Properties

Label 221.2.m.a.205.1
Level $221$
Weight $2$
Character 221.205
Analytic conductor $1.765$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [221,2,Mod(69,221)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("221.69"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(221, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 221 = 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 221.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.76469388467\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 205.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 221.205
Dual form 221.2.m.a.69.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{4} +3.46410i q^{5} +(1.50000 + 0.866025i) q^{6} +(-1.50000 - 0.866025i) q^{7} +1.73205i q^{8} +(1.00000 - 1.73205i) q^{9} +(3.00000 + 5.19615i) q^{10} +(3.00000 - 1.73205i) q^{11} +1.00000 q^{12} +(-1.00000 - 3.46410i) q^{13} -3.00000 q^{14} +(-3.00000 + 1.73205i) q^{15} +(2.50000 + 4.33013i) q^{16} +(0.500000 - 0.866025i) q^{17} -3.46410i q^{18} +(-6.00000 - 3.46410i) q^{19} +(3.00000 + 1.73205i) q^{20} -1.73205i q^{21} +(3.00000 - 5.19615i) q^{22} +(-1.50000 - 2.59808i) q^{23} +(-1.50000 + 0.866025i) q^{24} -7.00000 q^{25} +(-4.50000 - 4.33013i) q^{26} +5.00000 q^{27} +(-1.50000 + 0.866025i) q^{28} +(3.00000 + 5.19615i) q^{29} +(-3.00000 + 5.19615i) q^{30} -1.73205i q^{31} +(4.50000 + 2.59808i) q^{32} +(3.00000 + 1.73205i) q^{33} -1.73205i q^{34} +(3.00000 - 5.19615i) q^{35} +(-1.00000 - 1.73205i) q^{36} +(6.00000 - 3.46410i) q^{37} -12.0000 q^{38} +(2.50000 - 2.59808i) q^{39} -6.00000 q^{40} +(-6.00000 + 3.46410i) q^{41} +(-1.50000 - 2.59808i) q^{42} +(-4.00000 + 6.92820i) q^{43} -3.46410i q^{44} +(6.00000 + 3.46410i) q^{45} +(-4.50000 - 2.59808i) q^{46} +3.46410i q^{47} +(-2.50000 + 4.33013i) q^{48} +(-2.00000 - 3.46410i) q^{49} +(-10.5000 + 6.06218i) q^{50} +1.00000 q^{51} +(-3.50000 - 0.866025i) q^{52} +9.00000 q^{53} +(7.50000 - 4.33013i) q^{54} +(6.00000 + 10.3923i) q^{55} +(1.50000 - 2.59808i) q^{56} -6.92820i q^{57} +(9.00000 + 5.19615i) q^{58} +(-12.0000 - 6.92820i) q^{59} +3.46410i q^{60} +(-2.00000 + 3.46410i) q^{61} +(-1.50000 - 2.59808i) q^{62} +(-3.00000 + 1.73205i) q^{63} -1.00000 q^{64} +(12.0000 - 3.46410i) q^{65} +6.00000 q^{66} +(-0.500000 - 0.866025i) q^{68} +(1.50000 - 2.59808i) q^{69} -10.3923i q^{70} +(3.00000 + 1.73205i) q^{71} +(3.00000 + 1.73205i) q^{72} +13.8564i q^{73} +(6.00000 - 10.3923i) q^{74} +(-3.50000 - 6.06218i) q^{75} +(-6.00000 + 3.46410i) q^{76} -6.00000 q^{77} +(1.50000 - 6.06218i) q^{78} +1.00000 q^{79} +(-15.0000 + 8.66025i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-6.00000 + 10.3923i) q^{82} -10.3923i q^{83} +(-1.50000 - 0.866025i) q^{84} +(3.00000 + 1.73205i) q^{85} +13.8564i q^{86} +(-3.00000 + 5.19615i) q^{87} +(3.00000 + 5.19615i) q^{88} +(-13.5000 + 7.79423i) q^{89} +12.0000 q^{90} +(-1.50000 + 6.06218i) q^{91} -3.00000 q^{92} +(1.50000 - 0.866025i) q^{93} +(3.00000 + 5.19615i) q^{94} +(12.0000 - 20.7846i) q^{95} +5.19615i q^{96} +(-6.00000 - 3.46410i) q^{97} +(-6.00000 - 3.46410i) q^{98} -6.92820i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + q^{3} + q^{4} + 3 q^{6} - 3 q^{7} + 2 q^{9} + 6 q^{10} + 6 q^{11} + 2 q^{12} - 2 q^{13} - 6 q^{14} - 6 q^{15} + 5 q^{16} + q^{17} - 12 q^{19} + 6 q^{20} + 6 q^{22} - 3 q^{23} - 3 q^{24}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/221\mathbb{Z}\right)^\times\).

\(n\) \(105\) \(171\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50000 0.866025i 1.06066 0.612372i 0.135045 0.990839i \(-0.456882\pi\)
0.925615 + 0.378467i \(0.123549\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 3.46410i 1.54919i 0.632456 + 0.774597i \(0.282047\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 1.50000 + 0.866025i 0.612372 + 0.353553i
\(7\) −1.50000 0.866025i −0.566947 0.327327i 0.188982 0.981981i \(-0.439481\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.73205i 0.612372i
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 3.00000 + 5.19615i 0.948683 + 1.64317i
\(11\) 3.00000 1.73205i 0.904534 0.522233i 0.0258656 0.999665i \(-0.491766\pi\)
0.878668 + 0.477432i \(0.158432\pi\)
\(12\) 1.00000 0.288675
\(13\) −1.00000 3.46410i −0.277350 0.960769i
\(14\) −3.00000 −0.801784
\(15\) −3.00000 + 1.73205i −0.774597 + 0.447214i
\(16\) 2.50000 + 4.33013i 0.625000 + 1.08253i
\(17\) 0.500000 0.866025i 0.121268 0.210042i
\(18\) 3.46410i 0.816497i
\(19\) −6.00000 3.46410i −1.37649 0.794719i −0.384759 0.923017i \(-0.625715\pi\)
−0.991736 + 0.128298i \(0.959049\pi\)
\(20\) 3.00000 + 1.73205i 0.670820 + 0.387298i
\(21\) 1.73205i 0.377964i
\(22\) 3.00000 5.19615i 0.639602 1.10782i
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) −1.50000 + 0.866025i −0.306186 + 0.176777i
\(25\) −7.00000 −1.40000
\(26\) −4.50000 4.33013i −0.882523 0.849208i
\(27\) 5.00000 0.962250
\(28\) −1.50000 + 0.866025i −0.283473 + 0.163663i
\(29\) 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i \(0.0214140\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(30\) −3.00000 + 5.19615i −0.547723 + 0.948683i
\(31\) 1.73205i 0.311086i −0.987829 0.155543i \(-0.950287\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 4.50000 + 2.59808i 0.795495 + 0.459279i
\(33\) 3.00000 + 1.73205i 0.522233 + 0.301511i
\(34\) 1.73205i 0.297044i
\(35\) 3.00000 5.19615i 0.507093 0.878310i
\(36\) −1.00000 1.73205i −0.166667 0.288675i
\(37\) 6.00000 3.46410i 0.986394 0.569495i 0.0821995 0.996616i \(-0.473806\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) −12.0000 −1.94666
\(39\) 2.50000 2.59808i 0.400320 0.416025i
\(40\) −6.00000 −0.948683
\(41\) −6.00000 + 3.46410i −0.937043 + 0.541002i −0.889032 0.457845i \(-0.848621\pi\)
−0.0480106 + 0.998847i \(0.515288\pi\)
\(42\) −1.50000 2.59808i −0.231455 0.400892i
\(43\) −4.00000 + 6.92820i −0.609994 + 1.05654i 0.381246 + 0.924473i \(0.375495\pi\)
−0.991241 + 0.132068i \(0.957838\pi\)
\(44\) 3.46410i 0.522233i
\(45\) 6.00000 + 3.46410i 0.894427 + 0.516398i
\(46\) −4.50000 2.59808i −0.663489 0.383065i
\(47\) 3.46410i 0.505291i 0.967559 + 0.252646i \(0.0813007\pi\)
−0.967559 + 0.252646i \(0.918699\pi\)
\(48\) −2.50000 + 4.33013i −0.360844 + 0.625000i
\(49\) −2.00000 3.46410i −0.285714 0.494872i
\(50\) −10.5000 + 6.06218i −1.48492 + 0.857321i
\(51\) 1.00000 0.140028
\(52\) −3.50000 0.866025i −0.485363 0.120096i
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 7.50000 4.33013i 1.02062 0.589256i
\(55\) 6.00000 + 10.3923i 0.809040 + 1.40130i
\(56\) 1.50000 2.59808i 0.200446 0.347183i
\(57\) 6.92820i 0.917663i
\(58\) 9.00000 + 5.19615i 1.18176 + 0.682288i
\(59\) −12.0000 6.92820i −1.56227 0.901975i −0.997027 0.0770484i \(-0.975450\pi\)
−0.565240 0.824927i \(-0.691216\pi\)
\(60\) 3.46410i 0.447214i
\(61\) −2.00000 + 3.46410i −0.256074 + 0.443533i −0.965187 0.261562i \(-0.915762\pi\)
0.709113 + 0.705095i \(0.249096\pi\)
\(62\) −1.50000 2.59808i −0.190500 0.329956i
\(63\) −3.00000 + 1.73205i −0.377964 + 0.218218i
\(64\) −1.00000 −0.125000
\(65\) 12.0000 3.46410i 1.48842 0.429669i
\(66\) 6.00000 0.738549
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) −0.500000 0.866025i −0.0606339 0.105021i
\(69\) 1.50000 2.59808i 0.180579 0.312772i
\(70\) 10.3923i 1.24212i
\(71\) 3.00000 + 1.73205i 0.356034 + 0.205557i 0.667340 0.744753i \(-0.267433\pi\)
−0.311305 + 0.950310i \(0.600766\pi\)
\(72\) 3.00000 + 1.73205i 0.353553 + 0.204124i
\(73\) 13.8564i 1.62177i 0.585206 + 0.810885i \(0.301014\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 6.00000 10.3923i 0.697486 1.20808i
\(75\) −3.50000 6.06218i −0.404145 0.700000i
\(76\) −6.00000 + 3.46410i −0.688247 + 0.397360i
\(77\) −6.00000 −0.683763
\(78\) 1.50000 6.06218i 0.169842 0.686406i
\(79\) 1.00000 0.112509 0.0562544 0.998416i \(-0.482084\pi\)
0.0562544 + 0.998416i \(0.482084\pi\)
\(80\) −15.0000 + 8.66025i −1.67705 + 0.968246i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −6.00000 + 10.3923i −0.662589 + 1.14764i
\(83\) 10.3923i 1.14070i −0.821401 0.570352i \(-0.806807\pi\)
0.821401 0.570352i \(-0.193193\pi\)
\(84\) −1.50000 0.866025i −0.163663 0.0944911i
\(85\) 3.00000 + 1.73205i 0.325396 + 0.187867i
\(86\) 13.8564i 1.49417i
\(87\) −3.00000 + 5.19615i −0.321634 + 0.557086i
\(88\) 3.00000 + 5.19615i 0.319801 + 0.553912i
\(89\) −13.5000 + 7.79423i −1.43100 + 0.826187i −0.997197 0.0748225i \(-0.976161\pi\)
−0.433800 + 0.901009i \(0.642828\pi\)
\(90\) 12.0000 1.26491
\(91\) −1.50000 + 6.06218i −0.157243 + 0.635489i
\(92\) −3.00000 −0.312772
\(93\) 1.50000 0.866025i 0.155543 0.0898027i
\(94\) 3.00000 + 5.19615i 0.309426 + 0.535942i
\(95\) 12.0000 20.7846i 1.23117 2.13246i
\(96\) 5.19615i 0.530330i
\(97\) −6.00000 3.46410i −0.609208 0.351726i 0.163448 0.986552i \(-0.447739\pi\)
−0.772655 + 0.634826i \(0.781072\pi\)
\(98\) −6.00000 3.46410i −0.606092 0.349927i
\(99\) 6.92820i 0.696311i
\(100\) −3.50000 + 6.06218i −0.350000 + 0.606218i
\(101\) −3.00000 5.19615i −0.298511 0.517036i 0.677284 0.735721i \(-0.263157\pi\)
−0.975796 + 0.218685i \(0.929823\pi\)
\(102\) 1.50000 0.866025i 0.148522 0.0857493i
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 6.00000 1.73205i 0.588348 0.169842i
\(105\) 6.00000 0.585540
\(106\) 13.5000 7.79423i 1.31124 0.757042i
\(107\) −6.00000 10.3923i −0.580042 1.00466i −0.995474 0.0950377i \(-0.969703\pi\)
0.415432 0.909624i \(-0.363630\pi\)
\(108\) 2.50000 4.33013i 0.240563 0.416667i
\(109\) 13.8564i 1.32720i 0.748086 + 0.663602i \(0.230973\pi\)
−0.748086 + 0.663602i \(0.769027\pi\)
\(110\) 18.0000 + 10.3923i 1.71623 + 0.990867i
\(111\) 6.00000 + 3.46410i 0.569495 + 0.328798i
\(112\) 8.66025i 0.818317i
\(113\) 3.00000 5.19615i 0.282216 0.488813i −0.689714 0.724082i \(-0.742264\pi\)
0.971930 + 0.235269i \(0.0755971\pi\)
\(114\) −6.00000 10.3923i −0.561951 0.973329i
\(115\) 9.00000 5.19615i 0.839254 0.484544i
\(116\) 6.00000 0.557086
\(117\) −7.00000 1.73205i −0.647150 0.160128i
\(118\) −24.0000 −2.20938
\(119\) −1.50000 + 0.866025i −0.137505 + 0.0793884i
\(120\) −3.00000 5.19615i −0.273861 0.474342i
\(121\) 0.500000 0.866025i 0.0454545 0.0787296i
\(122\) 6.92820i 0.627250i
\(123\) −6.00000 3.46410i −0.541002 0.312348i
\(124\) −1.50000 0.866025i −0.134704 0.0777714i
\(125\) 6.92820i 0.619677i
\(126\) −3.00000 + 5.19615i −0.267261 + 0.462910i
\(127\) 1.00000 + 1.73205i 0.0887357 + 0.153695i 0.906977 0.421180i \(-0.138384\pi\)
−0.818241 + 0.574875i \(0.805051\pi\)
\(128\) −10.5000 + 6.06218i −0.928078 + 0.535826i
\(129\) −8.00000 −0.704361
\(130\) 15.0000 15.5885i 1.31559 1.36720i
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 3.00000 1.73205i 0.261116 0.150756i
\(133\) 6.00000 + 10.3923i 0.520266 + 0.901127i
\(134\) 0 0
\(135\) 17.3205i 1.49071i
\(136\) 1.50000 + 0.866025i 0.128624 + 0.0742611i
\(137\) 19.5000 + 11.2583i 1.66600 + 0.961864i 0.969763 + 0.244050i \(0.0784761\pi\)
0.696235 + 0.717814i \(0.254857\pi\)
\(138\) 5.19615i 0.442326i
\(139\) 6.50000 11.2583i 0.551323 0.954919i −0.446857 0.894606i \(-0.647457\pi\)
0.998179 0.0603135i \(-0.0192101\pi\)
\(140\) −3.00000 5.19615i −0.253546 0.439155i
\(141\) −3.00000 + 1.73205i −0.252646 + 0.145865i
\(142\) 6.00000 0.503509
\(143\) −9.00000 8.66025i −0.752618 0.724207i
\(144\) 10.0000 0.833333
\(145\) −18.0000 + 10.3923i −1.49482 + 0.863034i
\(146\) 12.0000 + 20.7846i 0.993127 + 1.72015i
\(147\) 2.00000 3.46410i 0.164957 0.285714i
\(148\) 6.92820i 0.569495i
\(149\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) −10.5000 6.06218i −0.857321 0.494975i
\(151\) 6.92820i 0.563809i 0.959442 + 0.281905i \(0.0909662\pi\)
−0.959442 + 0.281905i \(0.909034\pi\)
\(152\) 6.00000 10.3923i 0.486664 0.842927i
\(153\) −1.00000 1.73205i −0.0808452 0.140028i
\(154\) −9.00000 + 5.19615i −0.725241 + 0.418718i
\(155\) 6.00000 0.481932
\(156\) −1.00000 3.46410i −0.0800641 0.277350i
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) 1.50000 0.866025i 0.119334 0.0688973i
\(159\) 4.50000 + 7.79423i 0.356873 + 0.618123i
\(160\) −9.00000 + 15.5885i −0.711512 + 1.23238i
\(161\) 5.19615i 0.409514i
\(162\) −1.50000 0.866025i −0.117851 0.0680414i
\(163\) −9.00000 5.19615i −0.704934 0.406994i 0.104248 0.994551i \(-0.466756\pi\)
−0.809183 + 0.587557i \(0.800090\pi\)
\(164\) 6.92820i 0.541002i
\(165\) −6.00000 + 10.3923i −0.467099 + 0.809040i
\(166\) −9.00000 15.5885i −0.698535 1.20990i
\(167\) −7.50000 + 4.33013i −0.580367 + 0.335075i −0.761279 0.648424i \(-0.775428\pi\)
0.180912 + 0.983499i \(0.442095\pi\)
\(168\) 3.00000 0.231455
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 6.00000 0.460179
\(171\) −12.0000 + 6.92820i −0.917663 + 0.529813i
\(172\) 4.00000 + 6.92820i 0.304997 + 0.528271i
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 10.3923i 0.787839i
\(175\) 10.5000 + 6.06218i 0.793725 + 0.458258i
\(176\) 15.0000 + 8.66025i 1.13067 + 0.652791i
\(177\) 13.8564i 1.04151i
\(178\) −13.5000 + 23.3827i −1.01187 + 1.75261i
\(179\) 3.00000 + 5.19615i 0.224231 + 0.388379i 0.956088 0.293079i \(-0.0946798\pi\)
−0.731858 + 0.681457i \(0.761346\pi\)
\(180\) 6.00000 3.46410i 0.447214 0.258199i
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 3.00000 + 10.3923i 0.222375 + 0.770329i
\(183\) −4.00000 −0.295689
\(184\) 4.50000 2.59808i 0.331744 0.191533i
\(185\) 12.0000 + 20.7846i 0.882258 + 1.52811i
\(186\) 1.50000 2.59808i 0.109985 0.190500i
\(187\) 3.46410i 0.253320i
\(188\) 3.00000 + 1.73205i 0.218797 + 0.126323i
\(189\) −7.50000 4.33013i −0.545545 0.314970i
\(190\) 41.5692i 3.01575i
\(191\) 3.00000 5.19615i 0.217072 0.375980i −0.736839 0.676068i \(-0.763683\pi\)
0.953912 + 0.300088i \(0.0970159\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) −12.0000 + 6.92820i −0.863779 + 0.498703i −0.865276 0.501296i \(-0.832857\pi\)
0.00149702 + 0.999999i \(0.499523\pi\)
\(194\) −12.0000 −0.861550
\(195\) 9.00000 + 8.66025i 0.644503 + 0.620174i
\(196\) −4.00000 −0.285714
\(197\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) −6.00000 10.3923i −0.426401 0.738549i
\(199\) −8.00000 + 13.8564i −0.567105 + 0.982255i 0.429745 + 0.902950i \(0.358603\pi\)
−0.996850 + 0.0793045i \(0.974730\pi\)
\(200\) 12.1244i 0.857321i
\(201\) 0 0
\(202\) −9.00000 5.19615i −0.633238 0.365600i
\(203\) 10.3923i 0.729397i
\(204\) 0.500000 0.866025i 0.0350070 0.0606339i
\(205\) −12.0000 20.7846i −0.838116 1.45166i
\(206\) 21.0000 12.1244i 1.46314 0.844744i
\(207\) −6.00000 −0.417029
\(208\) 12.5000 12.9904i 0.866719 0.900721i
\(209\) −24.0000 −1.66011
\(210\) 9.00000 5.19615i 0.621059 0.358569i
\(211\) −6.50000 11.2583i −0.447478 0.775055i 0.550743 0.834675i \(-0.314345\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) 4.50000 7.79423i 0.309061 0.535310i
\(213\) 3.46410i 0.237356i
\(214\) −18.0000 10.3923i −1.23045 0.710403i
\(215\) −24.0000 13.8564i −1.63679 0.944999i
\(216\) 8.66025i 0.589256i
\(217\) −1.50000 + 2.59808i −0.101827 + 0.176369i
\(218\) 12.0000 + 20.7846i 0.812743 + 1.40771i
\(219\) −12.0000 + 6.92820i −0.810885 + 0.468165i
\(220\) 12.0000 0.809040
\(221\) −3.50000 0.866025i −0.235435 0.0582552i
\(222\) 12.0000 0.805387
\(223\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(224\) −4.50000 7.79423i −0.300669 0.520774i
\(225\) −7.00000 + 12.1244i −0.466667 + 0.808290i
\(226\) 10.3923i 0.691286i
\(227\) 7.50000 + 4.33013i 0.497792 + 0.287401i 0.727801 0.685788i \(-0.240542\pi\)
−0.230009 + 0.973189i \(0.573876\pi\)
\(228\) −6.00000 3.46410i −0.397360 0.229416i
\(229\) 15.5885i 1.03011i −0.857156 0.515057i \(-0.827771\pi\)
0.857156 0.515057i \(-0.172229\pi\)
\(230\) 9.00000 15.5885i 0.593442 1.02787i
\(231\) −3.00000 5.19615i −0.197386 0.341882i
\(232\) −9.00000 + 5.19615i −0.590879 + 0.341144i
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) −12.0000 + 3.46410i −0.784465 + 0.226455i
\(235\) −12.0000 −0.782794
\(236\) −12.0000 + 6.92820i −0.781133 + 0.450988i
\(237\) 0.500000 + 0.866025i 0.0324785 + 0.0562544i
\(238\) −1.50000 + 2.59808i −0.0972306 + 0.168408i
\(239\) 24.2487i 1.56852i −0.620433 0.784259i \(-0.713043\pi\)
0.620433 0.784259i \(-0.286957\pi\)
\(240\) −15.0000 8.66025i −0.968246 0.559017i
\(241\) 12.0000 + 6.92820i 0.772988 + 0.446285i 0.833939 0.551856i \(-0.186080\pi\)
−0.0609515 + 0.998141i \(0.519414\pi\)
\(242\) 1.73205i 0.111340i
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 2.00000 + 3.46410i 0.128037 + 0.221766i
\(245\) 12.0000 6.92820i 0.766652 0.442627i
\(246\) −12.0000 −0.765092
\(247\) −6.00000 + 24.2487i −0.381771 + 1.54291i
\(248\) 3.00000 0.190500
\(249\) 9.00000 5.19615i 0.570352 0.329293i
\(250\) −6.00000 10.3923i −0.379473 0.657267i
\(251\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) 3.46410i 0.218218i
\(253\) −9.00000 5.19615i −0.565825 0.326679i
\(254\) 3.00000 + 1.73205i 0.188237 + 0.108679i
\(255\) 3.46410i 0.216930i
\(256\) −9.50000 + 16.4545i −0.593750 + 1.02841i
\(257\) 3.00000 + 5.19615i 0.187135 + 0.324127i 0.944294 0.329104i \(-0.106747\pi\)
−0.757159 + 0.653231i \(0.773413\pi\)
\(258\) −12.0000 + 6.92820i −0.747087 + 0.431331i
\(259\) −12.0000 −0.745644
\(260\) 3.00000 12.1244i 0.186052 0.751921i
\(261\) 12.0000 0.742781
\(262\) 18.0000 10.3923i 1.11204 0.642039i
\(263\) −6.00000 10.3923i −0.369976 0.640817i 0.619586 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(264\) −3.00000 + 5.19615i −0.184637 + 0.319801i
\(265\) 31.1769i 1.91518i
\(266\) 18.0000 + 10.3923i 1.10365 + 0.637193i
\(267\) −13.5000 7.79423i −0.826187 0.476999i
\(268\) 0 0
\(269\) −12.0000 + 20.7846i −0.731653 + 1.26726i 0.224523 + 0.974469i \(0.427917\pi\)
−0.956176 + 0.292791i \(0.905416\pi\)
\(270\) 15.0000 + 25.9808i 0.912871 + 1.58114i
\(271\) −15.0000 + 8.66025i −0.911185 + 0.526073i −0.880812 0.473466i \(-0.843003\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 5.00000 0.303170
\(273\) −6.00000 + 1.73205i −0.363137 + 0.104828i
\(274\) 39.0000 2.35608
\(275\) −21.0000 + 12.1244i −1.26635 + 0.731126i
\(276\) −1.50000 2.59808i −0.0902894 0.156386i
\(277\) −13.0000 + 22.5167i −0.781094 + 1.35290i 0.150210 + 0.988654i \(0.452005\pi\)
−0.931305 + 0.364241i \(0.881328\pi\)
\(278\) 22.5167i 1.35046i
\(279\) −3.00000 1.73205i −0.179605 0.103695i
\(280\) 9.00000 + 5.19615i 0.537853 + 0.310530i
\(281\) 1.73205i 0.103325i 0.998665 + 0.0516627i \(0.0164521\pi\)
−0.998665 + 0.0516627i \(0.983548\pi\)
\(282\) −3.00000 + 5.19615i −0.178647 + 0.309426i
\(283\) −0.500000 0.866025i −0.0297219 0.0514799i 0.850782 0.525519i \(-0.176129\pi\)
−0.880504 + 0.474039i \(0.842796\pi\)
\(284\) 3.00000 1.73205i 0.178017 0.102778i
\(285\) 24.0000 1.42164
\(286\) −21.0000 5.19615i −1.24176 0.307255i
\(287\) 12.0000 0.708338
\(288\) 9.00000 5.19615i 0.530330 0.306186i
\(289\) −0.500000 0.866025i −0.0294118 0.0509427i
\(290\) −18.0000 + 31.1769i −1.05700 + 1.83077i
\(291\) 6.92820i 0.406138i
\(292\) 12.0000 + 6.92820i 0.702247 + 0.405442i
\(293\) 13.5000 + 7.79423i 0.788678 + 0.455344i 0.839497 0.543364i \(-0.182850\pi\)
−0.0508187 + 0.998708i \(0.516183\pi\)
\(294\) 6.92820i 0.404061i
\(295\) 24.0000 41.5692i 1.39733 2.42025i
\(296\) 6.00000 + 10.3923i 0.348743 + 0.604040i
\(297\) 15.0000 8.66025i 0.870388 0.502519i
\(298\) 0 0
\(299\) −7.50000 + 7.79423i −0.433736 + 0.450752i
\(300\) −7.00000 −0.404145
\(301\) 12.0000 6.92820i 0.691669 0.399335i
\(302\) 6.00000 + 10.3923i 0.345261 + 0.598010i
\(303\) 3.00000 5.19615i 0.172345 0.298511i
\(304\) 34.6410i 1.98680i
\(305\) −12.0000 6.92820i −0.687118 0.396708i
\(306\) −3.00000 1.73205i −0.171499 0.0990148i
\(307\) 3.46410i 0.197707i −0.995102 0.0988534i \(-0.968483\pi\)
0.995102 0.0988534i \(-0.0315175\pi\)
\(308\) −3.00000 + 5.19615i −0.170941 + 0.296078i
\(309\) 7.00000 + 12.1244i 0.398216 + 0.689730i
\(310\) 9.00000 5.19615i 0.511166 0.295122i
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 4.50000 + 4.33013i 0.254762 + 0.245145i
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 7.50000 4.33013i 0.423249 0.244363i
\(315\) −6.00000 10.3923i −0.338062 0.585540i
\(316\) 0.500000 0.866025i 0.0281272 0.0487177i
\(317\) 10.3923i 0.583690i 0.956466 + 0.291845i \(0.0942691\pi\)
−0.956466 + 0.291845i \(0.905731\pi\)
\(318\) 13.5000 + 7.79423i 0.757042 + 0.437079i
\(319\) 18.0000 + 10.3923i 1.00781 + 0.581857i
\(320\) 3.46410i 0.193649i
\(321\) 6.00000 10.3923i 0.334887 0.580042i
\(322\) 4.50000 + 7.79423i 0.250775 + 0.434355i
\(323\) −6.00000 + 3.46410i −0.333849 + 0.192748i
\(324\) −1.00000 −0.0555556
\(325\) 7.00000 + 24.2487i 0.388290 + 1.34508i
\(326\) −18.0000 −0.996928
\(327\) −12.0000 + 6.92820i −0.663602 + 0.383131i
\(328\) −6.00000 10.3923i −0.331295 0.573819i
\(329\) 3.00000 5.19615i 0.165395 0.286473i
\(330\) 20.7846i 1.14416i
\(331\) −9.00000 5.19615i −0.494685 0.285606i 0.231831 0.972756i \(-0.425528\pi\)
−0.726516 + 0.687150i \(0.758862\pi\)
\(332\) −9.00000 5.19615i −0.493939 0.285176i
\(333\) 13.8564i 0.759326i
\(334\) −7.50000 + 12.9904i −0.410382 + 0.710802i
\(335\) 0 0
\(336\) 7.50000 4.33013i 0.409159 0.236228i
\(337\) 4.00000 0.217894 0.108947 0.994048i \(-0.465252\pi\)
0.108947 + 0.994048i \(0.465252\pi\)
\(338\) −10.5000 + 19.9186i −0.571125 + 1.08343i
\(339\) 6.00000 0.325875
\(340\) 3.00000 1.73205i 0.162698 0.0939336i
\(341\) −3.00000 5.19615i −0.162459 0.281387i
\(342\) −12.0000 + 20.7846i −0.648886 + 1.12390i
\(343\) 19.0526i 1.02874i
\(344\) −12.0000 6.92820i −0.646997 0.373544i
\(345\) 9.00000 + 5.19615i 0.484544 + 0.279751i
\(346\) 10.3923i 0.558694i
\(347\) 12.0000 20.7846i 0.644194 1.11578i −0.340293 0.940319i \(-0.610526\pi\)
0.984487 0.175457i \(-0.0561403\pi\)
\(348\) 3.00000 + 5.19615i 0.160817 + 0.278543i
\(349\) 25.5000 14.7224i 1.36498 0.788074i 0.374701 0.927146i \(-0.377745\pi\)
0.990282 + 0.139072i \(0.0444119\pi\)
\(350\) 21.0000 1.12250
\(351\) −5.00000 17.3205i −0.266880 0.924500i
\(352\) 18.0000 0.959403
\(353\) 28.5000 16.4545i 1.51690 0.875784i 0.517099 0.855926i \(-0.327012\pi\)
0.999803 0.0198582i \(-0.00632149\pi\)
\(354\) −12.0000 20.7846i −0.637793 1.10469i
\(355\) −6.00000 + 10.3923i −0.318447 + 0.551566i
\(356\) 15.5885i 0.826187i
\(357\) −1.50000 0.866025i −0.0793884 0.0458349i
\(358\) 9.00000 + 5.19615i 0.475665 + 0.274625i
\(359\) 3.46410i 0.182828i 0.995813 + 0.0914141i \(0.0291387\pi\)
−0.995813 + 0.0914141i \(0.970861\pi\)
\(360\) −6.00000 + 10.3923i −0.316228 + 0.547723i
\(361\) 14.5000 + 25.1147i 0.763158 + 1.32183i
\(362\) 12.0000 6.92820i 0.630706 0.364138i
\(363\) 1.00000 0.0524864
\(364\) 4.50000 + 4.33013i 0.235864 + 0.226960i
\(365\) −48.0000 −2.51243
\(366\) −6.00000 + 3.46410i −0.313625 + 0.181071i
\(367\) 18.5000 + 32.0429i 0.965692 + 1.67263i 0.707744 + 0.706469i \(0.249713\pi\)
0.257948 + 0.966159i \(0.416954\pi\)
\(368\) 7.50000 12.9904i 0.390965 0.677170i
\(369\) 13.8564i 0.721336i
\(370\) 36.0000 + 20.7846i 1.87155 + 1.08054i
\(371\) −13.5000 7.79423i −0.700885 0.404656i
\(372\) 1.73205i 0.0898027i
\(373\) 11.5000 19.9186i 0.595447 1.03135i −0.398036 0.917370i \(-0.630308\pi\)
0.993484 0.113975i \(-0.0363585\pi\)
\(374\) −3.00000 5.19615i −0.155126 0.268687i
\(375\) 6.00000 3.46410i 0.309839 0.178885i
\(376\) −6.00000 −0.309426
\(377\) 15.0000 15.5885i 0.772539 0.802846i
\(378\) −15.0000 −0.771517
\(379\) 9.00000 5.19615i 0.462299 0.266908i −0.250711 0.968062i \(-0.580665\pi\)
0.713010 + 0.701153i \(0.247331\pi\)
\(380\) −12.0000 20.7846i −0.615587 1.06623i
\(381\) −1.00000 + 1.73205i −0.0512316 + 0.0887357i
\(382\) 10.3923i 0.531717i
\(383\) 12.0000 + 6.92820i 0.613171 + 0.354015i 0.774206 0.632934i \(-0.218150\pi\)
−0.161034 + 0.986949i \(0.551483\pi\)
\(384\) −10.5000 6.06218i −0.535826 0.309359i
\(385\) 20.7846i 1.05928i
\(386\) −12.0000 + 20.7846i −0.610784 + 1.05791i
\(387\) 8.00000 + 13.8564i 0.406663 + 0.704361i
\(388\) −6.00000 + 3.46410i −0.304604 + 0.175863i
\(389\) −15.0000 −0.760530 −0.380265 0.924878i \(-0.624167\pi\)
−0.380265 + 0.924878i \(0.624167\pi\)
\(390\) 21.0000 + 5.19615i 1.06338 + 0.263117i
\(391\) −3.00000 −0.151717
\(392\) 6.00000 3.46410i 0.303046 0.174964i
\(393\) 6.00000 + 10.3923i 0.302660 + 0.524222i
\(394\) 0 0
\(395\) 3.46410i 0.174298i
\(396\) −6.00000 3.46410i −0.301511 0.174078i
\(397\) −21.0000 12.1244i −1.05396 0.608504i −0.130204 0.991487i \(-0.541563\pi\)
−0.923755 + 0.382983i \(0.874897\pi\)
\(398\) 27.7128i 1.38912i
\(399\) −6.00000 + 10.3923i −0.300376 + 0.520266i
\(400\) −17.5000 30.3109i −0.875000 1.51554i
\(401\) 21.0000 12.1244i 1.04869 0.605461i 0.126408 0.991978i \(-0.459655\pi\)
0.922282 + 0.386517i \(0.126322\pi\)
\(402\) 0 0
\(403\) −6.00000 + 1.73205i −0.298881 + 0.0862796i
\(404\) −6.00000 −0.298511
\(405\) 3.00000 1.73205i 0.149071 0.0860663i
\(406\) −9.00000 15.5885i −0.446663 0.773642i
\(407\) 12.0000 20.7846i 0.594818 1.03025i
\(408\) 1.73205i 0.0857493i
\(409\) −25.5000 14.7224i −1.26089 0.727977i −0.287646 0.957737i \(-0.592873\pi\)
−0.973247 + 0.229759i \(0.926206\pi\)
\(410\) −36.0000 20.7846i −1.77791 1.02648i
\(411\) 22.5167i 1.11066i
\(412\) 7.00000 12.1244i 0.344865 0.597324i
\(413\) 12.0000 + 20.7846i 0.590481 + 1.02274i
\(414\) −9.00000 + 5.19615i −0.442326 + 0.255377i
\(415\) 36.0000 1.76717
\(416\) 4.50000 18.1865i 0.220631 0.891668i
\(417\) 13.0000 0.636613
\(418\) −36.0000 + 20.7846i −1.76082 + 1.01661i
\(419\) 10.5000 + 18.1865i 0.512959 + 0.888470i 0.999887 + 0.0150285i \(0.00478389\pi\)
−0.486928 + 0.873442i \(0.661883\pi\)
\(420\) 3.00000 5.19615i 0.146385 0.253546i
\(421\) 12.1244i 0.590905i −0.955357 0.295452i \(-0.904530\pi\)
0.955357 0.295452i \(-0.0954704\pi\)
\(422\) −19.5000 11.2583i −0.949245 0.548047i
\(423\) 6.00000 + 3.46410i 0.291730 + 0.168430i
\(424\) 15.5885i 0.757042i
\(425\) −3.50000 + 6.06218i −0.169775 + 0.294059i
\(426\) 3.00000 + 5.19615i 0.145350 + 0.251754i
\(427\) 6.00000 3.46410i 0.290360 0.167640i
\(428\) −12.0000 −0.580042
\(429\) 3.00000 12.1244i 0.144841 0.585369i
\(430\) −48.0000 −2.31477
\(431\) −16.5000 + 9.52628i −0.794777 + 0.458865i −0.841642 0.540037i \(-0.818410\pi\)
0.0468646 + 0.998901i \(0.485077\pi\)
\(432\) 12.5000 + 21.6506i 0.601407 + 1.04167i
\(433\) 14.5000 25.1147i 0.696826 1.20694i −0.272736 0.962089i \(-0.587929\pi\)
0.969561 0.244848i \(-0.0787382\pi\)
\(434\) 5.19615i 0.249423i
\(435\) −18.0000 10.3923i −0.863034 0.498273i
\(436\) 12.0000 + 6.92820i 0.574696 + 0.331801i
\(437\) 20.7846i 0.994263i
\(438\) −12.0000 + 20.7846i −0.573382 + 0.993127i
\(439\) −4.00000 6.92820i −0.190910 0.330665i 0.754642 0.656136i \(-0.227810\pi\)
−0.945552 + 0.325471i \(0.894477\pi\)
\(440\) −18.0000 + 10.3923i −0.858116 + 0.495434i
\(441\) −8.00000 −0.380952
\(442\) −6.00000 + 1.73205i −0.285391 + 0.0823853i
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 6.00000 3.46410i 0.284747 0.164399i
\(445\) −27.0000 46.7654i −1.27992 2.21689i
\(446\) 0 0
\(447\) 0 0
\(448\) 1.50000 + 0.866025i 0.0708683 + 0.0409159i
\(449\) −15.0000 8.66025i −0.707894 0.408703i 0.102387 0.994745i \(-0.467352\pi\)
−0.810281 + 0.586042i \(0.800685\pi\)
\(450\) 24.2487i 1.14310i
\(451\) −12.0000 + 20.7846i −0.565058 + 0.978709i
\(452\) −3.00000 5.19615i −0.141108 0.244406i
\(453\) −6.00000 + 3.46410i −0.281905 + 0.162758i
\(454\) 15.0000 0.703985
\(455\) −21.0000 5.19615i −0.984495 0.243599i
\(456\) 12.0000 0.561951
\(457\) 10.5000 6.06218i 0.491169 0.283577i −0.233890 0.972263i \(-0.575146\pi\)
0.725059 + 0.688686i \(0.241812\pi\)
\(458\) −13.5000 23.3827i −0.630814 1.09260i
\(459\) 2.50000 4.33013i 0.116690 0.202113i
\(460\) 10.3923i 0.484544i
\(461\) −16.5000 9.52628i −0.768482 0.443683i 0.0638511 0.997959i \(-0.479662\pi\)
−0.832333 + 0.554276i \(0.812995\pi\)
\(462\) −9.00000 5.19615i −0.418718 0.241747i
\(463\) 38.1051i 1.77090i −0.464739 0.885448i \(-0.653852\pi\)
0.464739 0.885448i \(-0.346148\pi\)
\(464\) −15.0000 + 25.9808i −0.696358 + 1.20613i
\(465\) 3.00000 + 5.19615i 0.139122 + 0.240966i
\(466\) 9.00000 5.19615i 0.416917 0.240707i
\(467\) 30.0000 1.38823 0.694117 0.719862i \(-0.255795\pi\)
0.694117 + 0.719862i \(0.255795\pi\)
\(468\) −5.00000 + 5.19615i −0.231125 + 0.240192i
\(469\) 0 0
\(470\) −18.0000 + 10.3923i −0.830278 + 0.479361i
\(471\) 2.50000 + 4.33013i 0.115194 + 0.199522i
\(472\) 12.0000 20.7846i 0.552345 0.956689i
\(473\) 27.7128i 1.27424i
\(474\) 1.50000 + 0.866025i 0.0688973 + 0.0397779i
\(475\) 42.0000 + 24.2487i 1.92709 + 1.11261i
\(476\) 1.73205i 0.0793884i
\(477\) 9.00000 15.5885i 0.412082 0.713746i
\(478\) −21.0000 36.3731i −0.960518 1.66367i
\(479\) −31.5000 + 18.1865i −1.43927 + 0.830964i −0.997799 0.0663107i \(-0.978877\pi\)
−0.441473 + 0.897275i \(0.645544\pi\)
\(480\) −18.0000 −0.821584
\(481\) −18.0000 17.3205i −0.820729 0.789747i
\(482\) 24.0000 1.09317
\(483\) −4.50000 + 2.59808i −0.204757 + 0.118217i
\(484\) −0.500000 0.866025i −0.0227273 0.0393648i
\(485\) 12.0000 20.7846i 0.544892 0.943781i
\(486\) 27.7128i 1.25708i
\(487\) 4.50000 + 2.59808i 0.203914 + 0.117730i 0.598480 0.801138i \(-0.295772\pi\)
−0.394566 + 0.918868i \(0.629105\pi\)
\(488\) −6.00000 3.46410i −0.271607 0.156813i
\(489\) 10.3923i 0.469956i
\(490\) 12.0000 20.7846i 0.542105 0.938953i
\(491\) −15.0000 25.9808i −0.676941 1.17250i −0.975898 0.218229i \(-0.929972\pi\)
0.298957 0.954267i \(-0.403361\pi\)
\(492\) −6.00000 + 3.46410i −0.270501 + 0.156174i
\(493\) 6.00000 0.270226
\(494\) 12.0000 + 41.5692i 0.539906 + 1.87029i
\(495\) 24.0000 1.07872
\(496\) 7.50000 4.33013i 0.336760 0.194428i
\(497\) −3.00000 5.19615i −0.134568 0.233079i
\(498\) 9.00000 15.5885i 0.403300 0.698535i
\(499\) 29.4449i 1.31813i 0.752085 + 0.659067i \(0.229048\pi\)
−0.752085 + 0.659067i \(0.770952\pi\)
\(500\) −6.00000 3.46410i −0.268328 0.154919i
\(501\) −7.50000 4.33013i −0.335075 0.193456i
\(502\) 0 0
\(503\) 16.5000 28.5788i 0.735699 1.27427i −0.218718 0.975788i \(-0.570187\pi\)
0.954416 0.298479i \(-0.0964794\pi\)
\(504\) −3.00000 5.19615i −0.133631 0.231455i
\(505\) 18.0000 10.3923i 0.800989 0.462451i
\(506\) −18.0000 −0.800198
\(507\) −11.5000 6.06218i −0.510733 0.269231i
\(508\) 2.00000 0.0887357
\(509\) 10.5000 6.06218i 0.465404 0.268701i −0.248910 0.968527i \(-0.580072\pi\)
0.714314 + 0.699825i \(0.246739\pi\)
\(510\) 3.00000 + 5.19615i 0.132842 + 0.230089i
\(511\) 12.0000 20.7846i 0.530849 0.919457i
\(512\) 8.66025i 0.382733i
\(513\) −30.0000 17.3205i −1.32453 0.764719i
\(514\) 9.00000 + 5.19615i 0.396973 + 0.229192i
\(515\) 48.4974i 2.13705i
\(516\) −4.00000 + 6.92820i −0.176090 + 0.304997i
\(517\) 6.00000 + 10.3923i 0.263880 + 0.457053i
\(518\) −18.0000 + 10.3923i −0.790875 + 0.456612i
\(519\) 6.00000 0.263371
\(520\) 6.00000 + 20.7846i 0.263117 + 0.911465i
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 18.0000 10.3923i 0.787839 0.454859i
\(523\) −4.00000 6.92820i −0.174908 0.302949i 0.765222 0.643767i \(-0.222629\pi\)
−0.940129 + 0.340818i \(0.889296\pi\)
\(524\) 6.00000 10.3923i 0.262111 0.453990i
\(525\) 12.1244i 0.529150i
\(526\) −18.0000 10.3923i −0.784837 0.453126i
\(527\) −1.50000 0.866025i −0.0653410 0.0377247i
\(528\) 17.3205i 0.753778i
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 27.0000 + 46.7654i 1.17281 + 2.03136i
\(531\) −24.0000 + 13.8564i −1.04151 + 0.601317i
\(532\) 12.0000 0.520266
\(533\) 18.0000 + 17.3205i 0.779667 + 0.750234i
\(534\) −27.0000 −1.16840
\(535\) 36.0000 20.7846i 1.55642 0.898597i
\(536\) 0 0
\(537\) −3.00000 + 5.19615i −0.129460 + 0.224231i
\(538\) 41.5692i 1.79218i
\(539\) −12.0000 6.92820i −0.516877 0.298419i
\(540\) 15.0000 + 8.66025i 0.645497 + 0.372678i
\(541\) 6.92820i 0.297867i 0.988847 + 0.148933i \(0.0475840\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) −15.0000 + 25.9808i −0.644305 + 1.11597i
\(543\) 4.00000 + 6.92820i 0.171656 + 0.297318i
\(544\) 4.50000 2.59808i 0.192936 0.111392i
\(545\) −48.0000 −2.05609
\(546\) −7.50000 + 7.79423i −0.320970 + 0.333562i
\(547\) −7.00000 −0.299298 −0.149649 0.988739i \(-0.547814\pi\)
−0.149649 + 0.988739i \(0.547814\pi\)
\(548\) 19.5000 11.2583i 0.832999 0.480932i
\(549\) 4.00000 + 6.92820i 0.170716 + 0.295689i
\(550\) −21.0000 + 36.3731i −0.895443 + 1.55095i
\(551\) 41.5692i 1.77091i
\(552\) 4.50000 + 2.59808i 0.191533 + 0.110581i
\(553\) −1.50000 0.866025i −0.0637865 0.0368271i
\(554\) 45.0333i 1.91328i
\(555\) −12.0000 + 20.7846i −0.509372 + 0.882258i
\(556\) −6.50000 11.2583i −0.275661 0.477460i
\(557\) −7.50000 + 4.33013i −0.317785 + 0.183473i −0.650405 0.759588i \(-0.725401\pi\)
0.332620 + 0.943061i \(0.392067\pi\)
\(558\) −6.00000 −0.254000
\(559\) 28.0000 + 6.92820i 1.18427 + 0.293032i
\(560\) 30.0000 1.26773
\(561\) 3.00000 1.73205i 0.126660 0.0731272i
\(562\) 1.50000 + 2.59808i 0.0632737 + 0.109593i
\(563\) 6.00000 10.3923i 0.252870 0.437983i −0.711445 0.702742i \(-0.751959\pi\)
0.964315 + 0.264758i \(0.0852922\pi\)
\(564\) 3.46410i 0.145865i
\(565\) 18.0000 + 10.3923i 0.757266 + 0.437208i
\(566\) −1.50000 0.866025i −0.0630497 0.0364018i
\(567\) 1.73205i 0.0727393i
\(568\) −3.00000 + 5.19615i −0.125877 + 0.218026i
\(569\) −1.50000 2.59808i −0.0628833 0.108917i 0.832870 0.553469i \(-0.186696\pi\)
−0.895753 + 0.444552i \(0.853363\pi\)
\(570\) 36.0000 20.7846i 1.50787 0.870572i
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) −12.0000 + 3.46410i −0.501745 + 0.144841i
\(573\) 6.00000 0.250654
\(574\) 18.0000 10.3923i 0.751305 0.433766i
\(575\) 10.5000 + 18.1865i 0.437880 + 0.758431i
\(576\) −1.00000 + 1.73205i −0.0416667 + 0.0721688i
\(577\) 32.9090i 1.37002i 0.728535 + 0.685009i \(0.240202\pi\)
−0.728535 + 0.685009i \(0.759798\pi\)
\(578\) −1.50000 0.866025i −0.0623918 0.0360219i
\(579\) −12.0000 6.92820i −0.498703 0.287926i
\(580\) 20.7846i 0.863034i
\(581\) −9.00000 + 15.5885i −0.373383 + 0.646718i
\(582\) −6.00000 10.3923i −0.248708 0.430775i
\(583\) 27.0000 15.5885i 1.11823 0.645608i
\(584\) −24.0000 −0.993127
\(585\) 6.00000 24.2487i 0.248069 1.00256i
\(586\) 27.0000 1.11536
\(587\) −21.0000 + 12.1244i −0.866763 + 0.500426i −0.866271 0.499574i \(-0.833490\pi\)
−0.000491641 1.00000i \(0.500156\pi\)
\(588\) −2.00000 3.46410i −0.0824786 0.142857i
\(589\) −6.00000 + 10.3923i −0.247226 + 0.428207i
\(590\) 83.1384i 3.42276i
\(591\) 0 0
\(592\) 30.0000 + 17.3205i 1.23299 + 0.711868i
\(593\) 20.7846i 0.853522i −0.904365 0.426761i \(-0.859655\pi\)
0.904365 0.426761i \(-0.140345\pi\)
\(594\) 15.0000 25.9808i 0.615457 1.06600i
\(595\) −3.00000 5.19615i −0.122988 0.213021i
\(596\) 0 0
\(597\) −16.0000 −0.654836
\(598\) −4.50000 + 18.1865i −0.184019 + 0.743703i
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 10.5000 6.06218i 0.428661 0.247487i
\(601\) 4.00000 + 6.92820i 0.163163 + 0.282607i 0.936002 0.351996i \(-0.114497\pi\)
−0.772838 + 0.634603i \(0.781164\pi\)
\(602\) 12.0000 20.7846i 0.489083 0.847117i
\(603\) 0 0
\(604\) 6.00000 + 3.46410i 0.244137 + 0.140952i
\(605\) 3.00000 + 1.73205i 0.121967 + 0.0704179i
\(606\) 10.3923i 0.422159i
\(607\) −8.50000 + 14.7224i −0.345004 + 0.597565i −0.985355 0.170518i \(-0.945456\pi\)
0.640350 + 0.768083i \(0.278789\pi\)
\(608\) −18.0000 31.1769i −0.729996 1.26439i
\(609\) 9.00000 5.19615i 0.364698 0.210559i
\(610\) −24.0000 −0.971732
\(611\) 12.0000 3.46410i 0.485468 0.140143i
\(612\) −2.00000 −0.0808452
\(613\) −18.0000 + 10.3923i −0.727013 + 0.419741i −0.817328 0.576172i \(-0.804546\pi\)
0.0903153 + 0.995913i \(0.471213\pi\)
\(614\) −3.00000 5.19615i −0.121070 0.209700i
\(615\) 12.0000 20.7846i 0.483887 0.838116i
\(616\) 10.3923i 0.418718i
\(617\) 12.0000 + 6.92820i 0.483102 + 0.278919i 0.721708 0.692197i \(-0.243357\pi\)
−0.238606 + 0.971116i \(0.576691\pi\)
\(618\) 21.0000 + 12.1244i 0.844744 + 0.487713i
\(619\) 5.19615i 0.208851i −0.994533 0.104425i \(-0.966700\pi\)
0.994533 0.104425i \(-0.0333004\pi\)
\(620\) 3.00000 5.19615i 0.120483 0.208683i
\(621\) −7.50000 12.9904i −0.300965 0.521286i
\(622\) 18.0000 10.3923i 0.721734 0.416693i
\(623\) 27.0000 1.08173
\(624\) 17.5000 + 4.33013i 0.700561 + 0.173344i
\(625\) −11.0000 −0.440000
\(626\) 15.0000 8.66025i 0.599521 0.346133i
\(627\) −12.0000 20.7846i −0.479234 0.830057i
\(628\) 2.50000 4.33013i 0.0997609 0.172791i
\(629\) 6.92820i 0.276246i
\(630\) −18.0000 10.3923i −0.717137 0.414039i
\(631\) 33.0000 + 19.0526i 1.31371 + 0.758470i 0.982708 0.185160i \(-0.0592804\pi\)
0.331001 + 0.943630i \(0.392614\pi\)
\(632\) 1.73205i 0.0688973i
\(633\) 6.50000 11.2583i 0.258352 0.447478i
\(634\) 9.00000 + 15.5885i 0.357436 + 0.619097i
\(635\) −6.00000 + 3.46410i −0.238103 + 0.137469i
\(636\) 9.00000 0.356873
\(637\) −10.0000 + 10.3923i −0.396214 + 0.411758i
\(638\) 36.0000 1.42525
\(639\) 6.00000 3.46410i 0.237356 0.137038i
\(640\) −21.0000 36.3731i −0.830098 1.43777i
\(641\) −6.00000 + 10.3923i −0.236986 + 0.410471i −0.959848 0.280521i \(-0.909493\pi\)
0.722862 + 0.690992i \(0.242826\pi\)
\(642\) 20.7846i 0.820303i
\(643\) 19.5000 + 11.2583i 0.769005 + 0.443985i 0.832520 0.553996i \(-0.186898\pi\)
−0.0635146 + 0.997981i \(0.520231\pi\)
\(644\) 4.50000 + 2.59808i 0.177325 + 0.102379i
\(645\) 27.7128i 1.09119i
\(646\) −6.00000 + 10.3923i −0.236067 + 0.408880i
\(647\) 15.0000 + 25.9808i 0.589711 + 1.02141i 0.994270 + 0.106897i \(0.0340916\pi\)
−0.404559 + 0.914512i \(0.632575\pi\)
\(648\) 1.50000 0.866025i 0.0589256 0.0340207i
\(649\) −48.0000 −1.88416
\(650\) 31.5000 + 30.3109i 1.23553 + 1.18889i
\(651\) −3.00000 −0.117579
\(652\) −9.00000 + 5.19615i −0.352467 + 0.203497i
\(653\) −3.00000 5.19615i −0.117399 0.203341i 0.801337 0.598213i \(-0.204122\pi\)
−0.918736 + 0.394872i \(0.870789\pi\)
\(654\) −12.0000 + 20.7846i −0.469237 + 0.812743i
\(655\) 41.5692i 1.62424i
\(656\) −30.0000 17.3205i −1.17130 0.676252i
\(657\) 24.0000 + 13.8564i 0.936329 + 0.540590i
\(658\) 10.3923i 0.405134i
\(659\) −18.0000 + 31.1769i −0.701180 + 1.21448i 0.266872 + 0.963732i \(0.414010\pi\)
−0.968052 + 0.250748i \(0.919323\pi\)
\(660\) 6.00000 + 10.3923i 0.233550 + 0.404520i
\(661\) 25.5000 14.7224i 0.991835 0.572636i 0.0860127 0.996294i \(-0.472587\pi\)
0.905822 + 0.423658i \(0.139254\pi\)
\(662\) −18.0000 −0.699590
\(663\) −1.00000 3.46410i −0.0388368 0.134535i
\(664\) 18.0000 0.698535
\(665\) −36.0000 + 20.7846i −1.39602 + 0.805993i
\(666\) −12.0000 20.7846i −0.464991 0.805387i
\(667\) 9.00000 15.5885i 0.348481 0.603587i
\(668\) 8.66025i 0.335075i
\(669\) 0 0
\(670\) 0 0
\(671\) 13.8564i 0.534921i
\(672\) 4.50000 7.79423i 0.173591 0.300669i
\(673\) −10.0000 17.3205i −0.385472 0.667657i 0.606363 0.795188i \(-0.292628\pi\)
−0.991835 + 0.127532i \(0.959295\pi\)
\(674\) 6.00000 3.46410i 0.231111 0.133432i
\(675\) −35.0000 −1.34715
\(676\) 0.500000 + 12.9904i 0.0192308 + 0.499630i
\(677\) −24.0000 −0.922395 −0.461197 0.887298i \(-0.652580\pi\)
−0.461197 + 0.887298i \(0.652580\pi\)
\(678\) 9.00000 5.19615i 0.345643 0.199557i
\(679\) 6.00000 + 10.3923i 0.230259 + 0.398820i
\(680\) −3.00000 + 5.19615i −0.115045 + 0.199263i
\(681\) 8.66025i 0.331862i
\(682\) −9.00000 5.19615i −0.344628 0.198971i
\(683\) 40.5000 + 23.3827i 1.54969 + 0.894714i 0.998165 + 0.0605550i \(0.0192870\pi\)
0.551525 + 0.834159i \(0.314046\pi\)
\(684\) 13.8564i 0.529813i
\(685\) −39.0000 + 67.5500i −1.49011 + 2.58095i
\(686\) 16.5000 + 28.5788i 0.629973 + 1.09115i
\(687\) 13.5000 7.79423i 0.515057 0.297368i
\(688\) −40.0000 −1.52499
\(689\) −9.00000 31.1769i −0.342873 1.18775i
\(690\) 18.0000 0.685248
\(691\) −31.5000 + 18.1865i −1.19832 + 0.691848i −0.960180 0.279383i \(-0.909870\pi\)
−0.238137 + 0.971232i \(0.576537\pi\)
\(692\) −3.00000 5.19615i −0.114043 0.197528i
\(693\) −6.00000 + 10.3923i −0.227921 + 0.394771i
\(694\) 41.5692i 1.57795i
\(695\) 39.0000 + 22.5167i 1.47935 + 0.854106i
\(696\) −9.00000 5.19615i −0.341144 0.196960i
\(697\) 6.92820i 0.262424i
\(698\) 25.5000 44.1673i 0.965189 1.67176i
\(699\) 3.00000 + 5.19615i 0.113470 + 0.196537i
\(700\) 10.5000 6.06218i 0.396863 0.229129i
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) −22.5000 21.6506i −0.849208 0.817151i
\(703\) −48.0000 −1.81035
\(704\) −3.00000 + 1.73205i −0.113067 + 0.0652791i
\(705\) −6.00000 10.3923i −0.225973 0.391397i
\(706\) 28.5000 49.3634i 1.07261 1.85782i
\(707\) 10.3923i 0.390843i
\(708\) −12.0000 6.92820i −0.450988 0.260378i
\(709\) −12.0000 6.92820i −0.450669 0.260194i 0.257443 0.966293i \(-0.417120\pi\)
−0.708113 + 0.706099i \(0.750453\pi\)
\(710\) 20.7846i 0.780033i
\(711\) 1.00000 1.73205i 0.0375029 0.0649570i
\(712\) −13.5000 23.3827i −0.505934 0.876303i
\(713\) −4.50000 + 2.59808i −0.168526 + 0.0972987i
\(714\) −3.00000 −0.112272
\(715\) 30.0000 31.1769i 1.12194 1.16595i
\(716\) 6.00000 0.224231
\(717\) 21.0000 12.1244i 0.784259 0.452792i
\(718\) 3.00000 + 5.19615i 0.111959 + 0.193919i
\(719\) 12.0000 20.7846i 0.447524 0.775135i −0.550700 0.834703i \(-0.685639\pi\)
0.998224 + 0.0595683i \(0.0189724\pi\)
\(720\) 34.6410i 1.29099i
\(721\) −21.0000 12.1244i −0.782081 0.451535i
\(722\) 43.5000 + 25.1147i 1.61890 + 0.934674i
\(723\) 13.8564i 0.515325i
\(724\) 4.00000 6.92820i 0.148659 0.257485i
\(725\) −21.0000 36.3731i −0.779920 1.35086i
\(726\) 1.50000 0.866025i 0.0556702 0.0321412i
\(727\) −26.0000 −0.964287 −0.482143 0.876092i \(-0.660142\pi\)
−0.482143 + 0.876092i \(0.660142\pi\)
\(728\) −10.5000 2.59808i −0.389156 0.0962911i
\(729\) 13.0000 0.481481
\(730\) −72.0000 + 41.5692i −2.66484 + 1.53855i
\(731\) 4.00000 + 6.92820i 0.147945 + 0.256249i
\(732\) −2.00000 + 3.46410i −0.0739221 + 0.128037i
\(733\) 1.73205i 0.0639748i 0.999488 + 0.0319874i \(0.0101836\pi\)
−0.999488 + 0.0319874i \(0.989816\pi\)
\(734\) 55.5000 + 32.0429i 2.04854 + 1.18273i
\(735\) 12.0000 + 6.92820i 0.442627 + 0.255551i
\(736\) 15.5885i 0.574598i
\(737\) 0 0
\(738\) 12.0000 + 20.7846i 0.441726 + 0.765092i
\(739\) 30.0000 17.3205i 1.10357 0.637145i 0.166412 0.986056i \(-0.446782\pi\)
0.937156 + 0.348911i \(0.113448\pi\)
\(740\) 24.0000 0.882258
\(741\) −24.0000 + 6.92820i −0.881662 + 0.254514i
\(742\) −27.0000 −0.991201
\(743\) 39.0000 22.5167i 1.43077 0.826056i 0.433592 0.901109i \(-0.357246\pi\)
0.997180 + 0.0750533i \(0.0239127\pi\)
\(744\) 1.50000 + 2.59808i 0.0549927 + 0.0952501i
\(745\) 0 0
\(746\) 39.8372i 1.45854i
\(747\) −18.0000 10.3923i −0.658586 0.380235i
\(748\) −3.00000 1.73205i −0.109691 0.0633300i
\(749\) 20.7846i 0.759453i
\(750\) 6.00000 10.3923i 0.219089 0.379473i
\(751\) −11.5000 19.9186i −0.419641 0.726839i 0.576262 0.817265i \(-0.304511\pi\)
−0.995903 + 0.0904254i \(0.971177\pi\)
\(752\) −15.0000 + 8.66025i −0.546994 + 0.315807i
\(753\) 0 0
\(754\) 9.00000 36.3731i 0.327761 1.32463i
\(755\) −24.0000 −0.873449
\(756\) −7.50000 + 4.33013i −0.272772 + 0.157485i
\(757\) 11.5000 + 19.9186i 0.417975 + 0.723953i 0.995736 0.0922527i \(-0.0294068\pi\)
−0.577761 + 0.816206i \(0.696073\pi\)
\(758\) 9.00000 15.5885i 0.326895 0.566198i
\(759\) 10.3923i 0.377217i
\(760\) 36.0000 + 20.7846i 1.30586 + 0.753937i
\(761\) −31.5000 18.1865i −1.14187 0.659261i −0.194980 0.980807i \(-0.562464\pi\)
−0.946894 + 0.321546i \(0.895798\pi\)
\(762\) 3.46410i 0.125491i
\(763\) 12.0000 20.7846i 0.434429 0.752453i
\(764\) −3.00000 5.19615i −0.108536 0.187990i
\(765\) 6.00000 3.46410i 0.216930 0.125245i
\(766\) 24.0000 0.867155
\(767\) −12.0000 + 48.4974i −0.433295 + 1.75114i
\(768\) −19.0000 −0.685603
\(769\) −30.0000 + 17.3205i −1.08183 + 0.624593i −0.931389 0.364026i \(-0.881402\pi\)
−0.150439 + 0.988619i \(0.548069\pi\)
\(770\) −18.0000 31.1769i −0.648675 1.12354i
\(771\) −3.00000 + 5.19615i −0.108042 + 0.187135i
\(772\) 13.8564i 0.498703i
\(773\) 30.0000 + 17.3205i 1.07903 + 0.622975i 0.930633 0.365953i \(-0.119257\pi\)
0.148392 + 0.988929i \(0.452590\pi\)
\(774\) 24.0000 + 13.8564i 0.862662 + 0.498058i
\(775\) 12.1244i 0.435520i
\(776\) 6.00000 10.3923i 0.215387 0.373062i
\(777\) −6.00000 10.3923i −0.215249 0.372822i
\(778\) −22.5000 + 12.9904i −0.806664 + 0.465728i
\(779\) 48.0000 1.71978
\(780\) 12.0000 3.46410i 0.429669 0.124035i
\(781\) 12.0000 0.429394
\(782\) −4.50000 + 2.59808i −0.160920 + 0.0929070i
\(783\) 15.0000 + 25.9808i 0.536056 + 0.928477i
\(784\) 10.0000 17.3205i 0.357143 0.618590i
\(785\) 17.3205i 0.618195i
\(786\) 18.0000 + 10.3923i 0.642039 + 0.370681i
\(787\) −22.5000 12.9904i −0.802038 0.463057i 0.0421450 0.999112i \(-0.486581\pi\)
−0.844183 + 0.536054i \(0.819914\pi\)
\(788\) 0 0
\(789\) 6.00000 10.3923i 0.213606 0.369976i
\(790\) 3.00000 + 5.19615i 0.106735 + 0.184871i
\(791\) −9.00000 + 5.19615i −0.320003 + 0.184754i
\(792\) 12.0000 0.426401
\(793\) 14.0000 + 3.46410i 0.497155 + 0.123014i
\(794\) −42.0000 −1.49052
\(795\) −27.0000 + 15.5885i −0.957591 + 0.552866i
\(796\) 8.00000 + 13.8564i 0.283552 + 0.491127i
\(797\) −4.50000 + 7.79423i −0.159398 + 0.276086i −0.934652 0.355564i \(-0.884289\pi\)
0.775254 + 0.631650i \(0.217622\pi\)
\(798\) 20.7846i 0.735767i
\(799\) 3.00000 + 1.73205i 0.106132 + 0.0612756i
\(800\) −31.5000 18.1865i −1.11369 0.642991i
\(801\) 31.1769i 1.10158i
\(802\) 21.0000 36.3731i 0.741536 1.28438i
\(803\) 24.0000 + 41.5692i 0.846942 + 1.46695i
\(804\) 0 0
\(805\) −18.0000 −0.634417
\(806\) −7.50000 + 7.79423i −0.264176 + 0.274540i
\(807\) −24.0000 −0.844840
\(808\) 9.00000 5.19615i 0.316619 0.182800i
\(809\) −15.0000 25.9808i −0.527372 0.913435i −0.999491 0.0319002i \(-0.989844\pi\)
0.472119 0.881535i \(-0.343489\pi\)
\(810\) 3.00000 5.19615i 0.105409 0.182574i
\(811\) 46.7654i 1.64215i −0.570817 0.821077i \(-0.693374\pi\)
0.570817 0.821077i \(-0.306626\pi\)
\(812\) −9.00000 5.19615i −0.315838 0.182349i
\(813\) −15.0000 8.66025i −0.526073 0.303728i
\(814\) 41.5692i 1.45700i
\(815\) 18.0000 31.1769i 0.630512 1.09208i
\(816\) 2.50000 + 4.33013i 0.0875175 + 0.151585i
\(817\) 48.0000 27.7128i 1.67931 0.969549i
\(818\) −51.0000 −1.78317
\(819\) 9.00000 + 8.66025i 0.314485 + 0.302614i
\(820\) −24.0000 −0.838116
\(821\) 30.0000 17.3205i 1.04701 0.604490i 0.125197 0.992132i \(-0.460044\pi\)
0.921810 + 0.387642i \(0.126710\pi\)
\(822\) 19.5000 + 33.7750i 0.680141 + 1.17804i
\(823\) −20.5000 + 35.5070i −0.714585 + 1.23770i 0.248534 + 0.968623i \(0.420051\pi\)
−0.963119 + 0.269075i \(0.913282\pi\)
\(824\) 24.2487i 0.844744i
\(825\) −21.0000 12.1244i −0.731126 0.422116i
\(826\) 36.0000 + 20.7846i 1.25260 + 0.723189i
\(827\) 36.3731i 1.26482i 0.774636 + 0.632408i \(0.217933\pi\)
−0.774636 + 0.632408i \(0.782067\pi\)
\(828\) −3.00000 + 5.19615i −0.104257 + 0.180579i
\(829\) 19.0000 + 32.9090i 0.659897 + 1.14298i 0.980642 + 0.195810i \(0.0627335\pi\)
−0.320745 + 0.947166i \(0.603933\pi\)
\(830\) 54.0000 31.1769i 1.87437 1.08217i
\(831\) −26.0000 −0.901930
\(832\) 1.00000 + 3.46410i 0.0346688 + 0.120096i
\(833\) −4.00000 −0.138592
\(834\) 19.5000 11.2583i 0.675230 0.389844i
\(835\) −15.0000 25.9808i −0.519096 0.899101i
\(836\) −12.0000 + 20.7846i −0.415029 + 0.718851i
\(837\) 8.66025i 0.299342i
\(838\) 31.5000 + 18.1865i 1.08815 + 0.628243i
\(839\) −22.5000 12.9904i −0.776786 0.448478i 0.0585039 0.998287i \(-0.481367\pi\)
−0.835290 + 0.549809i \(0.814700\pi\)
\(840\) 10.3923i 0.358569i
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) −10.5000 18.1865i −0.361854 0.626749i
\(843\) −1.50000 + 0.866025i −0.0516627 + 0.0298275i
\(844\) −13.0000 −0.447478
\(845\) −24.0000 38.1051i −0.825625 1.31086i
\(846\) 12.0000 0.412568
\(847\) −1.50000 + 0.866025i −0.0515406 + 0.0297570i
\(848\) 22.5000 + 38.9711i 0.772653 + 1.33827i
\(849\) 0.500000 0.866025i 0.0171600 0.0297219i
\(850\) 12.1244i 0.415862i
\(851\) −18.0000 10.3923i −0.617032 0.356244i
\(852\) 3.00000 + 1.73205i 0.102778 + 0.0593391i
\(853\) 17.3205i 0.593043i −0.955026 0.296521i \(-0.904173\pi\)
0.955026 0.296521i \(-0.0958266\pi\)
\(854\) 6.00000 10.3923i 0.205316 0.355617i
\(855\) −24.0000 41.5692i −0.820783 1.42164i
\(856\) 18.0000 10.3923i 0.615227 0.355202i
\(857\) 24.0000 0.819824 0.409912 0.912125i \(-0.365559\pi\)
0.409912 + 0.912125i \(0.365559\pi\)
\(858\) −6.00000 20.7846i −0.204837 0.709575i
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) −24.0000 + 13.8564i −0.818393 + 0.472500i
\(861\) 6.00000 + 10.3923i 0.204479 + 0.354169i
\(862\) −16.5000 + 28.5788i −0.561992 + 0.973399i
\(863\) 6.92820i 0.235839i −0.993023 0.117919i \(-0.962378\pi\)
0.993023 0.117919i \(-0.0376224\pi\)
\(864\) 22.5000 + 12.9904i 0.765466 + 0.441942i
\(865\) 18.0000 + 10.3923i 0.612018 + 0.353349i
\(866\) 50.2295i 1.70687i
\(867\) 0.500000 0.866025i 0.0169809 0.0294118i
\(868\) 1.50000 + 2.59808i 0.0509133 + 0.0881845i
\(869\) 3.00000 1.73205i 0.101768 0.0587558i
\(870\) −36.0000 −1.22051
\(871\) 0 0
\(872\) −24.0000 −0.812743
\(873\) −12.0000 + 6.92820i −0.406138 + 0.234484i
\(874\) 18.0000 + 31.1769i 0.608859 + 1.05457i
\(875\) −6.00000 + 10.3923i −0.202837 + 0.351324i
\(876\) 13.8564i 0.468165i
\(877\) −48.0000 27.7128i −1.62084 0.935795i −0.986694 0.162585i \(-0.948017\pi\)
−0.634150 0.773210i \(-0.718650\pi\)
\(878\) −12.0000 6.92820i −0.404980 0.233816i
\(879\) 15.5885i 0.525786i
\(880\) −30.0000 + 51.9615i −1.01130 + 1.75162i
\(881\) −6.00000 10.3923i −0.202145 0.350126i 0.747074 0.664741i \(-0.231458\pi\)
−0.949219 + 0.314615i \(0.898125\pi\)
\(882\) −12.0000 + 6.92820i −0.404061 + 0.233285i
\(883\) −26.0000 −0.874970 −0.437485 0.899226i \(-0.644131\pi\)
−0.437485 + 0.899226i \(0.644131\pi\)
\(884\) −2.50000 + 2.59808i −0.0840841 + 0.0873828i
\(885\) 48.0000 1.61350
\(886\) −36.0000 + 20.7846i −1.20944 + 0.698273i
\(887\) 18.0000 + 31.1769i 0.604381 + 1.04682i 0.992149 + 0.125061i \(0.0399128\pi\)
−0.387768 + 0.921757i \(0.626754\pi\)
\(888\) −6.00000 + 10.3923i −0.201347 + 0.348743i
\(889\) 3.46410i 0.116182i
\(890\) −81.0000 46.7654i −2.71513 1.56758i
\(891\) −3.00000 1.73205i −0.100504 0.0580259i
\(892\) 0 0
\(893\) 12.0000 20.7846i 0.401565 0.695530i
\(894\) 0 0
\(895\) −18.0000 + 10.3923i −0.601674 + 0.347376i
\(896\) 21.0000 0.701561
\(897\) −10.5000 2.59808i −0.350585 0.0867472i
\(898\) −30.0000 −1.00111
\(899\) 9.00000 5.19615i 0.300167 0.173301i
\(900\) 7.00000 + 12.1244i 0.233333 + 0.404145i
\(901\) 4.50000 7.79423i 0.149917 0.259663i
\(902\) 41.5692i 1.38410i
\(903\) 12.0000 + 6.92820i 0.399335 + 0.230556i
\(904\) 9.00000 + 5.19615i 0.299336 + 0.172821i
\(905\) 27.7128i 0.921205i
\(906\) −6.00000 + 10.3923i −0.199337 + 0.345261i
\(907\) −3.50000 6.06218i −0.116216 0.201291i 0.802049 0.597258i \(-0.203743\pi\)
−0.918265 + 0.395966i \(0.870410\pi\)
\(908\) 7.50000 4.33013i 0.248896 0.143700i
\(909\) −12.0000 −0.398015
\(910\) −36.0000 + 10.3923i −1.19339 + 0.344502i
\(911\) −9.00000 −0.298183 −0.149092 0.988823i \(-0.547635\pi\)
−0.149092 + 0.988823i \(0.547635\pi\)
\(912\) 30.0000 17.3205i 0.993399 0.573539i
\(913\) −18.0000 31.1769i −0.595713 1.03181i
\(914\) 10.5000 18.1865i 0.347309 0.601557i
\(915\) 13.8564i 0.458079i
\(916\) −13.5000 7.79423i −0.446053 0.257529i
\(917\) −18.0000 10.3923i −0.594412 0.343184i
\(918\) 8.66025i 0.285831i
\(919\) −29.0000 + 50.2295i −0.956622 + 1.65692i −0.226009 + 0.974125i \(0.572568\pi\)
−0.730613 + 0.682792i \(0.760765\pi\)
\(920\) 9.00000 + 15.5885i 0.296721 + 0.513936i
\(921\) 3.00000 1.73205i 0.0988534 0.0570730i
\(922\) −33.0000 −1.08680
\(923\) 3.00000 12.1244i 0.0987462 0.399078i
\(924\) −6.00000 −0.197386
\(925\) −42.0000 + 24.2487i −1.38095 + 0.797293i
\(926\) −33.0000 57.1577i −1.08445 1.87832i
\(927\) 14.0000 24.2487i 0.459820 0.796432i
\(928\) 31.1769i 1.02343i
\(929\) 39.0000 + 22.5167i 1.27955 + 0.738748i 0.976765 0.214312i \(-0.0687509\pi\)
0.302783 + 0.953059i \(0.402084\pi\)
\(930\) 9.00000 + 5.19615i 0.295122 + 0.170389i
\(931\) 27.7128i 0.908251i
\(932\) 3.00000 5.19615i 0.0982683 0.170206i
\(933\) 6.00000 + 10.3923i 0.196431 + 0.340229i
\(934\) 45.0000 25.9808i 1.47244 0.850117i
\(935\) 12.0000 0.392442
\(936\) 3.00000 12.1244i 0.0980581 0.396297i
\(937\) −35.0000 −1.14340 −0.571700 0.820463i \(-0.693716\pi\)
−0.571700 + 0.820463i \(0.693716\pi\)
\(938\) 0 0
\(939\) 5.00000 + 8.66025i 0.163169 + 0.282617i
\(940\) −6.00000 + 10.3923i −0.195698 + 0.338960i
\(941\) 3.46410i 0.112926i −0.998405 0.0564632i \(-0.982018\pi\)
0.998405 0.0564632i \(-0.0179824\pi\)
\(942\) 7.50000 + 4.33013i 0.244363 + 0.141083i
\(943\) 18.0000 + 10.3923i 0.586161 + 0.338420i
\(944\) 69.2820i 2.25494i
\(945\) 15.0000 25.9808i 0.487950 0.845154i
\(946\) 24.0000 + 41.5692i 0.780307 + 1.35153i
\(947\) 10.5000 6.06218i 0.341204 0.196994i −0.319600 0.947552i \(-0.603549\pi\)
0.660804 + 0.750558i \(0.270215\pi\)
\(948\) 1.00000 0.0324785
\(949\) 48.0000 13.8564i 1.55815 0.449798i
\(950\) 84.0000 2.72532
\(951\) −9.00000 + 5.19615i −0.291845 + 0.168497i
\(952\) −1.50000 2.59808i −0.0486153 0.0842041i
\(953\) 19.5000 33.7750i 0.631667 1.09408i −0.355544 0.934660i \(-0.615704\pi\)
0.987211 0.159420i \(-0.0509623\pi\)
\(954\) 31.1769i 1.00939i
\(955\) 18.0000 + 10.3923i 0.582466 + 0.336287i
\(956\) −21.0000 12.1244i −0.679189 0.392130i
\(957\) 20.7846i 0.671871i
\(958\) −31.5000 + 54.5596i −1.01772 + 1.76274i
\(959\) −19.5000 33.7750i −0.629688 1.09065i
\(960\) 3.00000 1.73205i 0.0968246 0.0559017i
\(961\) 28.0000 0.903226
\(962\) −42.0000 10.3923i −1.35413 0.335061i
\(963\) −24.0000 −0.773389
\(964\) 12.0000 6.92820i 0.386494 0.223142i
\(965\) −24.0000 41.5692i −0.772587 1.33816i
\(966\) −4.50000 + 7.79423i −0.144785 + 0.250775i
\(967\) 3.46410i 0.111398i 0.998448 + 0.0556990i \(0.0177387\pi\)
−0.998448 + 0.0556990i \(0.982261\pi\)
\(968\) 1.50000 + 0.866025i 0.0482118 + 0.0278351i
\(969\) −6.00000 3.46410i −0.192748 0.111283i
\(970\) 41.5692i 1.33471i
\(971\) −3.00000 + 5.19615i −0.0962746 + 0.166752i −0.910140 0.414301i \(-0.864026\pi\)
0.813865 + 0.581054i \(0.197359\pi\)
\(972\) −8.00000 13.8564i −0.256600 0.444444i
\(973\) −19.5000 + 11.2583i −0.625141 + 0.360925i
\(974\) 9.00000 0.288379
\(975\) −17.5000 + 18.1865i −0.560449 + 0.582435i
\(976\) −20.0000 −0.640184
\(977\) 12.0000 6.92820i 0.383914 0.221653i −0.295606 0.955310i \(-0.595521\pi\)
0.679520 + 0.733657i \(0.262188\pi\)
\(978\) −9.00000 15.5885i −0.287788 0.498464i
\(979\) −27.0000 + 46.7654i −0.862924 + 1.49463i
\(980\) 13.8564i 0.442627i
\(981\) 24.0000 + 13.8564i 0.766261 + 0.442401i
\(982\) −45.0000 25.9808i −1.43601 0.829079i
\(983\) 22.5167i 0.718170i 0.933305 + 0.359085i \(0.116911\pi\)
−0.933305 + 0.359085i \(0.883089\pi\)
\(984\) 6.00000 10.3923i 0.191273 0.331295i
\(985\) 0 0
\(986\) 9.00000 5.19615i 0.286618 0.165479i
\(987\) 6.00000 0.190982
\(988\) 18.0000 + 17.3205i 0.572656 + 0.551039i
\(989\) 24.0000 0.763156
\(990\) 36.0000 20.7846i 1.14416 0.660578i
\(991\) 12.5000 + 21.6506i 0.397076 + 0.687755i 0.993364 0.115015i \(-0.0366917\pi\)
−0.596288 + 0.802771i \(0.703358\pi\)
\(992\) 4.50000 7.79423i 0.142875 0.247467i
\(993\) 10.3923i 0.329790i
\(994\) −9.00000 5.19615i −0.285463 0.164812i
\(995\) −48.0000 27.7128i −1.52170 0.878555i
\(996\) 10.3923i 0.329293i
\(997\) 14.0000 24.2487i 0.443384 0.767964i −0.554554 0.832148i \(-0.687111\pi\)
0.997938 + 0.0641836i \(0.0204443\pi\)
\(998\) 25.5000 + 44.1673i 0.807188 + 1.39809i
\(999\) 30.0000 17.3205i 0.949158 0.547997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 221.2.m.a.205.1 yes 2
13.2 odd 12 2873.2.a.e.1.2 2
13.4 even 6 inner 221.2.m.a.69.1 2
13.11 odd 12 2873.2.a.e.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
221.2.m.a.69.1 2 13.4 even 6 inner
221.2.m.a.205.1 yes 2 1.1 even 1 trivial
2873.2.a.e.1.1 2 13.11 odd 12
2873.2.a.e.1.2 2 13.2 odd 12