| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.5 + 0.866i)3-s + (0.499 + 0.866i)4-s + (2.92 − 1.68i)5-s + 0.999i·6-s + (−0.896 − 1.55i)7-s + 0.999i·8-s + (−0.499 + 0.866i)9-s + 3.37·10-s − 2.57·11-s + (−0.499 + 0.866i)12-s + (−0.454 + 0.262i)13-s − 1.79i·14-s + (2.92 + 1.68i)15-s + (−0.5 + 0.866i)16-s + (−2.41 − 1.39i)17-s + ⋯ |
| L(s) = 1 | + (0.612 + 0.353i)2-s + (0.288 + 0.499i)3-s + (0.249 + 0.433i)4-s + (1.30 − 0.754i)5-s + 0.408i·6-s + (−0.338 − 0.586i)7-s + 0.353i·8-s + (−0.166 + 0.288i)9-s + 1.06·10-s − 0.777·11-s + (−0.144 + 0.249i)12-s + (−0.125 + 0.0727i)13-s − 0.479i·14-s + (0.754 + 0.435i)15-s + (−0.125 + 0.216i)16-s + (−0.586 − 0.338i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 222 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 222 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.90277 + 0.570051i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.90277 + 0.570051i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-5.70 + 2.10i)T \) |
| good | 5 | \( 1 + (-2.92 + 1.68i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.896 + 1.55i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 2.57T + 11T^{2} \) |
| 13 | \( 1 + (0.454 - 0.262i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.41 + 1.39i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.60 - 2.08i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 8.63iT - 23T^{2} \) |
| 29 | \( 1 - 2.83iT - 29T^{2} \) |
| 31 | \( 1 + 7.10iT - 31T^{2} \) |
| 41 | \( 1 + (-0.0459 - 0.0795i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 12.2iT - 43T^{2} \) |
| 47 | \( 1 + 9.93T + 47T^{2} \) |
| 53 | \( 1 + (-0.847 + 1.46i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-8.48 - 4.89i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.36 - 1.94i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.79 - 8.30i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.66 - 8.07i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 8.14T + 73T^{2} \) |
| 79 | \( 1 + (-0.964 + 0.556i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.316 + 0.548i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (13.0 + 7.54i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 2.45iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.88837320713595734312364959442, −11.41339626952706864030045220892, −10.21991180499293575135688652983, −9.525345068790395151359591990139, −8.470120457463293036445122137713, −7.21744720341223400895839085533, −5.88188113211368006775573692587, −5.11010917872700980100245423522, −3.87167519756698446249581856734, −2.22046353861247514900630381766,
2.19762243688025543700886672943, 2.86773865785060594791987754438, 4.84402400493868485617287047830, 6.22115301669426470985675049549, 6.58834835383159179231013756660, 8.256407773258243723594498774467, 9.447037591972628260668052724097, 10.37164810695218153590505903868, 11.15070589408625446354642946944, 12.64209893487852632734649131332