Properties

Label 2214.2.a.m.1.3
Level $2214$
Weight $2$
Character 2214.1
Self dual yes
Analytic conductor $17.679$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2214,2,Mod(1,2214)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2214.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2214, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2214 = 2 \cdot 3^{3} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2214.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3,-1,0,1,-3,0,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.6788790075\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2292.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 13x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.18296\) of defining polynomial
Character \(\chi\) \(=\) 2214.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +3.18296 q^{5} -3.18296 q^{7} -1.00000 q^{8} -3.18296 q^{10} -3.18296 q^{11} -2.56561 q^{13} +3.18296 q^{14} +1.00000 q^{16} -2.00000 q^{17} +4.74857 q^{19} +3.18296 q^{20} +3.18296 q^{22} +6.93152 q^{23} +5.13122 q^{25} +2.56561 q^{26} -3.18296 q^{28} -10.1830 q^{29} +2.43439 q^{31} -1.00000 q^{32} +2.00000 q^{34} -10.1312 q^{35} -4.74857 q^{37} -4.74857 q^{38} -3.18296 q^{40} -1.00000 q^{41} +4.00000 q^{43} -3.18296 q^{44} -6.93152 q^{46} -5.61735 q^{47} +3.13122 q^{49} -5.13122 q^{50} -2.56561 q^{52} -12.2974 q^{53} -10.1312 q^{55} +3.18296 q^{56} +10.1830 q^{58} -13.4971 q^{59} -9.87978 q^{61} -2.43439 q^{62} +1.00000 q^{64} -8.16622 q^{65} +5.49713 q^{67} -2.00000 q^{68} +10.1312 q^{70} +8.24570 q^{71} +11.6283 q^{73} +4.74857 q^{74} +4.74857 q^{76} +10.1312 q^{77} -7.31417 q^{79} +3.18296 q^{80} +1.00000 q^{82} -8.87978 q^{83} -6.36591 q^{85} -4.00000 q^{86} +3.18296 q^{88} -16.3659 q^{89} +8.16622 q^{91} +6.93152 q^{92} +5.61735 q^{94} +15.1145 q^{95} +8.98326 q^{97} -3.13122 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} - q^{5} + q^{7} - 3 q^{8} + q^{10} + q^{11} - 6 q^{13} - q^{14} + 3 q^{16} - 6 q^{17} + 2 q^{19} - q^{20} - q^{22} - 2 q^{23} + 12 q^{25} + 6 q^{26} + q^{28} - 20 q^{29}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.18296 1.42346 0.711731 0.702452i \(-0.247912\pi\)
0.711731 + 0.702452i \(0.247912\pi\)
\(6\) 0 0
\(7\) −3.18296 −1.20304 −0.601522 0.798856i \(-0.705439\pi\)
−0.601522 + 0.798856i \(0.705439\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −3.18296 −1.00654
\(11\) −3.18296 −0.959698 −0.479849 0.877351i \(-0.659309\pi\)
−0.479849 + 0.877351i \(0.659309\pi\)
\(12\) 0 0
\(13\) −2.56561 −0.711572 −0.355786 0.934568i \(-0.615787\pi\)
−0.355786 + 0.934568i \(0.615787\pi\)
\(14\) 3.18296 0.850681
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 4.74857 1.08940 0.544698 0.838632i \(-0.316644\pi\)
0.544698 + 0.838632i \(0.316644\pi\)
\(20\) 3.18296 0.711731
\(21\) 0 0
\(22\) 3.18296 0.678609
\(23\) 6.93152 1.44532 0.722661 0.691202i \(-0.242919\pi\)
0.722661 + 0.691202i \(0.242919\pi\)
\(24\) 0 0
\(25\) 5.13122 1.02624
\(26\) 2.56561 0.503157
\(27\) 0 0
\(28\) −3.18296 −0.601522
\(29\) −10.1830 −1.89093 −0.945464 0.325727i \(-0.894391\pi\)
−0.945464 + 0.325727i \(0.894391\pi\)
\(30\) 0 0
\(31\) 2.43439 0.437230 0.218615 0.975811i \(-0.429846\pi\)
0.218615 + 0.975811i \(0.429846\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) −10.1312 −1.71249
\(36\) 0 0
\(37\) −4.74857 −0.780659 −0.390330 0.920675i \(-0.627639\pi\)
−0.390330 + 0.920675i \(0.627639\pi\)
\(38\) −4.74857 −0.770319
\(39\) 0 0
\(40\) −3.18296 −0.503270
\(41\) −1.00000 −0.156174
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −3.18296 −0.479849
\(45\) 0 0
\(46\) −6.93152 −1.02200
\(47\) −5.61735 −0.819375 −0.409687 0.912226i \(-0.634362\pi\)
−0.409687 + 0.912226i \(0.634362\pi\)
\(48\) 0 0
\(49\) 3.13122 0.447317
\(50\) −5.13122 −0.725664
\(51\) 0 0
\(52\) −2.56561 −0.355786
\(53\) −12.2974 −1.68918 −0.844591 0.535411i \(-0.820157\pi\)
−0.844591 + 0.535411i \(0.820157\pi\)
\(54\) 0 0
\(55\) −10.1312 −1.36609
\(56\) 3.18296 0.425341
\(57\) 0 0
\(58\) 10.1830 1.33709
\(59\) −13.4971 −1.75718 −0.878588 0.477580i \(-0.841514\pi\)
−0.878588 + 0.477580i \(0.841514\pi\)
\(60\) 0 0
\(61\) −9.87978 −1.26498 −0.632488 0.774570i \(-0.717966\pi\)
−0.632488 + 0.774570i \(0.717966\pi\)
\(62\) −2.43439 −0.309168
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −8.16622 −1.01289
\(66\) 0 0
\(67\) 5.49713 0.671581 0.335791 0.941937i \(-0.390997\pi\)
0.335791 + 0.941937i \(0.390997\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 10.1312 1.21091
\(71\) 8.24570 0.978584 0.489292 0.872120i \(-0.337255\pi\)
0.489292 + 0.872120i \(0.337255\pi\)
\(72\) 0 0
\(73\) 11.6283 1.36100 0.680498 0.732750i \(-0.261764\pi\)
0.680498 + 0.732750i \(0.261764\pi\)
\(74\) 4.74857 0.552009
\(75\) 0 0
\(76\) 4.74857 0.544698
\(77\) 10.1312 1.15456
\(78\) 0 0
\(79\) −7.31417 −0.822909 −0.411454 0.911430i \(-0.634979\pi\)
−0.411454 + 0.911430i \(0.634979\pi\)
\(80\) 3.18296 0.355865
\(81\) 0 0
\(82\) 1.00000 0.110432
\(83\) −8.87978 −0.974683 −0.487341 0.873212i \(-0.662033\pi\)
−0.487341 + 0.873212i \(0.662033\pi\)
\(84\) 0 0
\(85\) −6.36591 −0.690480
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 3.18296 0.339304
\(89\) −16.3659 −1.73478 −0.867392 0.497626i \(-0.834205\pi\)
−0.867392 + 0.497626i \(0.834205\pi\)
\(90\) 0 0
\(91\) 8.16622 0.856053
\(92\) 6.93152 0.722661
\(93\) 0 0
\(94\) 5.61735 0.579385
\(95\) 15.1145 1.55071
\(96\) 0 0
\(97\) 8.98326 0.912112 0.456056 0.889951i \(-0.349262\pi\)
0.456056 + 0.889951i \(0.349262\pi\)
\(98\) −3.13122 −0.316301
\(99\) 0 0
\(100\) 5.13122 0.513122
\(101\) −15.7486 −1.56704 −0.783520 0.621366i \(-0.786578\pi\)
−0.783520 + 0.621366i \(0.786578\pi\)
\(102\) 0 0
\(103\) 6.86878 0.676801 0.338401 0.941002i \(-0.390114\pi\)
0.338401 + 0.941002i \(0.390114\pi\)
\(104\) 2.56561 0.251579
\(105\) 0 0
\(106\) 12.2974 1.19443
\(107\) 7.06274 0.682781 0.341390 0.939922i \(-0.389102\pi\)
0.341390 + 0.939922i \(0.389102\pi\)
\(108\) 0 0
\(109\) −12.5656 −1.20357 −0.601783 0.798659i \(-0.705543\pi\)
−0.601783 + 0.798659i \(0.705543\pi\)
\(110\) 10.1312 0.965974
\(111\) 0 0
\(112\) −3.18296 −0.300761
\(113\) 9.13122 0.858993 0.429496 0.903069i \(-0.358691\pi\)
0.429496 + 0.903069i \(0.358691\pi\)
\(114\) 0 0
\(115\) 22.0627 2.05736
\(116\) −10.1830 −0.945464
\(117\) 0 0
\(118\) 13.4971 1.24251
\(119\) 6.36591 0.583562
\(120\) 0 0
\(121\) −0.868784 −0.0789804
\(122\) 9.87978 0.894473
\(123\) 0 0
\(124\) 2.43439 0.218615
\(125\) 0.417655 0.0373562
\(126\) 0 0
\(127\) −5.38265 −0.477633 −0.238817 0.971065i \(-0.576759\pi\)
−0.238817 + 0.971065i \(0.576759\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 8.16622 0.716225
\(131\) −4.69682 −0.410363 −0.205182 0.978724i \(-0.565779\pi\)
−0.205182 + 0.978724i \(0.565779\pi\)
\(132\) 0 0
\(133\) −15.1145 −1.31059
\(134\) −5.49713 −0.474880
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) 12.1662 1.03943 0.519715 0.854340i \(-0.326038\pi\)
0.519715 + 0.854340i \(0.326038\pi\)
\(138\) 0 0
\(139\) −11.6968 −0.992112 −0.496056 0.868291i \(-0.665219\pi\)
−0.496056 + 0.868291i \(0.665219\pi\)
\(140\) −10.1312 −0.856244
\(141\) 0 0
\(142\) −8.24570 −0.691963
\(143\) 8.16622 0.682894
\(144\) 0 0
\(145\) −32.4119 −2.69166
\(146\) −11.6283 −0.962369
\(147\) 0 0
\(148\) −4.74857 −0.390330
\(149\) −15.2457 −1.24898 −0.624488 0.781034i \(-0.714692\pi\)
−0.624488 + 0.781034i \(0.714692\pi\)
\(150\) 0 0
\(151\) 14.8630 1.20954 0.604769 0.796401i \(-0.293266\pi\)
0.604769 + 0.796401i \(0.293266\pi\)
\(152\) −4.74857 −0.385159
\(153\) 0 0
\(154\) −10.1312 −0.816397
\(155\) 7.74857 0.622380
\(156\) 0 0
\(157\) 0.365914 0.0292031 0.0146016 0.999893i \(-0.495352\pi\)
0.0146016 + 0.999893i \(0.495352\pi\)
\(158\) 7.31417 0.581884
\(159\) 0 0
\(160\) −3.18296 −0.251635
\(161\) −22.0627 −1.73879
\(162\) 0 0
\(163\) −13.2974 −1.04154 −0.520768 0.853698i \(-0.674354\pi\)
−0.520768 + 0.853698i \(0.674354\pi\)
\(164\) −1.00000 −0.0780869
\(165\) 0 0
\(166\) 8.87978 0.689205
\(167\) −3.13122 −0.242301 −0.121150 0.992634i \(-0.538658\pi\)
−0.121150 + 0.992634i \(0.538658\pi\)
\(168\) 0 0
\(169\) −6.41766 −0.493666
\(170\) 6.36591 0.488243
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) 4.39365 0.334043 0.167021 0.985953i \(-0.446585\pi\)
0.167021 + 0.985953i \(0.446585\pi\)
\(174\) 0 0
\(175\) −16.3324 −1.23462
\(176\) −3.18296 −0.239924
\(177\) 0 0
\(178\) 16.3659 1.22668
\(179\) 17.8113 1.33128 0.665640 0.746273i \(-0.268159\pi\)
0.665640 + 0.746273i \(0.268159\pi\)
\(180\) 0 0
\(181\) 12.7946 0.951013 0.475506 0.879712i \(-0.342265\pi\)
0.475506 + 0.879712i \(0.342265\pi\)
\(182\) −8.16622 −0.605321
\(183\) 0 0
\(184\) −6.93152 −0.510999
\(185\) −15.1145 −1.11124
\(186\) 0 0
\(187\) 6.36591 0.465522
\(188\) −5.61735 −0.409687
\(189\) 0 0
\(190\) −15.1145 −1.09652
\(191\) 4.86878 0.352293 0.176146 0.984364i \(-0.443637\pi\)
0.176146 + 0.984364i \(0.443637\pi\)
\(192\) 0 0
\(193\) −25.5321 −1.83784 −0.918922 0.394440i \(-0.870939\pi\)
−0.918922 + 0.394440i \(0.870939\pi\)
\(194\) −8.98326 −0.644961
\(195\) 0 0
\(196\) 3.13122 0.223658
\(197\) 10.6801 0.760925 0.380462 0.924796i \(-0.375765\pi\)
0.380462 + 0.924796i \(0.375765\pi\)
\(198\) 0 0
\(199\) 21.1255 1.49755 0.748773 0.662827i \(-0.230643\pi\)
0.748773 + 0.662827i \(0.230643\pi\)
\(200\) −5.13122 −0.362832
\(201\) 0 0
\(202\) 15.7486 1.10807
\(203\) 32.4119 2.27487
\(204\) 0 0
\(205\) −3.18296 −0.222307
\(206\) −6.86878 −0.478571
\(207\) 0 0
\(208\) −2.56561 −0.177893
\(209\) −15.1145 −1.04549
\(210\) 0 0
\(211\) −5.25143 −0.361524 −0.180762 0.983527i \(-0.557856\pi\)
−0.180762 + 0.983527i \(0.557856\pi\)
\(212\) −12.2974 −0.844591
\(213\) 0 0
\(214\) −7.06274 −0.482799
\(215\) 12.7318 0.868303
\(216\) 0 0
\(217\) −7.74857 −0.526007
\(218\) 12.5656 0.851050
\(219\) 0 0
\(220\) −10.1312 −0.683046
\(221\) 5.13122 0.345163
\(222\) 0 0
\(223\) −17.0977 −1.14495 −0.572475 0.819922i \(-0.694017\pi\)
−0.572475 + 0.819922i \(0.694017\pi\)
\(224\) 3.18296 0.212670
\(225\) 0 0
\(226\) −9.13122 −0.607399
\(227\) 3.68009 0.244256 0.122128 0.992514i \(-0.461028\pi\)
0.122128 + 0.992514i \(0.461028\pi\)
\(228\) 0 0
\(229\) −16.3659 −1.08149 −0.540745 0.841187i \(-0.681858\pi\)
−0.540745 + 0.841187i \(0.681858\pi\)
\(230\) −22.0627 −1.45477
\(231\) 0 0
\(232\) 10.1830 0.668544
\(233\) −11.8630 −0.777174 −0.388587 0.921412i \(-0.627037\pi\)
−0.388587 + 0.921412i \(0.627037\pi\)
\(234\) 0 0
\(235\) −17.8798 −1.16635
\(236\) −13.4971 −0.878588
\(237\) 0 0
\(238\) −6.36591 −0.412641
\(239\) −12.7318 −0.823554 −0.411777 0.911285i \(-0.635092\pi\)
−0.411777 + 0.911285i \(0.635092\pi\)
\(240\) 0 0
\(241\) 28.5489 1.83899 0.919497 0.393096i \(-0.128596\pi\)
0.919497 + 0.393096i \(0.128596\pi\)
\(242\) 0.868784 0.0558475
\(243\) 0 0
\(244\) −9.87978 −0.632488
\(245\) 9.96653 0.636738
\(246\) 0 0
\(247\) −12.1830 −0.775183
\(248\) −2.43439 −0.154584
\(249\) 0 0
\(250\) −0.417655 −0.0264148
\(251\) −17.6801 −1.11596 −0.557979 0.829855i \(-0.688423\pi\)
−0.557979 + 0.829855i \(0.688423\pi\)
\(252\) 0 0
\(253\) −22.0627 −1.38707
\(254\) 5.38265 0.337738
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 24.0627 1.50099 0.750496 0.660875i \(-0.229815\pi\)
0.750496 + 0.660875i \(0.229815\pi\)
\(258\) 0 0
\(259\) 15.1145 0.939168
\(260\) −8.16622 −0.506447
\(261\) 0 0
\(262\) 4.69682 0.290171
\(263\) 0.731829 0.0451265 0.0225632 0.999745i \(-0.492817\pi\)
0.0225632 + 0.999745i \(0.492817\pi\)
\(264\) 0 0
\(265\) −39.1422 −2.40449
\(266\) 15.1145 0.926728
\(267\) 0 0
\(268\) 5.49713 0.335791
\(269\) 0.582345 0.0355062 0.0177531 0.999842i \(-0.494349\pi\)
0.0177531 + 0.999842i \(0.494349\pi\)
\(270\) 0 0
\(271\) 9.34918 0.567922 0.283961 0.958836i \(-0.408351\pi\)
0.283961 + 0.958836i \(0.408351\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) −12.1662 −0.734988
\(275\) −16.3324 −0.984883
\(276\) 0 0
\(277\) 5.98326 0.359499 0.179750 0.983712i \(-0.442471\pi\)
0.179750 + 0.983712i \(0.442471\pi\)
\(278\) 11.6968 0.701529
\(279\) 0 0
\(280\) 10.1312 0.605456
\(281\) 14.5321 0.866914 0.433457 0.901174i \(-0.357294\pi\)
0.433457 + 0.901174i \(0.357294\pi\)
\(282\) 0 0
\(283\) −4.19969 −0.249646 −0.124823 0.992179i \(-0.539836\pi\)
−0.124823 + 0.992179i \(0.539836\pi\)
\(284\) 8.24570 0.489292
\(285\) 0 0
\(286\) −8.16622 −0.482879
\(287\) 3.18296 0.187884
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 32.4119 1.90329
\(291\) 0 0
\(292\) 11.6283 0.680498
\(293\) 8.10348 0.473410 0.236705 0.971582i \(-0.423932\pi\)
0.236705 + 0.971582i \(0.423932\pi\)
\(294\) 0 0
\(295\) −42.9608 −2.50127
\(296\) 4.74857 0.276005
\(297\) 0 0
\(298\) 15.2457 0.883159
\(299\) −17.7836 −1.02845
\(300\) 0 0
\(301\) −12.7318 −0.733850
\(302\) −14.8630 −0.855272
\(303\) 0 0
\(304\) 4.74857 0.272349
\(305\) −31.4469 −1.80065
\(306\) 0 0
\(307\) 6.82804 0.389697 0.194848 0.980833i \(-0.437579\pi\)
0.194848 + 0.980833i \(0.437579\pi\)
\(308\) 10.1312 0.577280
\(309\) 0 0
\(310\) −7.74857 −0.440089
\(311\) −23.7428 −1.34633 −0.673166 0.739491i \(-0.735066\pi\)
−0.673166 + 0.739491i \(0.735066\pi\)
\(312\) 0 0
\(313\) −1.93152 −0.109176 −0.0545880 0.998509i \(-0.517385\pi\)
−0.0545880 + 0.998509i \(0.517385\pi\)
\(314\) −0.365914 −0.0206497
\(315\) 0 0
\(316\) −7.31417 −0.411454
\(317\) −19.6911 −1.10596 −0.552981 0.833194i \(-0.686510\pi\)
−0.552981 + 0.833194i \(0.686510\pi\)
\(318\) 0 0
\(319\) 32.4119 1.81472
\(320\) 3.18296 0.177933
\(321\) 0 0
\(322\) 22.0627 1.22951
\(323\) −9.49713 −0.528434
\(324\) 0 0
\(325\) −13.1647 −0.730246
\(326\) 13.2974 0.736477
\(327\) 0 0
\(328\) 1.00000 0.0552158
\(329\) 17.8798 0.985744
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) −8.87978 −0.487341
\(333\) 0 0
\(334\) 3.13122 0.171333
\(335\) 17.4971 0.955970
\(336\) 0 0
\(337\) 18.2864 0.996126 0.498063 0.867141i \(-0.334045\pi\)
0.498063 + 0.867141i \(0.334045\pi\)
\(338\) 6.41766 0.349074
\(339\) 0 0
\(340\) −6.36591 −0.345240
\(341\) −7.74857 −0.419608
\(342\) 0 0
\(343\) 12.3142 0.664903
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) −4.39365 −0.236204
\(347\) −16.0977 −0.864172 −0.432086 0.901832i \(-0.642222\pi\)
−0.432086 + 0.901832i \(0.642222\pi\)
\(348\) 0 0
\(349\) 1.87978 0.100622 0.0503112 0.998734i \(-0.483979\pi\)
0.0503112 + 0.998734i \(0.483979\pi\)
\(350\) 16.3324 0.873006
\(351\) 0 0
\(352\) 3.18296 0.169652
\(353\) −6.74857 −0.359190 −0.179595 0.983741i \(-0.557479\pi\)
−0.179595 + 0.983741i \(0.557479\pi\)
\(354\) 0 0
\(355\) 26.2457 1.39298
\(356\) −16.3659 −0.867392
\(357\) 0 0
\(358\) −17.8113 −0.941357
\(359\) −6.19969 −0.327207 −0.163604 0.986526i \(-0.552312\pi\)
−0.163604 + 0.986526i \(0.552312\pi\)
\(360\) 0 0
\(361\) 3.54887 0.186783
\(362\) −12.7946 −0.672468
\(363\) 0 0
\(364\) 8.16622 0.428026
\(365\) 37.0125 1.93732
\(366\) 0 0
\(367\) 30.9833 1.61731 0.808657 0.588281i \(-0.200195\pi\)
0.808657 + 0.588281i \(0.200195\pi\)
\(368\) 6.93152 0.361331
\(369\) 0 0
\(370\) 15.1145 0.785764
\(371\) 39.1422 2.03216
\(372\) 0 0
\(373\) 17.7428 0.918689 0.459344 0.888258i \(-0.348084\pi\)
0.459344 + 0.888258i \(0.348084\pi\)
\(374\) −6.36591 −0.329174
\(375\) 0 0
\(376\) 5.61735 0.289693
\(377\) 26.1255 1.34553
\(378\) 0 0
\(379\) 24.6283 1.26507 0.632537 0.774530i \(-0.282014\pi\)
0.632537 + 0.774530i \(0.282014\pi\)
\(380\) 15.1145 0.775356
\(381\) 0 0
\(382\) −4.86878 −0.249109
\(383\) 12.0000 0.613171 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(384\) 0 0
\(385\) 32.2472 1.64347
\(386\) 25.5321 1.29955
\(387\) 0 0
\(388\) 8.98326 0.456056
\(389\) 10.4971 0.532226 0.266113 0.963942i \(-0.414261\pi\)
0.266113 + 0.963942i \(0.414261\pi\)
\(390\) 0 0
\(391\) −13.8630 −0.701084
\(392\) −3.13122 −0.158150
\(393\) 0 0
\(394\) −10.6801 −0.538055
\(395\) −23.2807 −1.17138
\(396\) 0 0
\(397\) −34.4287 −1.72792 −0.863962 0.503557i \(-0.832025\pi\)
−0.863962 + 0.503557i \(0.832025\pi\)
\(398\) −21.1255 −1.05892
\(399\) 0 0
\(400\) 5.13122 0.256561
\(401\) −21.9665 −1.09696 −0.548478 0.836165i \(-0.684793\pi\)
−0.548478 + 0.836165i \(0.684793\pi\)
\(402\) 0 0
\(403\) −6.24570 −0.311120
\(404\) −15.7486 −0.783520
\(405\) 0 0
\(406\) −32.4119 −1.60858
\(407\) 15.1145 0.749197
\(408\) 0 0
\(409\) −1.31991 −0.0652655 −0.0326327 0.999467i \(-0.510389\pi\)
−0.0326327 + 0.999467i \(0.510389\pi\)
\(410\) 3.18296 0.157195
\(411\) 0 0
\(412\) 6.86878 0.338401
\(413\) 42.9608 2.11396
\(414\) 0 0
\(415\) −28.2640 −1.38742
\(416\) 2.56561 0.125789
\(417\) 0 0
\(418\) 15.1145 0.739273
\(419\) −3.57661 −0.174729 −0.0873643 0.996176i \(-0.527844\pi\)
−0.0873643 + 0.996176i \(0.527844\pi\)
\(420\) 0 0
\(421\) 36.4287 1.77542 0.887712 0.460399i \(-0.152294\pi\)
0.887712 + 0.460399i \(0.152294\pi\)
\(422\) 5.25143 0.255636
\(423\) 0 0
\(424\) 12.2974 0.597216
\(425\) −10.2624 −0.497801
\(426\) 0 0
\(427\) 31.4469 1.52182
\(428\) 7.06274 0.341390
\(429\) 0 0
\(430\) −12.7318 −0.613983
\(431\) −18.6911 −0.900318 −0.450159 0.892948i \(-0.648633\pi\)
−0.450159 + 0.892948i \(0.648633\pi\)
\(432\) 0 0
\(433\) 27.9943 1.34532 0.672659 0.739952i \(-0.265152\pi\)
0.672659 + 0.739952i \(0.265152\pi\)
\(434\) 7.74857 0.371943
\(435\) 0 0
\(436\) −12.5656 −0.601783
\(437\) 32.9148 1.57453
\(438\) 0 0
\(439\) −23.0920 −1.10212 −0.551061 0.834465i \(-0.685777\pi\)
−0.551061 + 0.834465i \(0.685777\pi\)
\(440\) 10.1312 0.482987
\(441\) 0 0
\(442\) −5.13122 −0.244067
\(443\) −19.7596 −0.938805 −0.469403 0.882984i \(-0.655531\pi\)
−0.469403 + 0.882984i \(0.655531\pi\)
\(444\) 0 0
\(445\) −52.0920 −2.46940
\(446\) 17.0977 0.809602
\(447\) 0 0
\(448\) −3.18296 −0.150381
\(449\) −2.12548 −0.100307 −0.0501537 0.998742i \(-0.515971\pi\)
−0.0501537 + 0.998742i \(0.515971\pi\)
\(450\) 0 0
\(451\) 3.18296 0.149880
\(452\) 9.13122 0.429496
\(453\) 0 0
\(454\) −3.68009 −0.172715
\(455\) 25.9927 1.21856
\(456\) 0 0
\(457\) 7.06274 0.330381 0.165190 0.986262i \(-0.447176\pi\)
0.165190 + 0.986262i \(0.447176\pi\)
\(458\) 16.3659 0.764729
\(459\) 0 0
\(460\) 22.0627 1.02868
\(461\) 26.8630 1.25114 0.625568 0.780169i \(-0.284867\pi\)
0.625568 + 0.780169i \(0.284867\pi\)
\(462\) 0 0
\(463\) 17.9943 0.836264 0.418132 0.908386i \(-0.362685\pi\)
0.418132 + 0.908386i \(0.362685\pi\)
\(464\) −10.1830 −0.472732
\(465\) 0 0
\(466\) 11.8630 0.549545
\(467\) 12.6173 0.583861 0.291931 0.956439i \(-0.405702\pi\)
0.291931 + 0.956439i \(0.405702\pi\)
\(468\) 0 0
\(469\) −17.4971 −0.807942
\(470\) 17.8798 0.824733
\(471\) 0 0
\(472\) 13.4971 0.621256
\(473\) −12.7318 −0.585410
\(474\) 0 0
\(475\) 24.3659 1.11798
\(476\) 6.36591 0.291781
\(477\) 0 0
\(478\) 12.7318 0.582340
\(479\) −8.48613 −0.387741 −0.193871 0.981027i \(-0.562104\pi\)
−0.193871 + 0.981027i \(0.562104\pi\)
\(480\) 0 0
\(481\) 12.1830 0.555495
\(482\) −28.5489 −1.30037
\(483\) 0 0
\(484\) −0.868784 −0.0394902
\(485\) 28.5933 1.29836
\(486\) 0 0
\(487\) −10.0460 −0.455228 −0.227614 0.973751i \(-0.573092\pi\)
−0.227614 + 0.973751i \(0.573092\pi\)
\(488\) 9.87978 0.447237
\(489\) 0 0
\(490\) −9.96653 −0.450242
\(491\) 7.34918 0.331664 0.165832 0.986154i \(-0.446969\pi\)
0.165832 + 0.986154i \(0.446969\pi\)
\(492\) 0 0
\(493\) 20.3659 0.917235
\(494\) 12.1830 0.548137
\(495\) 0 0
\(496\) 2.43439 0.109307
\(497\) −26.2457 −1.17728
\(498\) 0 0
\(499\) −12.0167 −0.537943 −0.268972 0.963148i \(-0.586684\pi\)
−0.268972 + 0.963148i \(0.586684\pi\)
\(500\) 0.417655 0.0186781
\(501\) 0 0
\(502\) 17.6801 0.789101
\(503\) −25.3602 −1.13075 −0.565377 0.824833i \(-0.691269\pi\)
−0.565377 + 0.824833i \(0.691269\pi\)
\(504\) 0 0
\(505\) −50.1270 −2.23062
\(506\) 22.0627 0.980808
\(507\) 0 0
\(508\) −5.38265 −0.238817
\(509\) 23.4287 1.03846 0.519228 0.854636i \(-0.326219\pi\)
0.519228 + 0.854636i \(0.326219\pi\)
\(510\) 0 0
\(511\) −37.0125 −1.63734
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −24.0627 −1.06136
\(515\) 21.8630 0.963401
\(516\) 0 0
\(517\) 17.8798 0.786352
\(518\) −15.1145 −0.664092
\(519\) 0 0
\(520\) 8.16622 0.358112
\(521\) 41.9885 1.83955 0.919775 0.392445i \(-0.128371\pi\)
0.919775 + 0.392445i \(0.128371\pi\)
\(522\) 0 0
\(523\) −20.8573 −0.912026 −0.456013 0.889973i \(-0.650723\pi\)
−0.456013 + 0.889973i \(0.650723\pi\)
\(524\) −4.69682 −0.205182
\(525\) 0 0
\(526\) −0.731829 −0.0319092
\(527\) −4.86878 −0.212088
\(528\) 0 0
\(529\) 25.0460 1.08896
\(530\) 39.1422 1.70023
\(531\) 0 0
\(532\) −15.1145 −0.655296
\(533\) 2.56561 0.111129
\(534\) 0 0
\(535\) 22.4804 0.971912
\(536\) −5.49713 −0.237440
\(537\) 0 0
\(538\) −0.582345 −0.0251067
\(539\) −9.96653 −0.429289
\(540\) 0 0
\(541\) −25.7041 −1.10511 −0.552553 0.833478i \(-0.686346\pi\)
−0.552553 + 0.833478i \(0.686346\pi\)
\(542\) −9.34918 −0.401582
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) −39.9958 −1.71323
\(546\) 0 0
\(547\) 12.1035 0.517508 0.258754 0.965943i \(-0.416688\pi\)
0.258754 + 0.965943i \(0.416688\pi\)
\(548\) 12.1662 0.519715
\(549\) 0 0
\(550\) 16.3324 0.696418
\(551\) −48.3544 −2.05997
\(552\) 0 0
\(553\) 23.2807 0.989996
\(554\) −5.98326 −0.254205
\(555\) 0 0
\(556\) −11.6968 −0.496056
\(557\) 40.1145 1.69971 0.849853 0.527021i \(-0.176691\pi\)
0.849853 + 0.527021i \(0.176691\pi\)
\(558\) 0 0
\(559\) −10.2624 −0.434055
\(560\) −10.1312 −0.428122
\(561\) 0 0
\(562\) −14.5321 −0.613001
\(563\) 30.1312 1.26988 0.634940 0.772562i \(-0.281025\pi\)
0.634940 + 0.772562i \(0.281025\pi\)
\(564\) 0 0
\(565\) 29.0643 1.22274
\(566\) 4.19969 0.176526
\(567\) 0 0
\(568\) −8.24570 −0.345982
\(569\) −29.1145 −1.22054 −0.610271 0.792193i \(-0.708940\pi\)
−0.610271 + 0.792193i \(0.708940\pi\)
\(570\) 0 0
\(571\) 41.3769 1.73157 0.865785 0.500416i \(-0.166820\pi\)
0.865785 + 0.500416i \(0.166820\pi\)
\(572\) 8.16622 0.341447
\(573\) 0 0
\(574\) −3.18296 −0.132854
\(575\) 35.5671 1.48325
\(576\) 0 0
\(577\) 4.50287 0.187457 0.0937285 0.995598i \(-0.470121\pi\)
0.0937285 + 0.995598i \(0.470121\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) −32.4119 −1.34583
\(581\) 28.2640 1.17259
\(582\) 0 0
\(583\) 39.1422 1.62110
\(584\) −11.6283 −0.481184
\(585\) 0 0
\(586\) −8.10348 −0.334752
\(587\) −19.9148 −0.821971 −0.410986 0.911642i \(-0.634815\pi\)
−0.410986 + 0.911642i \(0.634815\pi\)
\(588\) 0 0
\(589\) 11.5599 0.476316
\(590\) 42.9608 1.76867
\(591\) 0 0
\(592\) −4.74857 −0.195165
\(593\) 26.8688 1.10337 0.551684 0.834053i \(-0.313985\pi\)
0.551684 + 0.834053i \(0.313985\pi\)
\(594\) 0 0
\(595\) 20.2624 0.830679
\(596\) −15.2457 −0.624488
\(597\) 0 0
\(598\) 17.7836 0.727224
\(599\) −14.1035 −0.576253 −0.288126 0.957592i \(-0.593032\pi\)
−0.288126 + 0.957592i \(0.593032\pi\)
\(600\) 0 0
\(601\) −12.3549 −0.503968 −0.251984 0.967731i \(-0.581083\pi\)
−0.251984 + 0.967731i \(0.581083\pi\)
\(602\) 12.7318 0.518911
\(603\) 0 0
\(604\) 14.8630 0.604769
\(605\) −2.76530 −0.112426
\(606\) 0 0
\(607\) 39.3602 1.59758 0.798790 0.601610i \(-0.205474\pi\)
0.798790 + 0.601610i \(0.205474\pi\)
\(608\) −4.74857 −0.192580
\(609\) 0 0
\(610\) 31.4469 1.27325
\(611\) 14.4119 0.583044
\(612\) 0 0
\(613\) 4.73183 0.191117 0.0955584 0.995424i \(-0.469536\pi\)
0.0955584 + 0.995424i \(0.469536\pi\)
\(614\) −6.82804 −0.275557
\(615\) 0 0
\(616\) −10.1312 −0.408198
\(617\) −20.0220 −0.806055 −0.403028 0.915188i \(-0.632042\pi\)
−0.403028 + 0.915188i \(0.632042\pi\)
\(618\) 0 0
\(619\) −36.0293 −1.44814 −0.724069 0.689727i \(-0.757730\pi\)
−0.724069 + 0.689727i \(0.757730\pi\)
\(620\) 7.74857 0.311190
\(621\) 0 0
\(622\) 23.7428 0.952001
\(623\) 52.0920 2.08702
\(624\) 0 0
\(625\) −24.3267 −0.973068
\(626\) 1.93152 0.0771992
\(627\) 0 0
\(628\) 0.365914 0.0146016
\(629\) 9.49713 0.378675
\(630\) 0 0
\(631\) −7.50813 −0.298894 −0.149447 0.988770i \(-0.547749\pi\)
−0.149447 + 0.988770i \(0.547749\pi\)
\(632\) 7.31417 0.290942
\(633\) 0 0
\(634\) 19.6911 0.782033
\(635\) −17.1327 −0.679892
\(636\) 0 0
\(637\) −8.03347 −0.318298
\(638\) −32.4119 −1.28320
\(639\) 0 0
\(640\) −3.18296 −0.125817
\(641\) −3.84105 −0.151712 −0.0758562 0.997119i \(-0.524169\pi\)
−0.0758562 + 0.997119i \(0.524169\pi\)
\(642\) 0 0
\(643\) −29.6059 −1.16754 −0.583771 0.811919i \(-0.698423\pi\)
−0.583771 + 0.811919i \(0.698423\pi\)
\(644\) −22.0627 −0.869394
\(645\) 0 0
\(646\) 9.49713 0.373660
\(647\) −31.8223 −1.25106 −0.625532 0.780199i \(-0.715118\pi\)
−0.625532 + 0.780199i \(0.715118\pi\)
\(648\) 0 0
\(649\) 42.9608 1.68636
\(650\) 13.1647 0.516362
\(651\) 0 0
\(652\) −13.2974 −0.520768
\(653\) −5.50813 −0.215550 −0.107775 0.994175i \(-0.534373\pi\)
−0.107775 + 0.994175i \(0.534373\pi\)
\(654\) 0 0
\(655\) −14.9498 −0.584137
\(656\) −1.00000 −0.0390434
\(657\) 0 0
\(658\) −17.8798 −0.697026
\(659\) 15.0240 0.585252 0.292626 0.956227i \(-0.405471\pi\)
0.292626 + 0.956227i \(0.405471\pi\)
\(660\) 0 0
\(661\) −4.50813 −0.175346 −0.0876729 0.996149i \(-0.527943\pi\)
−0.0876729 + 0.996149i \(0.527943\pi\)
\(662\) −8.00000 −0.310929
\(663\) 0 0
\(664\) 8.87978 0.344602
\(665\) −48.1087 −1.86558
\(666\) 0 0
\(667\) −70.5834 −2.73300
\(668\) −3.13122 −0.121150
\(669\) 0 0
\(670\) −17.4971 −0.675973
\(671\) 31.4469 1.21399
\(672\) 0 0
\(673\) −31.3952 −1.21020 −0.605098 0.796151i \(-0.706866\pi\)
−0.605098 + 0.796151i \(0.706866\pi\)
\(674\) −18.2864 −0.704367
\(675\) 0 0
\(676\) −6.41766 −0.246833
\(677\) −19.0517 −0.732218 −0.366109 0.930572i \(-0.619310\pi\)
−0.366109 + 0.930572i \(0.619310\pi\)
\(678\) 0 0
\(679\) −28.5933 −1.09731
\(680\) 6.36591 0.244122
\(681\) 0 0
\(682\) 7.74857 0.296708
\(683\) 31.4062 1.20172 0.600862 0.799353i \(-0.294824\pi\)
0.600862 + 0.799353i \(0.294824\pi\)
\(684\) 0 0
\(685\) 38.7246 1.47959
\(686\) −12.3142 −0.470157
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) 31.5504 1.20197
\(690\) 0 0
\(691\) 36.0867 1.37280 0.686402 0.727222i \(-0.259189\pi\)
0.686402 + 0.727222i \(0.259189\pi\)
\(692\) 4.39365 0.167021
\(693\) 0 0
\(694\) 16.0977 0.611062
\(695\) −37.2305 −1.41223
\(696\) 0 0
\(697\) 2.00000 0.0757554
\(698\) −1.87978 −0.0711508
\(699\) 0 0
\(700\) −16.3324 −0.617308
\(701\) −35.2750 −1.33232 −0.666158 0.745810i \(-0.732063\pi\)
−0.666158 + 0.745810i \(0.732063\pi\)
\(702\) 0 0
\(703\) −22.5489 −0.850447
\(704\) −3.18296 −0.119962
\(705\) 0 0
\(706\) 6.74857 0.253986
\(707\) 50.1270 1.88522
\(708\) 0 0
\(709\) −10.1662 −0.381800 −0.190900 0.981609i \(-0.561141\pi\)
−0.190900 + 0.981609i \(0.561141\pi\)
\(710\) −26.2457 −0.984983
\(711\) 0 0
\(712\) 16.3659 0.613339
\(713\) 16.8740 0.631938
\(714\) 0 0
\(715\) 25.9927 0.972073
\(716\) 17.8113 0.665640
\(717\) 0 0
\(718\) 6.19969 0.231371
\(719\) −33.2012 −1.23820 −0.619098 0.785313i \(-0.712502\pi\)
−0.619098 + 0.785313i \(0.712502\pi\)
\(720\) 0 0
\(721\) −21.8630 −0.814222
\(722\) −3.54887 −0.132075
\(723\) 0 0
\(724\) 12.7946 0.475506
\(725\) −52.2510 −1.94055
\(726\) 0 0
\(727\) −19.1035 −0.708509 −0.354254 0.935149i \(-0.615265\pi\)
−0.354254 + 0.935149i \(0.615265\pi\)
\(728\) −8.16622 −0.302660
\(729\) 0 0
\(730\) −37.0125 −1.36990
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) −9.51387 −0.351403 −0.175701 0.984444i \(-0.556219\pi\)
−0.175701 + 0.984444i \(0.556219\pi\)
\(734\) −30.9833 −1.14361
\(735\) 0 0
\(736\) −6.93152 −0.255499
\(737\) −17.4971 −0.644515
\(738\) 0 0
\(739\) 15.2974 0.562725 0.281363 0.959602i \(-0.409214\pi\)
0.281363 + 0.959602i \(0.409214\pi\)
\(740\) −15.1145 −0.555619
\(741\) 0 0
\(742\) −39.1422 −1.43696
\(743\) 50.0513 1.83620 0.918101 0.396346i \(-0.129722\pi\)
0.918101 + 0.396346i \(0.129722\pi\)
\(744\) 0 0
\(745\) −48.5264 −1.77787
\(746\) −17.7428 −0.649611
\(747\) 0 0
\(748\) 6.36591 0.232761
\(749\) −22.4804 −0.821416
\(750\) 0 0
\(751\) −2.39365 −0.0873455 −0.0436727 0.999046i \(-0.513906\pi\)
−0.0436727 + 0.999046i \(0.513906\pi\)
\(752\) −5.61735 −0.204844
\(753\) 0 0
\(754\) −26.1255 −0.951434
\(755\) 47.3084 1.72173
\(756\) 0 0
\(757\) 47.4857 1.72590 0.862948 0.505293i \(-0.168616\pi\)
0.862948 + 0.505293i \(0.168616\pi\)
\(758\) −24.6283 −0.894542
\(759\) 0 0
\(760\) −15.1145 −0.548260
\(761\) 44.3377 1.60724 0.803620 0.595143i \(-0.202904\pi\)
0.803620 + 0.595143i \(0.202904\pi\)
\(762\) 0 0
\(763\) 39.9958 1.44794
\(764\) 4.86878 0.176146
\(765\) 0 0
\(766\) −12.0000 −0.433578
\(767\) 34.6283 1.25036
\(768\) 0 0
\(769\) −19.6524 −0.708682 −0.354341 0.935116i \(-0.615295\pi\)
−0.354341 + 0.935116i \(0.615295\pi\)
\(770\) −32.2472 −1.16211
\(771\) 0 0
\(772\) −25.5321 −0.918922
\(773\) 6.36591 0.228966 0.114483 0.993425i \(-0.463479\pi\)
0.114483 + 0.993425i \(0.463479\pi\)
\(774\) 0 0
\(775\) 12.4914 0.448704
\(776\) −8.98326 −0.322480
\(777\) 0 0
\(778\) −10.4971 −0.376340
\(779\) −4.74857 −0.170135
\(780\) 0 0
\(781\) −26.2457 −0.939145
\(782\) 13.8630 0.495741
\(783\) 0 0
\(784\) 3.13122 0.111829
\(785\) 1.16469 0.0415695
\(786\) 0 0
\(787\) −43.7261 −1.55867 −0.779333 0.626610i \(-0.784442\pi\)
−0.779333 + 0.626610i \(0.784442\pi\)
\(788\) 10.6801 0.380462
\(789\) 0 0
\(790\) 23.2807 0.828290
\(791\) −29.0643 −1.03341
\(792\) 0 0
\(793\) 25.3476 0.900121
\(794\) 34.4287 1.22183
\(795\) 0 0
\(796\) 21.1255 0.748773
\(797\) 35.7204 1.26528 0.632640 0.774446i \(-0.281971\pi\)
0.632640 + 0.774446i \(0.281971\pi\)
\(798\) 0 0
\(799\) 11.2347 0.397455
\(800\) −5.13122 −0.181416
\(801\) 0 0
\(802\) 21.9665 0.775665
\(803\) −37.0125 −1.30614
\(804\) 0 0
\(805\) −70.2248 −2.47510
\(806\) 6.24570 0.219995
\(807\) 0 0
\(808\) 15.7486 0.554033
\(809\) 36.1662 1.27154 0.635768 0.771880i \(-0.280683\pi\)
0.635768 + 0.771880i \(0.280683\pi\)
\(810\) 0 0
\(811\) 34.8353 1.22323 0.611617 0.791154i \(-0.290520\pi\)
0.611617 + 0.791154i \(0.290520\pi\)
\(812\) 32.4119 1.13744
\(813\) 0 0
\(814\) −15.1145 −0.529762
\(815\) −42.3252 −1.48259
\(816\) 0 0
\(817\) 18.9943 0.664525
\(818\) 1.31991 0.0461497
\(819\) 0 0
\(820\) −3.18296 −0.111154
\(821\) 7.25669 0.253260 0.126630 0.991950i \(-0.459584\pi\)
0.126630 + 0.991950i \(0.459584\pi\)
\(822\) 0 0
\(823\) 47.0700 1.64076 0.820379 0.571821i \(-0.193763\pi\)
0.820379 + 0.571821i \(0.193763\pi\)
\(824\) −6.86878 −0.239285
\(825\) 0 0
\(826\) −42.9608 −1.49480
\(827\) −46.6743 −1.62303 −0.811513 0.584334i \(-0.801356\pi\)
−0.811513 + 0.584334i \(0.801356\pi\)
\(828\) 0 0
\(829\) 19.6173 0.681339 0.340669 0.940183i \(-0.389346\pi\)
0.340669 + 0.940183i \(0.389346\pi\)
\(830\) 28.2640 0.981056
\(831\) 0 0
\(832\) −2.56561 −0.0889465
\(833\) −6.26243 −0.216980
\(834\) 0 0
\(835\) −9.96653 −0.344906
\(836\) −15.1145 −0.522745
\(837\) 0 0
\(838\) 3.57661 0.123552
\(839\) 1.23470 0.0426265 0.0213133 0.999773i \(-0.493215\pi\)
0.0213133 + 0.999773i \(0.493215\pi\)
\(840\) 0 0
\(841\) 74.6926 2.57561
\(842\) −36.4287 −1.25541
\(843\) 0 0
\(844\) −5.25143 −0.180762
\(845\) −20.4271 −0.702714
\(846\) 0 0
\(847\) 2.76530 0.0950169
\(848\) −12.2974 −0.422296
\(849\) 0 0
\(850\) 10.2624 0.351999
\(851\) −32.9148 −1.12830
\(852\) 0 0
\(853\) −39.7428 −1.36077 −0.680384 0.732856i \(-0.738187\pi\)
−0.680384 + 0.732856i \(0.738187\pi\)
\(854\) −31.4469 −1.07609
\(855\) 0 0
\(856\) −7.06274 −0.241399
\(857\) −28.9775 −0.989853 −0.494927 0.868935i \(-0.664805\pi\)
−0.494927 + 0.868935i \(0.664805\pi\)
\(858\) 0 0
\(859\) −13.6226 −0.464797 −0.232399 0.972621i \(-0.574657\pi\)
−0.232399 + 0.972621i \(0.574657\pi\)
\(860\) 12.7318 0.434152
\(861\) 0 0
\(862\) 18.6911 0.636621
\(863\) 53.3267 1.81526 0.907631 0.419769i \(-0.137889\pi\)
0.907631 + 0.419769i \(0.137889\pi\)
\(864\) 0 0
\(865\) 13.9848 0.475497
\(866\) −27.9943 −0.951284
\(867\) 0 0
\(868\) −7.74857 −0.263003
\(869\) 23.2807 0.789744
\(870\) 0 0
\(871\) −14.1035 −0.477878
\(872\) 12.5656 0.425525
\(873\) 0 0
\(874\) −32.9148 −1.11336
\(875\) −1.32938 −0.0449412
\(876\) 0 0
\(877\) 15.6561 0.528668 0.264334 0.964431i \(-0.414848\pi\)
0.264334 + 0.964431i \(0.414848\pi\)
\(878\) 23.0920 0.779317
\(879\) 0 0
\(880\) −10.1312 −0.341523
\(881\) −10.3659 −0.349237 −0.174618 0.984636i \(-0.555869\pi\)
−0.174618 + 0.984636i \(0.555869\pi\)
\(882\) 0 0
\(883\) 36.2510 1.21994 0.609971 0.792424i \(-0.291181\pi\)
0.609971 + 0.792424i \(0.291181\pi\)
\(884\) 5.13122 0.172581
\(885\) 0 0
\(886\) 19.7596 0.663835
\(887\) −36.9608 −1.24102 −0.620511 0.784198i \(-0.713075\pi\)
−0.620511 + 0.784198i \(0.713075\pi\)
\(888\) 0 0
\(889\) 17.1327 0.574614
\(890\) 52.0920 1.74613
\(891\) 0 0
\(892\) −17.0977 −0.572475
\(893\) −26.6743 −0.892623
\(894\) 0 0
\(895\) 56.6926 1.89503
\(896\) 3.18296 0.106335
\(897\) 0 0
\(898\) 2.12548 0.0709281
\(899\) −24.7893 −0.826770
\(900\) 0 0
\(901\) 24.5949 0.819374
\(902\) −3.18296 −0.105981
\(903\) 0 0
\(904\) −9.13122 −0.303700
\(905\) 40.7246 1.35373
\(906\) 0 0
\(907\) −7.33091 −0.243419 −0.121709 0.992566i \(-0.538838\pi\)
−0.121709 + 0.992566i \(0.538838\pi\)
\(908\) 3.68009 0.122128
\(909\) 0 0
\(910\) −25.9927 −0.861651
\(911\) −49.6926 −1.64639 −0.823195 0.567759i \(-0.807811\pi\)
−0.823195 + 0.567759i \(0.807811\pi\)
\(912\) 0 0
\(913\) 28.2640 0.935401
\(914\) −7.06274 −0.233615
\(915\) 0 0
\(916\) −16.3659 −0.540745
\(917\) 14.9498 0.493686
\(918\) 0 0
\(919\) 2.29218 0.0756120 0.0378060 0.999285i \(-0.487963\pi\)
0.0378060 + 0.999285i \(0.487963\pi\)
\(920\) −22.0627 −0.727387
\(921\) 0 0
\(922\) −26.8630 −0.884687
\(923\) −21.1552 −0.696333
\(924\) 0 0
\(925\) −24.3659 −0.801146
\(926\) −17.9943 −0.591328
\(927\) 0 0
\(928\) 10.1830 0.334272
\(929\) 51.7554 1.69804 0.849019 0.528362i \(-0.177194\pi\)
0.849019 + 0.528362i \(0.177194\pi\)
\(930\) 0 0
\(931\) 14.8688 0.487305
\(932\) −11.8630 −0.388587
\(933\) 0 0
\(934\) −12.6173 −0.412852
\(935\) 20.2624 0.662652
\(936\) 0 0
\(937\) −14.9593 −0.488698 −0.244349 0.969687i \(-0.578574\pi\)
−0.244349 + 0.969687i \(0.578574\pi\)
\(938\) 17.4971 0.571302
\(939\) 0 0
\(940\) −17.8798 −0.583174
\(941\) 24.4397 0.796710 0.398355 0.917231i \(-0.369581\pi\)
0.398355 + 0.917231i \(0.369581\pi\)
\(942\) 0 0
\(943\) −6.93152 −0.225721
\(944\) −13.4971 −0.439294
\(945\) 0 0
\(946\) 12.7318 0.413947
\(947\) 11.9890 0.389590 0.194795 0.980844i \(-0.437596\pi\)
0.194795 + 0.980844i \(0.437596\pi\)
\(948\) 0 0
\(949\) −29.8338 −0.968445
\(950\) −24.3659 −0.790535
\(951\) 0 0
\(952\) −6.36591 −0.206320
\(953\) 14.3994 0.466442 0.233221 0.972424i \(-0.425073\pi\)
0.233221 + 0.972424i \(0.425073\pi\)
\(954\) 0 0
\(955\) 15.4971 0.501475
\(956\) −12.7318 −0.411777
\(957\) 0 0
\(958\) 8.48613 0.274175
\(959\) −38.7246 −1.25048
\(960\) 0 0
\(961\) −25.0737 −0.808830
\(962\) −12.1830 −0.392794
\(963\) 0 0
\(964\) 28.5489 0.919497
\(965\) −81.2677 −2.61610
\(966\) 0 0
\(967\) −11.8353 −0.380598 −0.190299 0.981726i \(-0.560946\pi\)
−0.190299 + 0.981726i \(0.560946\pi\)
\(968\) 0.868784 0.0279238
\(969\) 0 0
\(970\) −28.5933 −0.918077
\(971\) 15.4914 0.497142 0.248571 0.968614i \(-0.420039\pi\)
0.248571 + 0.968614i \(0.420039\pi\)
\(972\) 0 0
\(973\) 37.2305 1.19355
\(974\) 10.0460 0.321895
\(975\) 0 0
\(976\) −9.87978 −0.316244
\(977\) −49.3894 −1.58011 −0.790054 0.613037i \(-0.789948\pi\)
−0.790054 + 0.613037i \(0.789948\pi\)
\(978\) 0 0
\(979\) 52.0920 1.66487
\(980\) 9.96653 0.318369
\(981\) 0 0
\(982\) −7.34918 −0.234522
\(983\) −10.7026 −0.341359 −0.170679 0.985327i \(-0.554596\pi\)
−0.170679 + 0.985327i \(0.554596\pi\)
\(984\) 0 0
\(985\) 33.9943 1.08315
\(986\) −20.3659 −0.648583
\(987\) 0 0
\(988\) −12.1830 −0.387591
\(989\) 27.7261 0.881638
\(990\) 0 0
\(991\) 33.6409 1.06864 0.534319 0.845283i \(-0.320568\pi\)
0.534319 + 0.845283i \(0.320568\pi\)
\(992\) −2.43439 −0.0772920
\(993\) 0 0
\(994\) 26.2457 0.832463
\(995\) 67.2415 2.13170
\(996\) 0 0
\(997\) 3.42291 0.108405 0.0542024 0.998530i \(-0.482738\pi\)
0.0542024 + 0.998530i \(0.482738\pi\)
\(998\) 12.0167 0.380383
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2214.2.a.m.1.3 3
3.2 odd 2 2214.2.a.p.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2214.2.a.m.1.3 3 1.1 even 1 trivial
2214.2.a.p.1.1 yes 3 3.2 odd 2