Properties

Label 2-2214-1.1-c1-0-39
Degree $2$
Conductor $2214$
Sign $-1$
Analytic cond. $17.6788$
Root an. cond. $4.20462$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3.18·5-s − 3.18·7-s − 8-s − 3.18·10-s − 3.18·11-s − 2.56·13-s + 3.18·14-s + 16-s − 2·17-s + 4.74·19-s + 3.18·20-s + 3.18·22-s + 6.93·23-s + 5.13·25-s + 2.56·26-s − 3.18·28-s − 10.1·29-s + 2.43·31-s − 32-s + 2·34-s − 10.1·35-s − 4.74·37-s − 4.74·38-s − 3.18·40-s − 41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.42·5-s − 1.20·7-s − 0.353·8-s − 1.00·10-s − 0.959·11-s − 0.711·13-s + 0.850·14-s + 0.250·16-s − 0.485·17-s + 1.08·19-s + 0.711·20-s + 0.678·22-s + 1.44·23-s + 1.02·25-s + 0.503·26-s − 0.601·28-s − 1.89·29-s + 0.437·31-s − 0.176·32-s + 0.342·34-s − 1.71·35-s − 0.780·37-s − 0.770·38-s − 0.503·40-s − 0.156·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2214\)    =    \(2 \cdot 3^{3} \cdot 41\)
Sign: $-1$
Analytic conductor: \(17.6788\)
Root analytic conductor: \(4.20462\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2214,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
41 \( 1 + T \)
good5 \( 1 - 3.18T + 5T^{2} \)
7 \( 1 + 3.18T + 7T^{2} \)
11 \( 1 + 3.18T + 11T^{2} \)
13 \( 1 + 2.56T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 - 4.74T + 19T^{2} \)
23 \( 1 - 6.93T + 23T^{2} \)
29 \( 1 + 10.1T + 29T^{2} \)
31 \( 1 - 2.43T + 31T^{2} \)
37 \( 1 + 4.74T + 37T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 5.61T + 47T^{2} \)
53 \( 1 + 12.2T + 53T^{2} \)
59 \( 1 + 13.4T + 59T^{2} \)
61 \( 1 + 9.87T + 61T^{2} \)
67 \( 1 - 5.49T + 67T^{2} \)
71 \( 1 - 8.24T + 71T^{2} \)
73 \( 1 - 11.6T + 73T^{2} \)
79 \( 1 + 7.31T + 79T^{2} \)
83 \( 1 + 8.87T + 83T^{2} \)
89 \( 1 + 16.3T + 89T^{2} \)
97 \( 1 - 8.98T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.043947351209761195094562866071, −7.84111288222427836742114043914, −7.09815502580848816133797920626, −6.41050265507106109942546562679, −5.60372409793456316728915840105, −4.96268227894045167064751909168, −3.25573466520558379644566371901, −2.64356150539194671726985106488, −1.59514033818002323082254662873, 0, 1.59514033818002323082254662873, 2.64356150539194671726985106488, 3.25573466520558379644566371901, 4.96268227894045167064751909168, 5.60372409793456316728915840105, 6.41050265507106109942546562679, 7.09815502580848816133797920626, 7.84111288222427836742114043914, 9.043947351209761195094562866071

Graph of the $Z$-function along the critical line