00413958 + 0.00716996i
\(124\) 6.15253 3.55217i 0.552514 0.318994i
\(125\) 4.62772i 0.413916i
\(126\) 1.55217 + 0.896143i 0.138278 + 0.0798348i
\(127\) 3.29505 5.70720i 0.292389 0.506432i −0.681985 0.731366i \(-0.738883\pi\)
0.974374 + 0.224934i \(0.0722166\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 10.6291 6.13674i 0.935844 0.540310i
\(130\) −1.53132 + 0.884107i −0.134306 + 0.0775413i
\(131\) −9.04963 5.22480i −0.790670 0.456493i 0.0495286 0.998773i \(-0.484228\pi\)
−0.840198 + 0.542279i \(0.817561\pi\)
\(132\) 1.29000 2.23434i 0.112280 0.194474i
\(133\) 6.46410 + 3.73205i 0.560509 + 0.323610i
\(134\) 9.58553i 0.828063i
\(135\) −2.92048 + 1.68614i −0.251355 + 0.145120i
\(136\) 1.39614 2.41819i 0.119718 0.207358i
\(137\) 6.02865 0.515063 0.257531 0.966270i \(-0.417091\pi\)
0.257531 + 0.966270i \(0.417091\pi\)
\(138\) −8.63325 −0.734911
\(139\) −4.65024 + 8.05446i −0.394428 + 0.683170i −0.993028 0.117878i \(-0.962391\pi\)
0.598600 + 0.801048i \(0.295724\pi\)
\(140\) 6.04410i 0.510819i
\(141\) −4.96639 8.60204i −0.418246 0.724423i
\(142\) 9.32456i 0.782499i
\(143\) 1.17155 0.676394i 0.0979699 0.0565629i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 4.78254 + 8.28360i 0.397168 + 0.687916i
\(146\) 7.04988 + 4.07025i 0.583452 + 0.336856i
\(147\) 3.78771 0.312405
\(148\) 4.67410 + 3.89265i 0.384209 + 0.319974i
\(149\) −18.6968 −1.53170 −0.765852 0.643016i \(-0.777683\pi\)
−0.765852 + 0.643016i \(0.777683\pi\)
\(150\) 5.51856 + 3.18614i 0.450588 + 0.260147i
\(151\) 6.17916 + 10.7026i 0.502853 + 0.870967i 0.999995 + 0.00329737i \(0.00104959\pi\)
−0.497142 + 0.867669i \(0.665617\pi\)
\(152\) −2.08228 3.60662i −0.168896 0.292536i
\(153\) 2.41819 1.39614i 0.195499 0.112872i
\(154\) 4.62409i 0.372620i
\(155\) −11.9789 20.7481i −0.962169 1.66653i
\(156\) 0.524338i 0.0419806i
\(157\) −3.57770 + 6.19677i −0.285532 + 0.494556i −0.972738 0.231907i \(-0.925504\pi\)
0.687206 + 0.726462i \(0.258837\pi\)
\(158\) 1.11349 0.0885846
\(159\) 1.69589 0.134493
\(160\) −1.68614 + 2.92048i −0.133301 + 0.230884i
\(161\) 13.4002 7.73663i 1.05609 0.609732i
\(162\) 1.00000i 0.0785674i
\(163\) 9.53025 + 5.50229i 0.746466 + 0.430973i 0.824416 0.565985i \(-0.191504\pi\)
−0.0779493 + 0.996957i \(0.524837\pi\)
\(164\) −0.0459101 + 0.0795187i −0.00358498 + 0.00620937i
\(165\) −7.53483 4.35023i −0.586585 0.338665i
\(166\) 0.548410 0.316625i 0.0425649 0.0245748i
\(167\) −0.339746 + 0.196152i −0.0262903 + 0.0151787i −0.513088 0.858336i \(-0.671498\pi\)
0.486797 + 0.873515i \(0.338165\pi\)
\(168\) 1.55217 + 0.896143i 0.119752 + 0.0691390i
\(169\) −6.36253 + 11.0202i −0.489426 + 0.847710i
\(170\) −8.15482 4.70819i −0.625446 0.361102i
\(171\) 4.16457i 0.318472i
\(172\) 10.6291 6.13674i 0.810465 0.467922i
\(173\) 8.32435 14.4182i 0.632888 1.09619i −0.354070 0.935219i \(-0.615203\pi\)
0.986958 0.160976i \(-0.0514641\pi\)
\(174\) −2.83638 −0.215026
\(175\) −11.4210 −0.863343
\(176\) 1.29000 2.23434i 0.0972372 0.168420i
\(177\) 9.79324i 0.736105i
\(178\) −7.54915 13.0755i −0.565833 0.980051i
\(179\) 2.56092i 0.191412i 0.995410 + 0.0957062i \(0.0305109\pi\)
−0.995410 + 0.0957062i \(0.969489\pi\)
\(180\) −2.92048 + 1.68614i −0.217680 + 0.125678i
\(181\) −12.0951 20.9493i −0.899019 1.55715i −0.828751 0.559618i \(-0.810948\pi\)
−0.0702683 0.997528i \(-0.522386\pi\)
\(182\) 0.469882 + 0.813859i 0.0348300 + 0.0603273i
\(183\) −3.36456 1.94253i −0.248715 0.143596i
\(184\) −8.63325 −0.636452
\(185\) 13.1271 15.7624i 0.965125 1.15887i
\(186\) 7.10433 0.520915
\(187\) 6.23892 + 3.60204i 0.456235 + 0.263407i
\(188\) −4.96639 8.60204i −0.362211 0.627368i
\(189\) 0.896143 + 1.55217i 0.0651848 + 0.112903i
\(190\) −12.1625 + 7.02205i −0.882364 + 0.509433i
\(191\) 5.28962i 0.382743i 0.981518 + 0.191372i \(0.0612936\pi\)
−0.981518 + 0.191372i \(0.938706\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) 10.2448i 0.737439i −0.929541 0.368719i \(-0.879796\pi\)
0.929541 0.368719i \(-0.120204\pi\)
\(194\) −1.22579 + 2.12314i −0.0880069 + 0.152432i
\(195\) −1.76821 −0.126624
\(196\) 3.78771 0.270551
\(197\) −11.5978 + 20.0880i −0.826311 + 1.43121i 0.0746023 + 0.997213i \(0.476231\pi\)
−0.900913 + 0.433999i \(0.857102\pi\)
\(198\) 2.23434 1.29000i 0.158788 0.0916761i
\(199\) 13.9443i 0.988488i −0.869323 0.494244i \(-0.835445\pi\)
0.869323 0.494244i \(-0.164555\pi\)
\(200\) 5.51856 + 3.18614i 0.390221 + 0.225294i
\(201\) −4.79276 + 8.30131i −0.338055 + 0.585529i
\(202\) 16.0955 + 9.29276i 1.13248 + 0.653836i
\(203\) 4.40254 2.54181i 0.308998 0.178400i
\(204\) 2.41819 1.39614i 0.169307 0.0977496i
\(205\) 0.268159 + 0.154822i 0.0187291 + 0.0108132i
\(206\) −0.174104 + 0.301558i −0.0121304 + 0.0210105i
\(207\) −7.47661 4.31662i −0.519661 0.300026i
\(208\) 0.524338i 0.0363563i
\(209\) 9.30506 5.37228i 0.643645 0.371608i
\(210\) 3.02205 5.23434i 0.208541 0.361204i
\(211\) −16.4255 −1.13078 −0.565390 0.824824i \(-0.691274\pi\)
−0.565390 + 0.824824i \(0.691274\pi\)
\(212\) 1.69589 0.116474
\(213\) −4.66228 + 8.07530i −0.319454 + 0.553311i
\(214\) 5.06775i 0.346424i
\(215\) −20.6948 35.8445i −1.41137 2.44457i
\(216\) 1.00000i 0.0680414i
\(217\) −11.0271 + 6.36650i −0.748569 + 0.432186i
\(218\) −3.46014 5.99313i −0.234350 0.405906i
\(219\) 4.07025 + 7.04988i 0.275042 + 0.476386i
\(220\) −7.53483 4.35023i −0.507998 0.293293i
\(221\) 1.46410 0.0984861
\(222\) 2.10157 + 5.70819i 0.141048 + 0.383109i
\(223\) 10.3091 0.690349 0.345175 0.938538i \(-0.387820\pi\)
0.345175 + 0.938538i \(0.387820\pi\)
\(224\) 1.55217 + 0.896143i 0.103708 + 0.0598761i
\(225\) 3.18614 + 5.51856i 0.212409 + 0.367904i
\(226\) 9.92820 + 17.1962i 0.660414 + 1.14387i
\(227\) −15.0957 + 8.71553i −1.00194 + 0.578470i −0.908822 0.417185i \(-0.863017\pi\)
−0.0931182 + 0.995655i \(0.529683\pi\)
\(228\) 4.16457i 0.275805i
\(229\) −1.04543 1.81075i −0.0690843 0.119657i 0.829414 0.558634i \(-0.188674\pi\)
−0.898498 + 0.438977i \(0.855341\pi\)
\(230\) 29.1137i 1.91970i
\(231\) −2.31205 + 4.00458i −0.152121 + 0.263482i
\(232\) −2.83638 −0.186218
\(233\) −5.26097 −0.344657 −0.172329 0.985039i \(-0.555129\pi\)
−0.172329 + 0.985039i \(0.555129\pi\)
\(234\) 0.262169 0.454090i 0.0171385 0.0296848i
\(235\) −29.0085 + 16.7481i −1.89231 + 1.09252i
\(236\) 9.79324i 0.637486i
\(237\) 0.964312 + 0.556746i 0.0626388 + 0.0361645i
\(238\) −2.50229 + 4.33409i −0.162199 + 0.280938i
\(239\) 0.946368 + 0.546386i 0.0612155 + 0.0353428i 0.530295 0.847813i \(-0.322081\pi\)
−0.469080 + 0.883156i \(0.655414\pi\)
\(240\) −2.92048 + 1.68614i −0.188516 + 0.108840i
\(241\) 7.18156 4.14628i 0.462605 0.267085i −0.250534 0.968108i \(-0.580606\pi\)
0.713139 + 0.701023i \(0.247273\pi\)
\(242\) −3.76169 2.17181i −0.241811 0.139610i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −3.36456 1.94253i −0.215394 0.124358i
\(245\) 12.7732i 0.816051i
\(246\) −0.0795187 + 0.0459101i −0.00506993 + 0.00292712i
\(247\) 1.09182 1.89109i 0.0694709 0.120327i
\(248\) 7.10433 0.451126
\(249\) 0.633250 0.0401306
\(250\) 2.31386 4.00772i 0.146341 0.253471i
\(251\) 24.4706i 1.54457i −0.635276 0.772285i \(-0.719114\pi\)
0.635276 0.772285i \(-0.280886\pi\)
\(252\) 0.896143 + 1.55217i 0.0564517 + 0.0977773i
\(253\) 22.2737i 1.40034i
\(254\) 5.70720 3.29505i 0.358101 0.206750i
\(255\) −4.70819 8.15482i −0.294838 0.510675i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 16.7403 + 9.66504i 1.04423 + 0.602889i 0.921030 0.389492i \(-0.127350\pi\)
0.123204 + 0.992381i \(0.460683\pi\)
\(258\) 12.2735 0.764113
\(259\) −8.37734 6.97675i −0.520542 0.433514i
\(260\) −1.76821 −0.109660
\(261\) −2.45638 1.41819i −0.152046 0.0877838i
\(262\) −5.22480 9.04963i −0.322789 0.559088i
\(263\) 1.09182 + 1.89109i 0.0673245 + 0.116609i 0.897723 0.440561i \(-0.145220\pi\)
−0.830398 + 0.557170i \(0.811887\pi\)
\(264\) 2.23434 1.29000i 0.137514 0.0793938i
\(265\) 5.71901i 0.351316i
\(266\) 3.73205 + 6.46410i 0.228827 + 0.396339i
\(267\) 15.0983i 0.924001i
\(268\) −4.79276 + 8.30131i −0.292765 + 0.507083i
\(269\) −28.3942 −1.73123 −0.865613 0.500714i \(-0.833071\pi\)
−0.865613 + 0.500714i \(0.833071\pi\)
\(270\) −3.37228 −0.205231
\(271\) 10.4135 18.0367i 0.632575 1.09565i −0.354448 0.935076i \(-0.615331\pi\)
0.987023 0.160577i \(-0.0513354\pi\)
\(272\) 2.41819 1.39614i 0.146624 0.0846536i
\(273\) 0.939764i 0.0568771i
\(274\) 5.22097 + 3.01433i 0.315410 + 0.182102i
\(275\) −8.22022 + 14.2378i −0.495698 + 0.858574i
\(276\) −7.47661 4.31662i −0.450039 0.259830i
\(277\) −13.0277 + 7.52157i −0.782761 + 0.451927i −0.837408 0.546578i \(-0.815930\pi\)
0.0546467 + 0.998506i \(0.482597\pi\)
\(278\) −8.05446 + 4.65024i −0.483074 + 0.278903i
\(279\) 6.15253 + 3.55217i 0.368342 + 0.212663i
\(280\) 3.02205 5.23434i 0.180602 0.312812i
\(281\) 10.5100 + 6.06796i 0.626975 + 0.361984i 0.779580 0.626303i \(-0.215433\pi\)
−0.152605 + 0.988287i \(0.548766\pi\)
\(282\) 9.93278i 0.591489i
\(283\) 28.5528 16.4849i 1.69729 0.979928i 0.748968 0.662606i \(-0.230549\pi\)
0.948318 0.317323i \(-0.102784\pi\)
\(284\) −4.66228 + 8.07530i −0.276655 + 0.479181i
\(285\) −14.0441 −0.831900
\(286\) 1.35279 0.0799921
\(287\) 0.0822842 0.142520i 0.00485708 0.00841271i
\(288\) 1.00000i 0.0589256i
\(289\) −4.60157 7.97015i −0.270680 0.468832i
\(290\) 9.56508i 0.561681i
\(291\) −2.12314 + 1.22579i −0.124461 + 0.0718574i
\(292\) 4.07025 + 7.04988i 0.238193 + 0.412563i
\(293\) 8.47182 + 14.6736i 0.494929 + 0.857243i 0.999983 0.00584537i \(-0.00186065\pi\)
−0.505054 + 0.863088i \(0.668527\pi\)
\(294\) 3.28025 + 1.89385i 0.191308 + 0.110452i
\(295\) 33.0256 1.92282
\(296\) 2.10157 + 5.70819i 0.122151 + 0.331782i
\(297\) 2.57999 0.149706
\(298\) −16.1919 9.34842i −0.937974 0.541539i
\(299\) −2.26337 3.92027i −0.130894 0.226715i
\(300\) 3.18614 + 5.51856i 0.183952 + 0.318614i
\(301\) −19.0505 + 10.9988i −1.09805 + 0.633960i
\(302\) 12.3583i 0.711141i
\(303\) 9.29276 + 16.0955i 0.533855 + 0.924664i
\(304\) 4.16457i 0.238854i
\(305\) −6.55076 + 11.3462i −0.375095 + 0.649684i
\(306\) 2.79229 0.159624
\(307\) 29.4992 1.68361 0.841805 0.539782i \(-0.181493\pi\)
0.841805 + 0.539782i \(0.181493\pi\)
\(308\) −2.31205 + 4.00458i −0.131741 + 0.228182i
\(309\) −0.301558 + 0.174104i −0.0171550 + 0.00990446i
\(310\) 23.9578i 1.36071i
\(311\) 27.5640 + 15.9141i 1.56301 + 0.902405i 0.996950 + 0.0780420i \(0.0248668\pi\)
0.566061 + 0.824363i \(0.308466\pi\)
\(312\) 0.262169 0.454090i 0.0148424 0.0257078i
\(313\) 18.1636 + 10.4868i 1.02667 + 0.592747i 0.916028 0.401114i \(-0.131377\pi\)
0.110639 + 0.993861i \(0.464710\pi\)
\(314\) −6.19677 + 3.57770i −0.349704 + 0.201902i
\(315\) 5.23434 3.02205i 0.294922 0.170273i
\(316\) 0.964312 + 0.556746i 0.0542468 + 0.0313194i
\(317\) −3.76747 + 6.52546i −0.211602 + 0.366506i −0.952216 0.305425i \(-0.901202\pi\)
0.740614 + 0.671931i \(0.234535\pi\)
\(318\) 1.46868 + 0.847944i 0.0823596 + 0.0475503i
\(319\) 7.31785i 0.409721i
\(320\) −2.92048 + 1.68614i −0.163260 + 0.0942581i
\(321\) 2.53387 4.38880i 0.141427 0.244959i
\(322\) 15.4733 0.862291
\(323\) 11.6287 0.647037
\(324\) 0.500000 0.866025i 0.0277778 0.0481125i
\(325\) 3.34123i 0.185338i
\(326\) 5.50229 + 9.53025i 0.304744 + 0.527831i
\(327\) 6.92027i 0.382692i
\(328\) −0.0795187 + 0.0459101i −0.00439069 + 0.00253496i
\(329\) 8.90120 + 15.4173i 0.490739 + 0.849985i
\(330\) −4.35023 7.53483i −0.239472 0.414778i
\(331\) −25.5204 14.7342i −1.40273 0.809865i −0.408056 0.912957i \(-0.633793\pi\)
−0.994672 + 0.103092i \(0.967126\pi\)
\(332\) 0.633250 0.0347541
\(333\) −1.03408 + 5.99422i −0.0566675 + 0.328481i
\(334\) −0.392305 −0.0214660
\(335\) 27.9943 + 16.1625i 1.52949 + 0.883054i
\(336\) 0.896143 + 1.55217i 0.0488886 + 0.0846776i
\(337\) 10.3077 + 17.8535i 0.561498 + 0.972543i 0.997366 + 0.0725323i \(0.0231081\pi\)
−0.435868 + 0.900011i \(0.643559\pi\)
\(338\) −11.0202 + 6.36253i −0.599422 + 0.346076i
\(339\) 19.8564i 1.07845i
\(340\) −4.70819 8.15482i −0.255337 0.442257i
\(341\) 18.3291i 0.992578i
\(342\) 2.08228 3.60662i 0.112597 0.195024i
\(343\) −19.3347 −1.04397
\(344\) 12.2735 0.661742
\(345\) −14.5569 + 25.2132i −0.783716 + 1.35744i
\(346\) 14.4182 8.32435i 0.775127 0.447520i
\(347\) 32.5286i 1.74623i −0.487515 0.873114i \(-0.662097\pi\)
0.487515 0.873114i \(-0.337903\pi\)
\(348\) −2.45638 1.41819i −0.131676 0.0760230i
\(349\) −12.3855 + 21.4524i −0.662982 + 1.14832i 0.316846 + 0.948477i \(0.397376\pi\)
−0.979828 + 0.199842i \(0.935957\pi\)
\(350\) −9.89084 5.71048i −0.528688 0.305238i
\(351\) 0.454090 0.262169i 0.0242375 0.0139935i
\(352\) 2.23434 1.29000i 0.119091 0.0687571i
\(353\) 28.1999 + 16.2812i 1.50093 + 0.866561i 0.999999 + 0.00107208i \(0.000341254\pi\)
0.500928 + 0.865489i \(0.332992\pi\)
\(354\) −4.89662 + 8.48119i −0.260252 + 0.450770i
\(355\) 27.2322 + 15.7225i 1.44533 + 0.834464i
\(356\) 15.0983i 0.800208i
\(357\) −4.33409 + 2.50229i −0.229385 + 0.132435i
\(358\) −1.28046 + 2.21782i −0.0676745 + 0.117216i
\(359\) −16.5036 −0.871028 −0.435514 0.900182i \(-0.643433\pi\)
−0.435514 + 0.900182i \(0.643433\pi\)
\(360\) −3.37228 −0.177735
\(361\) −0.828185 + 1.43446i −0.0435887 + 0.0754978i
\(362\) 24.1901i 1.27140i
\(363\) −2.17181 3.76169i −0.113991 0.197438i
\(364\) 0.939764i 0.0492570i
\(365\) 23.7742 13.7260i 1.24440 0.718453i
\(366\) −1.94253 3.36456i −0.101538 0.175868i
\(367\) −8.67191 15.0202i −0.452670 0.784048i 0.545881 0.837863i \(-0.316195\pi\)
−0.998551 + 0.0538151i \(0.982862\pi\)
\(368\) −7.47661 4.31662i −0.389745 0.225020i
\(369\) −0.0918203 −0.00477997
\(370\) 19.2496 7.08707i 1.00074 0.368439i
\(371\) −3.03952 −0.157804
\(372\) 6.15253 + 3.55217i 0.318994 + 0.184171i
\(373\) −15.1006 26.1550i −0.781879 1.35425i −0.930846 0.365412i \(-0.880928\pi\)
0.148967 0.988842i \(-0.452405\pi\)
\(374\) 3.60204 + 6.23892i 0.186257 + 0.322607i
\(375\) 4.00772 2.31386i 0.206958 0.119487i
\(376\) 9.93278i 0.512244i
\(377\) −0.743611 1.28797i −0.0382979 0.0663340i
\(378\) 1.79229i 0.0921853i
\(379\) 6.55890 11.3603i 0.336908 0.583542i −0.646942 0.762540i \(-0.723952\pi\)
0.983849 + 0.178998i \(0.0572856\pi\)
\(380\) −14.0441 −0.720447
\(381\) 6.59010 0.337621
\(382\) −2.64481 + 4.58095i −0.135320 + 0.234382i
\(383\) 15.2965 8.83143i 0.781614 0.451265i −0.0553883 0.998465i \(-0.517640\pi\)
0.837002 + 0.547200i \(0.184306\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 13.5046 + 7.79687i 0.688257 + 0.397365i
\(386\) 5.12241 8.87228i 0.260724 0.451587i
\(387\) 10.6291 + 6.13674i 0.540310 + 0.311948i
\(388\) −2.12314 + 1.22579i −0.107786 + 0.0622303i
\(389\) −8.27567 + 4.77796i −0.419593 + 0.242252i −0.694903 0.719103i \(-0.744553\pi\)
0.275310 + 0.961355i \(0.411219\pi\)
\(390\) −1.53132 0.884107i −0.0775413 0.0447685i
\(391\) 12.0533 20.8769i 0.609559 1.05579i
\(392\) 3.28025 + 1.89385i 0.165678 + 0.0956541i
\(393\) 10.4496i 0.527113i
\(394\) −20.0880 + 11.5978i −1.01202 + 0.584290i
\(395\) 1.87750 3.25193i 0.0944674 0.163622i
\(396\) 2.57999 0.129650
\(397\) −22.7510 −1.14184 −0.570921 0.821005i \(-0.693414\pi\)
−0.570921 + 0.821005i \(0.693414\pi\)
\(398\) 6.97217 12.0762i 0.349483 0.605323i
\(399\) 7.46410i 0.373672i
\(400\) 3.18614 + 5.51856i 0.159307 + 0.275928i
\(401\) 9.30548i 0.464694i −0.972633 0.232347i \(-0.925360\pi\)
0.972633 0.232347i \(-0.0746405\pi\)
\(402\) −8.30131 + 4.79276i −0.414032 + 0.239041i
\(403\) 1.86253 + 3.22601i 0.0927795 + 0.160699i
\(404\) 9.29276 + 16.0955i 0.462332 + 0.800783i
\(405\) −2.92048 1.68614i −0.145120 0.0837850i
\(406\) 5.08361 0.252295
\(407\) −14.7271 + 5.42203i −0.729995 + 0.268760i
\(408\) 2.79229 0.138239
\(409\) 3.52502 + 2.03517i 0.174301 + 0.100633i 0.584612 0.811313i \(-0.301247\pi\)
−0.410311 + 0.911946i \(0.634580\pi\)
\(410\) 0.154822 + 0.268159i 0.00764611 + 0.0132435i
\(411\) 3.01433 + 5.22097i 0.148686 + 0.257531i
\(412\) −0.301558 + 0.174104i −0.0148567 + 0.00857751i
\(413\) 17.5523i 0.863692i
\(414\) −4.31662 7.47661i −0.212151 0.367456i
\(415\) 2.13550i 0.104827i
\(416\) 0.262169 0.454090i 0.0128539 0.0222636i
\(417\) −9.30048 −0.455447
\(418\) 10.7446 0.525534
\(419\) −3.32158 + 5.75315i −0.162270 + 0.281060i −0.935682 0.352843i \(-0.885215\pi\)
0.773413 + 0.633903i \(0.218548\pi\)
\(420\) 5.23434 3.02205i 0.255410 0.147461i
\(421\) 37.5689i 1.83100i 0.402323 + 0.915498i \(0.368203\pi\)
−0.402323 + 0.915498i \(0.631797\pi\)
\(422\) −14.2249 8.21277i −0.692459 0.399791i
\(423\) 4.96639 8.60204i 0.241474 0.418246i
\(424\) 1.46868 + 0.847944i 0.0713255 + 0.0411798i
\(425\) −15.4094 + 8.89662i −0.747466 + 0.431549i
\(426\) −8.07530 + 4.66228i −0.391250 + 0.225888i
\(427\) 6.03026 + 3.48157i 0.291825 + 0.168485i
\(428\) 2.53387 4.38880i 0.122479 0.212141i
\(429\) 1.17155 + 0.676394i 0.0565629 + 0.0326566i
\(430\) 41.3896i 1.99599i
\(431\) −19.6529 + 11.3466i −0.946647 + 0.546547i −0.892038 0.451961i \(-0.850725\pi\)
−0.0546090 + 0.998508i \(0.517391\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) −15.6533 −0.752248 −0.376124 0.926569i \(-0.622743\pi\)
−0.376124 + 0.926569i \(0.622743\pi\)
\(434\) −12.7330 −0.611204
\(435\) −4.78254 + 8.28360i −0.229305 + 0.397168i
\(436\) 6.92027i 0.331421i
\(437\) −17.9769 31.1369i −0.859951 1.48948i
\(438\) 8.14050i 0.388968i
\(439\) −26.6156 + 15.3665i −1.27029 + 0.733403i −0.975043 0.222017i \(-0.928736\pi\)
−0.295249 + 0.955420i \(0.595403\pi\)
\(440\) −4.35023 7.53483i −0.207389 0.359209i
\(441\) 1.89385 + 3.28025i 0.0901835 + 0.156202i
\(442\) 1.26795 + 0.732051i 0.0603102 + 0.0348201i
\(443\) −6.42649 −0.305332 −0.152666 0.988278i \(-0.548786\pi\)
−0.152666 + 0.988278i \(0.548786\pi\)
\(444\) −1.03408 + 5.99422i −0.0490755 + 0.284473i
\(445\) −50.9157 −2.41364
\(446\) 8.92795 + 5.15456i 0.422751 + 0.244075i
\(447\) −9.34842 16.1919i −0.442165 0.765852i
\(448\) 0.896143 + 1.55217i 0.0423388 + 0.0733330i
\(449\) 10.9328 6.31205i 0.515950 0.297884i −0.219326 0.975652i \(-0.570386\pi\)
0.735276 + 0.677768i \(0.237053\pi\)
\(450\) 6.37228i 0.300392i
\(451\) −0.118448 0.205158i −0.00557749 0.00966050i
\(452\) 19.8564i 0.933967i
\(453\) −6.17916 + 10.7026i −0.290322 + 0.502853i
\(454\) −17.4311 −0.818081
\(455\) 3.16915 0.148572
\(456\) 2.08228 3.60662i 0.0975119 0.168896i
\(457\) 18.3977 10.6219i 0.860607 0.496871i −0.00360873 0.999993i \(-0.501149\pi\)
0.864215 + 0.503122i \(0.167815\pi\)
\(458\) 2.09087i 0.0976999i
\(459\) 2.41819 + 1.39614i 0.112872 + 0.0651664i
\(460\) −14.5569 + 25.2132i −0.678718 + 1.17557i
\(461\) −7.07931 4.08724i −0.329716 0.190362i 0.325999 0.945370i \(-0.394299\pi\)
−0.655715 + 0.755008i \(0.727633\pi\)
\(462\) −4.00458 + 2.31205i −0.186310 + 0.107566i
\(463\) 17.0516 9.84472i 0.792453 0.457523i −0.0483725 0.998829i \(-0.515403\pi\)
0.840825 + 0.541306i \(0.182070\pi\)
\(464\) −2.45638 1.41819i −0.114035 0.0658379i
\(465\) 11.9789 20.7481i 0.555508 0.962169i
\(466\) −4.55613 2.63048i −0.211059 0.121855i
\(467\) 4.69452i 0.217236i −0.994084 0.108618i \(-0.965357\pi\)
0.994084 0.108618i \(-0.0346426\pi\)
\(468\) 0.454090 0.262169i 0.0209903 0.0121188i
\(469\) 8.59001 14.8783i 0.396650 0.687017i
\(470\) −33.4961 −1.54506
\(471\) −7.15541 −0.329704
\(472\) −4.89662 + 8.48119i −0.225385 + 0.390379i
\(473\) 31.6655i 1.45598i
\(474\) 0.556746 + 0.964312i 0.0255722 + 0.0442923i
\(475\) 26.5378i 1.21764i
\(476\) −4.33409 + 2.50229i −0.198653 + 0.114692i
\(477\) 0.847944 + 1.46868i 0.0388247 + 0.0672463i
\(478\) 0.546386 + 0.946368i 0.0249911 + 0.0432859i
\(479\) 6.83180 + 3.94434i 0.312153 + 0.180222i 0.647890 0.761734i \(-0.275652\pi\)
−0.335736 + 0.941956i \(0.608985\pi\)
\(480\) −3.37228 −0.153923
\(481\) −2.04107 + 2.45081i −0.0930646 + 0.111747i
\(482\) 8.29255 0.377715
\(483\) 13.4002 + 7.73663i 0.609732 + 0.352029i
\(484\) −2.17181 3.76169i −0.0987188 0.170986i
\(485\) 4.13373 + 7.15982i 0.187703 + 0.325111i
\(486\) 0.866025 0.500000i 0.0392837 0.0226805i
\(487\) 2.53780i 0.114999i 0.998346 + 0.0574994i \(0.0183127\pi\)
−0.998346 + 0.0574994i \(0.981687\pi\)
\(488\) −1.94253 3.36456i −0.0879342 0.152306i
\(489\) 11.0046i 0.497644i
\(490\) 6.38661 11.0619i 0.288518 0.499727i
\(491\) −10.1414 −0.457677 −0.228839 0.973464i \(-0.573493\pi\)
−0.228839 + 0.973464i \(0.573493\pi\)
\(492\) −0.0918203 −0.00413958
\(493\) 3.96000 6.85892i 0.178349 0.308910i
\(494\) 1.89109 1.09182i 0.0850841 0.0491233i
\(495\) 8.70047i 0.391057i
\(496\) 6.15253 + 3.55217i 0.276257 + 0.159497i
\(497\) 8.35614 14.4733i 0.374824 0.649214i
\(498\) 0.548410 + 0.316625i 0.0245748 + 0.0141883i
\(499\) −26.4004 + 15.2423i −1.18184 + 0.682338i −0.956440 0.291928i \(-0.905703\pi\)
−0.225403 + 0.974266i \(0.572370\pi\)
\(500\) 4.00772 2.31386i 0.179231 0.103479i
\(501\) −0.339746 0.196152i −0.0151787 0.00876344i
\(502\) 12.2353 21.1921i 0.546088 0.945852i
\(503\) −20.2013 11.6632i −0.900732 0.520038i −0.0232942 0.999729i \(-0.507415\pi\)
−0.877438 + 0.479691i \(0.840749\pi\)
\(504\) 1.79229i 0.0798348i
\(505\) 54.2787 31.3378i 2.41537 1.39451i
\(506\) 11.1369 19.2896i 0.495094 0.857528i
\(507\) −12.7251 −0.565140
\(508\) 6.59010 0.292389
\(509\) −1.02721 + 1.77919i −0.0455305 + 0.0788611i −0.887893 0.460051i \(-0.847831\pi\)
0.842362 + 0.538912i \(0.181164\pi\)
\(510\) 9.41638i 0.416964i
\(511\) −7.29505 12.6354i −0.322714 0.558957i
\(512\) 1.00000i 0.0441942i
\(513\) 3.60662 2.08228i 0.159236 0.0919351i
\(514\) 9.66504 + 16.7403i 0.426307 + 0.738385i
\(515\) 0.587129 + 1.01694i 0.0258720 + 0.0448116i
\(516\) 10.6291 + 6.13674i 0.467922 + 0.270155i
\(517\) 25.6265 1.12705
\(518\) −3.76661 10.2307i −0.165495 0.449512i
\(519\) 16.6487 0.730797
\(520\) −1.53132 0.884107i −0.0671528 0.0387707i
\(521\) −5.21324 9.02960i −0.228396 0.395594i 0.728937 0.684581i \(-0.240015\pi\)
−0.957333 + 0.288987i \(0.906682\pi\)
\(522\) −1.41819 2.45638i −0.0620726 0.107513i
\(523\) −11.7529 + 6.78556i −0.513920 + 0.296712i −0.734443 0.678670i \(-0.762557\pi\)
0.220524 + 0.975382i \(0.429223\pi\)
\(524\) 10.4496i 0.456493i
\(525\) −5.71048 9.89084i −0.249226 0.431672i
\(526\) 2.18364i 0.0952113i
\(527\) −9.91867 + 17.1796i −0.432064 + 0.748357i
\(528\) 2.57999 0.112280
\(529\) −51.5330 −2.24057
\(530\) 2.85950 4.95281i 0.124209 0.215136i
\(531\) −8.48119 + 4.89662i −0.368052 + 0.212495i
\(532\) 7.46410i 0.323610i
\(533\) −0.0416947 0.0240724i −0.00180600 0.00104269i
\(534\) 7.54915 13.0755i 0.326684 0.565833i
\(535\) −14.8003 8.54494i −0.639871 0.369430i
\(536\) −8.30131 + 4.79276i −0.358562 + 0.207016i
\(537\) −2.21782 + 1.28046i −0.0957062 + 0.0552560i
\(538\) −24.5901 14.1971i −1.06015 0.612081i
\(539\) −4.88613 + 8.46303i −0.210461 + 0.364528i
\(540\) −2.92048 1.68614i −0.125678 0.0725599i
\(541\) 40.1072i 1.72434i 0.506617 + 0.862171i \(0.330896\pi\)
−0.506617 + 0.862171i \(0.669104\pi\)
\(542\) 18.0367 10.4135i 0.774743 0.447298i
\(543\) 12.0951 20.9493i 0.519049 0.899019i
\(544\) 2.79229 0.119718
\(545\) −23.3371 −0.999652
\(546\) −0.469882 + 0.813859i −0.0201091 + 0.0348300i
\(547\) 36.1009i 1.54356i −0.635888 0.771782i \(-0.719366\pi\)
0.635888 0.771782i \(-0.280634\pi\)
\(548\) 3.01433 + 5.22097i 0.128766 + 0.223029i
\(549\) 3.88506i 0.165810i
\(550\) −14.2378 + 8.22022i −0.607104 + 0.350512i
\(551\) −5.90616 10.2298i −0.251611 0.435802i
\(552\) −4.31662 7.47661i −0.183728 0.318226i
\(553\) −1.72832 0.997848i −0.0734958 0.0424328i
\(554\) −15.0431 −0.639122
\(555\) 20.2142 + 3.48722i 0.858045 + 0.148024i
\(556\) −9.30048 −0.394428
\(557\) 14.8988 + 8.60183i 0.631283 + 0.364471i 0.781249 0.624220i \(-0.214583\pi\)
−0.149966 + 0.988691i \(0.547916\pi\)
\(558\) 3.55217 + 6.15253i 0.150375 + 0.260457i
\(559\) 3.21772 + 5.57326i 0.136095 + 0.235724i
\(560\) 5.23434 3.02205i 0.221191 0.127705i
\(561\) 7.20408i 0.304157i
\(562\) 6.06796 + 10.5100i 0.255961 + 0.443338i
\(563\) 31.5884i 1.33129i −0.746268 0.665646i \(-0.768156\pi\)
0.746268 0.665646i \(-0.231844\pi\)
\(564\) 4.96639 8.60204i 0.209123 0.362211i
\(565\) 66.9614 2.81709
\(566\) 32.9699 1.38583
\(567\) −0.896143 + 1.55217i −0.0376345 + 0.0651848i
\(568\) −8.07530 + 4.66228i −0.338832 + 0.195625i
\(569\) 23.9923i 1.00581i −0.864342 0.502905i \(-0.832264\pi\)
0.864342 0.502905i \(-0.167736\pi\)
\(570\) −12.1625 7.02205i −0.509433 0.294121i
\(571\) 4.63022 8.01977i 0.193769 0.335617i −0.752728 0.658332i \(-0.771262\pi\)
0.946496 + 0.322715i \(0.104596\pi\)
\(572\) 1.17155 + 0.676394i 0.0489849 + 0.0282815i
\(573\) −4.58095 + 2.64481i −0.191372 + 0.110489i
\(574\) 0.142520 0.0822842i 0.00594868 0.00343447i
\(575\) 47.6431 + 27.5067i 1.98685 + 1.14711i
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 10.7441 + 6.20313i 0.447284 + 0.258240i 0.706683 0.707531i \(-0.250191\pi\)
−0.259398 + 0.965770i \(0.583524\pi\)
\(578\) 9.20313i 0.382800i
\(579\) 8.87228 5.12241i 0.368719 0.212880i
\(580\) −4.78254 + 8.28360i −0.198584 + 0.343958i
\(581\) −1.13496 −0.0470863
\(582\) −2.45159 −0.101622
\(583\) −2.18769 + 3.78919i −0.0906048 + 0.156932i
\(584\) 8.14050i 0.336856i
\(585\) −0.884107 1.53132i −0.0365533 0.0633122i
\(586\) 16.9436i 0.699936i
\(587\) 3.08847 1.78313i 0.127475 0.0735976i −0.434907 0.900476i \(-0.643219\pi\)
0.562381 + 0.826878i \(0.309885\pi\)
\(588\) 1.89385 + 3.28025i 0.0781012 + 0.135275i
\(589\) 14.7932 + 25.6226i 0.609545 + 1.05576i
\(590\) 28.6010 + 16.5128i 1.17748 + 0.679820i
\(591\) −23.1957 −0.954142
\(592\) −1.03408 + 5.99422i −0.0425006 + 0.246361i
\(593\) −31.7969 −1.30574 −0.652870 0.757470i \(-0.726435\pi\)
−0.652870 + 0.757470i \(0.726435\pi\)
\(594\) 2.23434 + 1.29000i 0.0916761 + 0.0529292i
\(595\) 8.43843 + 14.6158i 0.345942 + 0.599189i
\(596\) −9.34842 16.1919i −0.382926 0.663248i
\(597\) 12.0762 6.97217i 0.494244 0.285352i
\(598\) 4.52674i 0.185112i
\(599\) 1.71000 + 2.96181i 0.0698688 + 0.121016i 0.898843 0.438270i \(-0.144409\pi\)
−0.828975 + 0.559286i \(0.811075\pi\)
\(600\) 6.37228i 0.260147i
\(601\) 0.808693 1.40070i 0.0329873 0.0571356i −0.849060 0.528296i \(-0.822831\pi\)
0.882048 + 0.471160i \(0.156165\pi\)
\(602\) −21.9976 −0.896555
\(603\) −9.58553 −0.390353
\(604\) −6.17916 + 10.7026i −0.251426 + 0.435483i
\(605\) −12.6855 + 7.32397i −0.515738 + 0.297762i
\(606\) 18.5855i 0.754985i
\(607\) 31.1045 + 17.9582i 1.26249 + 0.728900i 0.973556 0.228448i \(-0.0733652\pi\)
0.288936 + 0.957348i \(0.406698\pi\)
\(608\) 2.08228 3.60662i 0.0844478 0.146268i
\(609\) 4.40254 + 2.54181i 0.178400 + 0.102999i
\(610\) −11.3462 + 6.55076i −0.459396 + 0.265232i
\(611\) 4.51038 2.60407i 0.182470 0.105349i
\(612\) 2.41819 + 1.39614i 0.0977496 + 0.0564358i
\(613\) −8.78552 + 15.2170i −0.354844 + 0.614607i −0.987091 0.160159i \(-0.948799\pi\)
0.632248 + 0.774766i \(0.282133\pi\)
\(614\) 25.5471 + 14.7496i 1.03100 + 0.595246i
\(615\) 0.309644i 0.0124860i
\(616\) −4.00458 + 2.31205i −0.161349 + 0.0931550i
\(617\) 2.32361 4.02460i 0.0935448 0.162024i −0.815456 0.578820i \(-0.803513\pi\)
0.909000 + 0.416795i \(0.136847\pi\)
\(618\) −0.348209 −0.0140070
\(619\) 20.3209 0.816767 0.408384 0.912810i \(-0.366093\pi\)
0.408384 + 0.912810i \(0.366093\pi\)
\(620\) 11.9789 20.7481i 0.481084 0.833263i
\(621\) 8.63325i 0.346440i
\(622\) 15.9141 + 27.5640i 0.638097 + 1.10522i
\(623\) 27.0605i 1.08416i
\(624\) 0.454090 0.262169i 0.0181781 0.0104952i
\(625\) 8.12772 + 14.0776i 0.325109 + 0.563105i
\(626\) 10.4868 + 18.1636i 0.419135 + 0.725964i
\(627\) 9.30506 + 5.37228i 0.371608 + 0.214548i
\(628\) −7.15541 −0.285532
\(629\) −16.7376 2.88746i −0.667371 0.115131i
\(630\) 6.04410 0.240803
\(631\) −4.25629 2.45737i −0.169440 0.0978264i 0.412882 0.910785i \(-0.364522\pi\)
−0.582322 + 0.812958i \(0.697856\pi\)
\(632\) 0.556746 + 0.964312i 0.0221462 + 0.0383583i
\(633\) −8.21277 14.2249i −0.326428 0.565390i
\(634\) −6.52546 + 3.76747i −0.259159 + 0.149625i
\(635\) 22.2237i 0.881920i
\(636\) 0.847944 + 1.46868i 0.0336231 + 0.0582370i
\(637\) 1.98604i 0.0786897i
\(638\) 3.65893 6.33745i 0.144858 0.250902i
\(639\) −9.32456 −0.368874
\(640\) −3.37228 −0.133301
\(641\) −2.20037 + 3.81115i −0.0869093 + 0.150531i −0.906203 0.422842i \(-0.861032\pi\)
0.819294 + 0.573374i \(0.194366\pi\)
\(642\) 4.38880 2.53387i 0.173212 0.100004i
\(643\) 2.06482i 0.0814284i −0.999171 0.0407142i \(-0.987037\pi\)
0.999171 0.0407142i \(-0.0129633\pi\)
\(644\) 13.4002 + 7.73663i 0.528043 + 0.304866i
\(645\) 20.6948 35.8445i 0.814857 1.41137i
\(646\) 10.0707 + 5.81433i 0.396227 + 0.228762i
\(647\) 19.4948 11.2553i 0.766419 0.442492i −0.0651768 0.997874i \(-0.520761\pi\)
0.831596 + 0.555382i \(0.187428\pi\)
\(648\) 0.866025 0.500000i 0.0340207 0.0196419i
\(649\) −21.8814 12.6332i −0.858921 0.495898i
\(650\) −1.67061 + 2.89359i −0.0655269 + 0.113496i
\(651\) −11.0271 6.36650i −0.432186 0.249523i
\(652\) 11.0046i 0.430973i
\(653\) 5.13830 2.96660i 0.201077 0.116092i −0.396081 0.918216i \(-0.629630\pi\)
0.597158 + 0.802124i \(0.296297\pi\)
\(654\) 3.46014 5.99313i 0.135302 0.234350i
\(655\) −35.2390 −1.37690
\(656\) −0.0918203 −0.00358498
\(657\) −4.07025 + 7.04988i −0.158795 + 0.275042i
\(658\) 17.8024i 0.694010i
\(659\) 1.21565 + 2.10556i 0.0473548 + 0.0820209i 0.888731 0.458429i \(-0.151588\pi\)
−0.841376 + 0.540450i \(0.818254\pi\)
\(660\) 8.70047i 0.338665i
\(661\) 9.45095 5.45651i 0.367599 0.212234i −0.304810 0.952413i \(-0.598593\pi\)
0.672409 + 0.740180i \(0.265260\pi\)
\(662\) −14.7342 25.5204i −0.572661 0.991878i
\(663\) 0.732051 + 1.26795i 0.0284305 + 0.0492431i
\(664\) 0.548410 + 0.316625i 0.0212824 + 0.0122874i
\(665\) 25.1711 0.976091
\(666\) −3.89265 + 4.67410i −0.150837 + 0.181118i
\(667\) −24.4872 −0.948148
\(668\) −0.339746 0.196152i −0.0131452 0.00758937i
\(669\) 5.15456 + 8.92795i 0.199287 + 0.345175i
\(670\) 16.1625 + 27.9943i 0.624414 + 1.08152i
\(671\) 8.68054 5.01171i 0.335109 0.193475i
\(672\) 1.79229i 0.0691390i
\(673\) −11.3927 19.7328i −0.439157 0.760643i 0.558467 0.829526i \(-0.311390\pi\)
−0.997625 + 0.0688837i \(0.978056\pi\)
\(674\) 20.6155i 0.794078i
\(675\) −3.18614 + 5.51856i −0.122635 + 0.212409i
\(676\) −12.7251 −0.489426
\(677\) −46.1470 −1.77357 −0.886786 0.462180i \(-0.847067\pi\)
−0.886786 + 0.462180i \(0.847067\pi\)
\(678\) −9.92820 + 17.1962i −0.381290 + 0.660414i
\(679\) 3.80527 2.19698i 0.146033 0.0843122i
\(680\) 9.41638i 0.361102i
\(681\) −15.0957 8.71553i −0.578470 0.333980i
\(682\) −9.16457 + 15.8735i −0.350929 + 0.607828i
\(683\) 3.85698 + 2.22683i 0.147583 + 0.0852072i 0.571973 0.820272i \(-0.306178\pi\)
−0.424390 + 0.905480i \(0.639511\pi\)
\(684\) 3.60662 2.08228i 0.137903 0.0796181i
\(685\) 17.6066 10.1652i 0.672712 0.388391i
\(686\) −16.7443 9.66733i −0.639301 0.369101i
\(687\) 1.04543 1.81075i 0.0398858 0.0690843i
\(688\) 10.6291 + 6.13674i 0.405232 + 0.233961i
\(689\) 0.889218i 0.0338765i
\(690\) −25.2132 + 14.5569i −0.959852 + 0.554171i
\(691\) −3.87447 + 6.71078i −0.147392 + 0.255290i −0.930263 0.366894i \(-0.880421\pi\)
0.782871 + 0.622184i \(0.213755\pi\)
\(692\) 16.6487 0.632888
\(693\) −4.62409 −0.175655
\(694\) 16.2643 28.1706i 0.617385 1.06934i
\(695\) 31.3639i 1.18970i
\(696\) −1.41819 2.45638i −0.0537564 0.0931088i
\(697\) 0.256389i 0.00971141i
\(698\) −21.4524 + 12.3855i −0.811984 + 0.468799i
\(699\) −2.63048 4.55613i −0.0994940 0.172329i
\(700\) −5.71048 9.89084i −0.215836 0.373839i
\(701\) −24.7024 14.2619i −0.932996 0.538665i −0.0452379 0.998976i \(-0.514405\pi\)
−0.887758 + 0.460311i \(0.847738\pi\)
\(702\) 0.524338 0.0197899
\(703\) −16.2112 + 19.4656i −0.611418 + 0.734160i
\(704\) 2.57999 0.0972372
\(705\) −29.0085 16.7481i −1.09252 0.630769i
\(706\) 16.2812 + 28.1999i 0.612751 + 1.06132i
\(707\) −16.6553 28.8478i −0.626387 1.08493i
\(708\) −8.48119 + 4.89662i −0.318743 + 0.184026i
\(709\) 37.6954i 1.41568i −0.706373 0.707840i \(-0.749670\pi\)
0.706373 0.707840i \(-0.250330\pi\)
\(710\) 15.7225 + 27.2322i 0.590055 + 1.02201i
\(711\) 1.11349i 0.0417592i
\(712\) 7.54915 13.0755i 0.282916 0.490026i
\(713\) 61.3335 2.29696
\(714\) −5.00458 −0.187292
\(715\) 2.28099 3.95079i 0.0853043 0.147751i
\(716\) −2.21782 + 1.28046i −0.0828840 + 0.0478531i
\(717\) 1.09277i 0.0408103i
\(718\) −14.2926 8.25181i −0.533393 0.307955i
\(719\) 7.32216 12.6823i 0.273070 0.472972i −0.696576 0.717483i \(-0.745294\pi\)
0.969646 + 0.244511i \(0.0786275\pi\)
\(720\) −2.92048 1.68614i −0.108840 0.0628388i
\(721\) 0.540478 0.312045i 0.0201285 0.0116212i
\(722\) −1.43446 + 0.828185i −0.0533850 + 0.0308219i
\(723\) 7.18156 + 4.14628i 0.267085 + 0.154202i
\(724\) 12.0951 20.9493i 0.449509 0.778573i
\(725\) 15.6527 + 9.03712i 0.581328 + 0.335630i
\(726\) 4.34363i 0.161207i
\(727\) −13.9482 + 8.05301i −0.517311 + 0.298669i −0.735834 0.677162i \(-0.763209\pi\)
0.218523 + 0.975832i \(0.429876\pi\)
\(728\) −0.469882 + 0.813859i −0.0174150 + 0.0301636i
\(729\) 1.00000 0.0370370
\(730\) 27.4520 1.01605
\(731\) −17.1355 + 29.6796i −0.633781 + 1.09774i
\(732\) 3.88506i 0.143596i
\(733\) 18.9483 + 32.8195i 0.699872 + 1.21221i 0.968510 + 0.248973i \(0.0800931\pi\)
−0.268638 + 0.963241i \(0.586574\pi\)
\(734\) 17.3438i 0.640172i
\(735\) 11.0619 6.38661i 0.408025 0.235574i
\(736\) −4.31662 7.47661i −0.159113 0.275592i
\(737\) −12.3653 21.4173i −0.455482 0.788917i
\(738\) −0.0795187 0.0459101i −0.00292712 0.00168998i
\(739\) 19.1508 0.704475 0.352237 0.935911i \(-0.385421\pi\)
0.352237 + 0.935911i \(0.385421\pi\)
\(740\) 20.2142 + 3.48722i 0.743089 + 0.128193i
\(741\) 2.18364 0.0802180
\(742\) −2.63230 1.51976i −0.0966347 0.0557921i
\(743\) 6.75117 + 11.6934i 0.247676 + 0.428988i 0.962881 0.269927i \(-0.0869997\pi\)
−0.715204 + 0.698915i \(0.753666\pi\)
\(744\) 3.55217 + 6.15253i 0.130229 + 0.225563i
\(745\) −54.6038 + 31.5255i −2.00053 + 1.15500i
\(746\) 30.2012i 1.10574i
\(747\) 0.316625 + 0.548410i 0.0115847 + 0.0200653i
\(748\) 7.20408i 0.263407i
\(749\) −4.54143 + 7.86599i −0.165940 + 0.287417i
\(750\) 4.62772 0.168980
\(751\) −3.32765 −0.121428 −0.0607139 0.998155i \(-0.519338\pi\)
−0.0607139 + 0.998155i \(0.519338\pi\)
\(752\) 4.96639 8.60204i 0.181106 0.313684i
\(753\) 21.1921 12.2353i 0.772285 0.445879i
\(754\) 1.48722i 0.0541615i
\(755\) 36.0922 + 20.8379i 1.31353 + 0.758368i
\(756\) −0.896143 + 1.55217i −0.0325924 + 0.0564517i
\(757\) 29.5828 + 17.0796i 1.07521 + 0.620770i 0.929599 0.368572i \(-0.120153\pi\)
0.145607 + 0.989343i \(0.453487\pi\)
\(758\) 11.3603 6.55890i 0.412626 0.238230i
\(759\) 19.2896 11.1369i 0.700169 0.404243i
\(760\) −12.1625 7.02205i −0.441182 0.254716i
\(761\) −18.8763 + 32.6946i −0.684264 + 1.18518i 0.289403 + 0.957207i \(0.406543\pi\)
−0.973667 + 0.227973i \(0.926790\pi\)
\(762\) 5.70720 + 3.29505i 0.206750 + 0.119367i
\(763\) 12.4031i 0.449023i
\(764\) −4.58095 + 2.64481i −0.165733 + 0.0956859i
\(765\) 4.70819 8.15482i 0.170225 0.294838i
\(766\) 17.6629 0.638185
\(767\) −5.13496 −0.185413
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) 19.4434i 0.701146i −0.936535 0.350573i \(-0.885987\pi\)
0.936535 0.350573i \(-0.114013\pi\)
\(770\) 7.79687 + 13.5046i 0.280980 + 0.486671i
\(771\) 19.3301i 0.696156i
\(772\) 8.87228 5.12241i 0.319320 0.184360i
\(773\) −3.99781 6.92441i −0.143791 0.249054i 0.785130 0.619331i \(-0.212596\pi\)
−0.928921 + 0.370277i \(0.879263\pi\)
\(774\) 6.13674 + 10.6291i 0.220581 + 0.382057i
\(775\) −39.2057 22.6354i −1.40831 0.813088i
\(776\) −2.45159 −0.0880069
\(777\) 1.85338 10.7434i 0.0664895 0.385416i
\(778\) −9.55592 −0.342596
\(779\) −0.331161 0.191196i −0.0118651 0.00685031i
\(780\) −0.884107 1.53132i −0.0316561 0.0548300i
\(781\) −12.0287 20.8342i −0.430419 0.745508i
\(782\) 20.8769 12.0533i 0.746555 0.431024i
\(783\) 2.83638i 0.101364i
\(784\) 1.89385 + 3.28025i 0.0676376 + 0.117152i
\(785\) 24.1301i 0.861238i
\(786\) 5.22480 9.04963i 0.186363 0.322789i
\(787\) 6.17948 0.220275 0.110137 0.993916i \(-0.464871\pi\)
0.110137 + 0.993916i \(0.464871\pi\)
\(788\) −23.1957 −0.826311
\(789\) −1.09182 + 1.89109i −0.0388698 + 0.0673245i
\(790\) 3.25193 1.87750i 0.115699 0.0667986i
\(791\) 35.5884i 1.26538i
\(792\) 2.23434 + 1.29000i 0.0793938 + 0.0458381i
\(793\) 1.01854 1.76417i 0.0361695 0.0626474i
\(794\) −19.7030 11.3755i −0.699233 0.403702i
\(795\) 4.95281 2.85950i 0.175658 0.101416i
\(796\) 12.0762 6.97217i 0.428028 0.247122i
\(797\) −22.4298 12.9499i −0.794506 0.458708i 0.0470407 0.998893i \(-0.485021\pi\)
−0.841546 + 0.540185i \(0.818354\pi\)
\(798\) −3.73205 + 6.46410i −0.132113 + 0.228827i
\(799\) 24.0194 + 13.8676i 0.849744 + 0.490600i
\(800\) 6.37228i 0.225294i
\(801\) 13.0755 7.54915i 0.462001 0.266736i
\(802\) 4.65274 8.05879i 0.164294 0.284566i
\(803\) −21.0024 −0.741160
\(804\) −9.58553 −0.338055
\(805\) 26.0901 45.1894i 0.919555 1.59272i
\(806\) 3.72507i 0.131210i
\(807\) −14.1971 24.5901i −0.499762 0.865613i
\(808\) 18.5855i 0.653836i
\(809\) −9.91103 + 5.72214i −0.348453 + 0.201180i −0.664004 0.747729i \(-0.731144\pi\)
0.315550 + 0.948909i \(0.397811\pi\)
\(810\) −1.68614 2.92048i −0.0592449 0.102615i
\(811\) −12.6964 21.9908i −0.445832 0.772203i 0.552278 0.833660i \(-0.313759\pi\)
−0.998110 + 0.0614570i \(0.980425\pi\)
\(812\) 4.40254 + 2.54181i 0.154499 + 0.0891999i
\(813\) 20.8270 0.730435
\(814\) −15.4651 2.66793i −0.542050 0.0935109i
\(815\) 37.1105 1.29993
\(816\) 2.41819 + 1.39614i 0.0846536 + 0.0488748i
\(817\) 25.5569 + 44.2658i 0.894122 + 1.54866i
\(818\) 2.03517 + 3.52502i 0.0711582 + 0.123250i
\(819\) −0.813859 + 0.469882i −0.0284385 + 0.0164190i
\(820\) 0.309644i 0.0108132i
\(821\) 16.9192 + 29.3050i 0.590486 + 1.02275i 0.994167 + 0.107851i \(0.0343971\pi\)
−0.403681 + 0.914900i \(0.632270\pi\)
\(822\) 6.02865i 0.210273i
\(823\) −4.97603 + 8.61873i −0.173453 + 0.300430i −0.939625 0.342206i \(-0.888826\pi\)
0.766172 + 0.642636i \(0.222159\pi\)
\(824\) −0.348209 −0.0121304
\(825\) −16.4404 −0.572383
\(826\) 8.77615 15.2007i 0.305361 0.528901i
\(827\) −22.5062 + 12.9940i −0.782618 + 0.451845i −0.837357 0.546656i \(-0.815901\pi\)
0.0547394 + 0.998501i \(0.482567\pi\)
\(828\) 8.63325i 0.300026i
\(829\) −29.0942 16.7976i −1.01048 0.583404i −0.0991512 0.995072i \(-0.531613\pi\)
−0.911334 + 0.411669i \(0.864946\pi\)
\(830\) 1.06775 1.84939i 0.0370621 0.0641934i
\(831\) −13.0277 7.52157i −0.451927 0.260920i
\(832\) 0.454090 0.262169i 0.0157427 0.00908907i
\(833\) −9.15940 + 5.28818i −0.317354 + 0.183225i
\(834\) −8.05446 4.65024i −0.278903 0.161025i
\(835\) −0.661481 + 1.14572i −0.0228915 + 0.0396492i
\(836\) 9.30506 + 5.37228i 0.321822 + 0.185804i
\(837\) 7.10433i 0.245562i
\(838\) −5.75315 + 3.32158i −0.198739 + 0.114742i
\(839\) 9.83733 17.0388i 0.339622 0.588243i −0.644739 0.764403i \(-0.723034\pi\)
0.984362 + 0.176159i \(0.0563674\pi\)
\(840\) 6.04410 0.208541
\(841\) 20.9549 0.722584
\(842\) −18.7844 + 32.5356i −0.647355 + 1.12125i
\(843\) 12.1359i 0.417983i
\(844\) −8.21277 14.2249i −0.282695 0.489642i
\(845\) 42.9125i 1.47624i
\(846\) 8.60204 4.96639i 0.295744 0.170748i
\(847\) 3.89252 + 6.74203i 0.133748 + 0.231659i
\(848\) 0.847944 + 1.46868i 0.0291185 + 0.0504347i
\(849\) 28.5528 + 16.4849i 0.979928 + 0.565762i
\(850\) −17.7932 −0.610303
\(851\) 18.1433 + 49.2802i 0.621946 + 1.68930i
\(852\) −9.32456 −0.319454
\(853\) −30.4004 17.5517i −1.04089 0.600959i −0.120806 0.992676i \(-0.538548\pi\)
−0.920086 + 0.391717i \(0.871881\pi\)
\(854\) 3.48157 + 6.03026i 0.119137 + 0.206351i
\(855\) −7.02205 12.1625i −0.240149 0.415950i
\(856\) 4.38880 2.53387i 0.150006 0.0866060i
\(857\) 30.8848i 1.05501i −0.849553 0.527503i \(-0.823128\pi\)
0.849553 0.527503i \(-0.176872\pi\)
\(858\) 0.676394 + 1.17155i 0.0230917 + 0.0399960i
\(859\) 39.7916i 1.35767i −0.734290 0.678836i \(-0.762485\pi\)
0.734290 0.678836i \(-0.237515\pi\)
\(860\) 20.6948 35.8445i 0.705687 1.22229i
\(861\) 0.164568 0.00560847
\(862\) −22.6932 −0.772934
\(863\) −19.5249 + 33.8181i −0.664634 + 1.15118i 0.314750 + 0.949175i \(0.398079\pi\)
−0.979384 + 0.202006i \(0.935254\pi\)
\(864\) 0.866025 0.500000i 0.0294628 0.0170103i
\(865\) 56.1441i 1.90896i
\(866\) −13.5561 7.82664i −0.460656 0.265960i
\(867\) 4.60157 7.97015i 0.156277 0.270680i
\(868\) −11.0271 6.36650i −0.374284 0.216093i
\(869\) −2.48792 + 1.43640i −0.0843969 + 0.0487266i
\(870\) −8.28360 + 4.78254i −0.280840 + 0.162143i
\(871\) −4.35269 2.51303i −0.147485 0.0851507i
\(872\) 3.46014 5.99313i 0.117175 0.202953i
\(873\) −2.12314 1.22579i −0.0718574 0.0414869i
\(874\) 35.9538i 1.21615i
\(875\) −7.18299 + 4.14710i −0.242829 + 0.140198i
\(876\) −4.07025 + 7.04988i −0.137521 + 0.238193i
\(877\) −6.61281 −0.223299 −0.111649 0.993748i \(-0.535613\pi\)
−0.111649 + 0.993748i \(0.535613\pi\)
\(878\) −30.7330 −1.03719
\(879\) −8.47182 + 14.6736i −0.285748 + 0.494929i
\(880\) 8.70047i 0.293293i
\(881\) −1.90137 3.29326i −0.0640586 0.110953i 0.832217 0.554449i \(-0.187071\pi\)
−0.896276 + 0.443497i \(0.853738\pi\)
\(882\) 3.78771i 0.127539i
\(883\) −42.2287 + 24.3807i −1.42111 + 0.820477i −0.996394 0.0848499i \(-0.972959\pi\)
−0.424715 + 0.905327i \(0.639626\pi\)
\(884\) 0.732051 + 1.26795i 0.0246215 + 0.0426457i
\(885\) 16.5128 + 28.6010i 0.555071 + 0.961411i
\(886\) −5.56550 3.21324i −0.186977 0.107951i
\(887\) −19.4520 −0.653136 −0.326568 0.945174i \(-0.605892\pi\)
−0.326568 + 0.945174i \(0.605892\pi\)
\(888\) −3.89265 + 4.67410i −0.130629 + 0.156853i
\(889\) −11.8114 −0.396140
\(890\) −44.0943 25.4579i −1.47804 0.853349i
\(891\) 1.29000 + 2.23434i 0.0432165 + 0.0748532i
\(892\) 5.15456 + 8.92795i 0.172587 + 0.298930i
\(893\) 35.8238 20.6829i 1.19880 0.692126i
\(894\) 18.6968i 0.625316i
\(895\) 4.31807 + 7.47912i 0.144337 + 0.250000i
\(896\) 1.79229i 0.0598761i
\(897\) 2.26337 3.92027i 0.0755717 0.130894i
\(898\) 12.6241 0.421271
\(899\) 20.1506 0.672060
\(900\) −3.18614 + 5.51856i −0.106205 + 0.183952i
\(901\) −4.10098 + 2.36770i −0.136623 + 0.0788796i
\(902\) 0.236896i 0.00788777i
\(903\) −19.0505 10.9988i −0.633960 0.366017i
\(904\) −9.92820 + 17.1962i −0.330207 + 0.571936i
\(905\) −70.6468 40.7879i −2.34838 1.35584i
\(906\) −10.7026 + 6.17916i −0.355571 + 0.205289i
\(907\) 13.7882 7.96061i 0.457829 0.264328i −0.253302 0.967387i \(-0.581517\pi\)
0.711131 + 0.703060i \(0.248183\pi\)
\(908\) −15.0957 8.71553i −0.500970 0.289235i
\(909\) −9.29276 + 16.0955i −0.308221 + 0.533855i
\(910\) 2.74456 + 1.58457i 0.0909814 + 0.0525281i
\(911\) 10.7075i 0.354755i −0.984143 0.177377i \(-0.943239\pi\)
0.984143 0.177377i \(-0.0567613\pi\)
\(912\) 3.60662 2.08228i 0.119427 0.0689513i
\(913\) −0.816890 + 1.41490i −0.0270351 + 0.0468262i
\(914\) 21.2438 0.702682
\(915\) −13.1015 −0.433123
\(916\) 1.04543 1.81075i 0.0345421 0.0598287i
\(917\) 18.7287i 0.618476i
\(918\) 1.39614 + 2.41819i 0.0460796 + 0.0798122i
\(919\) 13.4434i 0.443456i −0.975109 0.221728i \(-0.928830\pi\)
0.975109 0.221728i \(-0.0711697\pi\)
\(920\) −25.2132 + 14.5569i −0.831256 + 0.479926i
\(921\) 14.7496 + 25.5471i 0.486016 + 0.841805i
\(922\) −4.08724 7.07931i −0.134606 0.233145i
\(923\) −4.23419 2.44461i −0.139370 0.0804653i
\(924\) −4.62409 −0.152121
\(925\) 6.58948 38.1969i 0.216661 1.25590i
\(926\) 19.6894 0.647035
\(927\) −0.301558 0.174104i −0.00990446 0.00571834i
\(928\) −1.41819 2.45638i −0.0465544 0.0806346i
\(929\) −11.5949 20.0829i −0.380415 0.658898i 0.610707 0.791857i \(-0.290885\pi\)
−0.991122 + 0.132959i \(0.957552\pi\)
\(930\) 20.7481 11.9789i 0.680356 0.392804i
\(931\) 15.7742i 0.516977i
\(932\) −2.63048 4.55613i −0.0861644 0.149241i
\(933\) 31.8282i 1.04201i
\(934\) 2.34726 4.06557i 0.0768046 0.133029i
\(935\) 24.2942 0.794505
\(936\) 0.524338 0.0171385
\(937\) 20.3619 35.2679i 0.665195 1.15215i −0.314037 0.949411i \(-0.601682\pi\)
0.979232 0.202742i \(-0.0649851\pi\)
\(938\) 14.8783 8.59001i 0.485795 0.280474i
\(939\) 20.9735i 0.684445i
\(940\) −29.0085 16.7481i −0.946153 0.546262i
\(941\) 7.64700 13.2450i 0.249285 0.431774i −0.714043 0.700102i \(-0.753138\pi\)
0.963328 + 0.268328i \(0.0864710\pi\)
\(942\) −6.19677 3.57770i −0.201902 0.116568i
\(943\) −0.686505 + 0.396354i −0.0223557 + 0.0129071i
\(944\) −8.48119 + 4.89662i −0.276039 + 0.159371i
\(945\) 5.23434 + 3.02205i 0.170273 + 0.0983072i
\(946\) −15.8328 + 27.4231i −0.514767 + 0.891603i
\(947\) −44.3701 25.6171i −1.44184 0.832444i −0.443863 0.896094i \(-0.646392\pi\)
−0.997972 + 0.0636503i \(0.979726\pi\)
\(948\) 1.11349i 0.0361645i
\(949\) −3.69652 + 2.13418i −0.119994 + 0.0692786i
\(950\) −13.2689 + 22.9824i −0.430500 + 0.745648i
\(951\) −7.53495 −0.244337
\(952\) −5.00458 −0.162199
\(953\) 2.79782 4.84596i 0.0906302 0.156976i −0.817146 0.576430i \(-0.804445\pi\)
0.907776 + 0.419454i \(0.137779\pi\)
\(954\) 1.69589i 0.0549064i
\(955\) 8.91904 + 15.4482i 0.288613 + 0.499893i
\(956\) 1.09277i 0.0353428i
\(957\) 6.33745 3.65893i 0.204861 0.118276i
\(958\) 3.94434 + 6.83180i 0.127436 + 0.220726i
\(959\) −5.40254 9.35747i −0.174457 0.302168i
\(960\) −2.92048 1.68614i −0.0942581 0.0544200i
\(961\) −19.4715 −0.628114
\(962\) −2.99302 + 1.10193i −0.0964988 + 0.0355277i
\(963\) 5.06775 0.163306
\(964\) 7.18156 + 4.14628i 0.231303 + 0.133543i
\(965\) −17.2742 29.9198i −0.556077 0.963153i
\(966\) 7.73663 + 13.4002i 0.248922 + 0.431146i
\(967\) 29.8179 17.2154i 0.958880 0.553610i 0.0630521 0.998010i \(-0.479917\pi\)
0.895828 + 0.444400i \(0.146583\pi\)
\(968\) 4.34363i 0.139610i
\(969\) 5.81433 + 10.0707i 0.186783 + 0.323518i
\(970\) 8.26745i 0.265452i
\(971\) −18.6807 + 32.3559i −0.599492 + 1.03835i 0.393404 + 0.919366i \(0.371297\pi\)
−0.992896 + 0.118985i \(0.962036\pi\)
\(972\) 1.00000 0.0320750
\(973\) 16.6691 0.534388
\(974\) −1.26890 + 2.19780i −0.0406582 + 0.0704221i
\(975\) −2.89359 + 1.67061i −0.0926690 + 0.0535025i
\(976\) 3.88506i 0.124358i
\(977\) 15.3643 + 8.87057i 0.491547 + 0.283795i 0.725216 0.688522i \(-0.241740\pi\)
−0.233669 + 0.972316i \(0.575073\pi\)
\(978\) −5.50229 + 9.53025i −0.175944 + 0.304744i
\(979\) 33.7348 + 19.4768i 1.07817 + 0.622480i
\(980\) 11.0619 6.38661i 0.353360 0.204013i
\(981\) 5.99313 3.46014i 0.191346 0.110474i
\(982\) −8.78275 5.07072i −0.280269 0.161813i
\(983\) 9.78828 16.9538i 0.312198 0.540742i −0.666640 0.745380i \(-0.732268\pi\)
0.978838 + 0.204637i \(0.0656015\pi\)
\(984\) −0.0795187 0.0459101i −0.00253496 0.00146356i
\(985\) 78.2223i 2.49237i
\(986\) 6.85892 3.96000i 0.218432 0.126112i
\(987\) −8.90120 + 15.4173i −0.283328 + 0.490739i
\(988\) 2.18364 0.0694709
\(989\) 105.960 3.36933
\(990\) 4.35023 7.53483i 0.138259 0.239472i
\(991\) 41.8595i 1.32971i 0.746973 + 0.664855i \(0.231507\pi\)
−0.746973 + 0.664855i \(0.768493\pi\)
\(992\) 3.55217 + 6.15253i 0.112781 + 0.195343i
\(993\) 29.4684i 0.935152i
\(994\) 14.4733 8.35614i 0.459064 0.265041i
\(995\) −23.5121 40.7242i −0.745384 1.29104i
\(996\) 0.316625 + 0.548410i 0.0100326 + 0.0173770i
\(997\) 36.1915 + 20.8952i 1.14620 + 0.661757i 0.947957 0.318397i \(-0.103145\pi\)
0.198239 + 0.980154i \(0.436478\pi\)
\(998\) −30.4845 −0.964971
\(999\) −5.70819 + 2.10157i −0.180599 + 0.0664906i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 222.2.j.b.175.4 yes 8
3.2 odd 2 666.2.s.f.397.1 8
4.3 odd 2 1776.2.bz.i.1729.4 8
37.11 even 6 inner 222.2.j.b.85.4 8
37.14 odd 12 8214.2.a.ba.1.4 4
37.23 odd 12 8214.2.a.z.1.2 4
111.11 odd 6 666.2.s.f.307.1 8
148.11 odd 6 1776.2.bz.i.529.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
222.2.j.b.85.4 8 37.11 even 6 inner
222.2.j.b.175.4 yes 8 1.1 even 1 trivial
666.2.s.f.307.1 8 111.11 odd 6
666.2.s.f.397.1 8 3.2 odd 2
1776.2.bz.i.529.4 8 148.11 odd 6
1776.2.bz.i.1729.4 8 4.3 odd 2
8214.2.a.z.1.2 4 37.23 odd 12
8214.2.a.ba.1.4 4 37.14 odd 12