Properties

Label 2208.2.j.c.47.42
Level $2208$
Weight $2$
Character 2208.47
Analytic conductor $17.631$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2208,2,Mod(47,2208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2208.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2208 = 2^{5} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2208.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [42,0,-2,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6309687663\)
Analytic rank: \(0\)
Dimension: \(42\)
Twist minimal: no (minimal twist has level 552)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 47.42
Character \(\chi\) \(=\) 2208.47
Dual form 2208.2.j.c.47.41

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73179 + 0.0302019i) q^{3} +0.871841 q^{5} +3.09231i q^{7} +(2.99818 + 0.104607i) q^{9} +1.90350i q^{11} +1.23856i q^{13} +(1.50984 + 0.0263313i) q^{15} -1.98300i q^{17} +4.96848 q^{19} +(-0.0933936 + 5.35522i) q^{21} +1.00000 q^{23} -4.23989 q^{25} +(5.18904 + 0.271707i) q^{27} -2.31109 q^{29} +3.48492i q^{31} +(-0.0574892 + 3.29645i) q^{33} +2.69600i q^{35} +4.56655i q^{37} +(-0.0374068 + 2.14492i) q^{39} -8.71457i q^{41} +3.26780 q^{43} +(2.61393 + 0.0912003i) q^{45} -7.68114 q^{47} -2.56238 q^{49} +(0.0598904 - 3.43414i) q^{51} +7.53051 q^{53} +1.65955i q^{55} +(8.60435 + 0.150058i) q^{57} +12.2120i q^{59} +10.7975i q^{61} +(-0.323476 + 9.27129i) q^{63} +1.07983i q^{65} +0.0562647 q^{67} +(1.73179 + 0.0302019i) q^{69} -7.84847 q^{71} -7.04796 q^{73} +(-7.34259 - 0.128053i) q^{75} -5.88620 q^{77} +5.10654i q^{79} +(8.97811 + 0.627258i) q^{81} +0.795490i q^{83} -1.72886i q^{85} +(-4.00232 - 0.0697994i) q^{87} -17.3867i q^{89} -3.83001 q^{91} +(-0.105251 + 6.03513i) q^{93} +4.33173 q^{95} +9.05221 q^{97} +(-0.199118 + 5.70701i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q - 2 q^{3} - 8 q^{5} + 2 q^{9} - 8 q^{15} - 4 q^{19} - 8 q^{21} + 42 q^{23} + 22 q^{25} + 16 q^{27} + 12 q^{33} + 8 q^{39} - 28 q^{43} + 8 q^{45} - 50 q^{49} - 28 q^{51} - 24 q^{53} - 8 q^{57} - 16 q^{63}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2208\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(415\) \(737\) \(1381\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73179 + 0.0302019i 0.999848 + 0.0174371i
\(4\) 0 0
\(5\) 0.871841 0.389899 0.194950 0.980813i \(-0.437546\pi\)
0.194950 + 0.980813i \(0.437546\pi\)
\(6\) 0 0
\(7\) 3.09231i 1.16878i 0.811472 + 0.584392i \(0.198667\pi\)
−0.811472 + 0.584392i \(0.801333\pi\)
\(8\) 0 0
\(9\) 2.99818 + 0.104607i 0.999392 + 0.0348688i
\(10\) 0 0
\(11\) 1.90350i 0.573926i 0.957942 + 0.286963i \(0.0926456\pi\)
−0.957942 + 0.286963i \(0.907354\pi\)
\(12\) 0 0
\(13\) 1.23856i 0.343514i 0.985139 + 0.171757i \(0.0549444\pi\)
−0.985139 + 0.171757i \(0.945056\pi\)
\(14\) 0 0
\(15\) 1.50984 + 0.0263313i 0.389840 + 0.00679870i
\(16\) 0 0
\(17\) 1.98300i 0.480949i −0.970655 0.240474i \(-0.922697\pi\)
0.970655 0.240474i \(-0.0773030\pi\)
\(18\) 0 0
\(19\) 4.96848 1.13985 0.569924 0.821697i \(-0.306973\pi\)
0.569924 + 0.821697i \(0.306973\pi\)
\(20\) 0 0
\(21\) −0.0933936 + 5.35522i −0.0203802 + 1.16861i
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) −4.23989 −0.847979
\(26\) 0 0
\(27\) 5.18904 + 0.271707i 0.998632 + 0.0522900i
\(28\) 0 0
\(29\) −2.31109 −0.429159 −0.214580 0.976706i \(-0.568838\pi\)
−0.214580 + 0.976706i \(0.568838\pi\)
\(30\) 0 0
\(31\) 3.48492i 0.625909i 0.949768 + 0.312955i \(0.101319\pi\)
−0.949768 + 0.312955i \(0.898681\pi\)
\(32\) 0 0
\(33\) −0.0574892 + 3.29645i −0.0100076 + 0.573838i
\(34\) 0 0
\(35\) 2.69600i 0.455708i
\(36\) 0 0
\(37\) 4.56655i 0.750735i 0.926876 + 0.375368i \(0.122484\pi\)
−0.926876 + 0.375368i \(0.877516\pi\)
\(38\) 0 0
\(39\) −0.0374068 + 2.14492i −0.00598989 + 0.343462i
\(40\) 0 0
\(41\) 8.71457i 1.36099i −0.732754 0.680493i \(-0.761766\pi\)
0.732754 0.680493i \(-0.238234\pi\)
\(42\) 0 0
\(43\) 3.26780 0.498336 0.249168 0.968460i \(-0.419843\pi\)
0.249168 + 0.968460i \(0.419843\pi\)
\(44\) 0 0
\(45\) 2.61393 + 0.0912003i 0.389662 + 0.0135953i
\(46\) 0 0
\(47\) −7.68114 −1.12041 −0.560205 0.828354i \(-0.689277\pi\)
−0.560205 + 0.828354i \(0.689277\pi\)
\(48\) 0 0
\(49\) −2.56238 −0.366054
\(50\) 0 0
\(51\) 0.0598904 3.43414i 0.00838634 0.480876i
\(52\) 0 0
\(53\) 7.53051 1.03439 0.517197 0.855866i \(-0.326975\pi\)
0.517197 + 0.855866i \(0.326975\pi\)
\(54\) 0 0
\(55\) 1.65955i 0.223773i
\(56\) 0 0
\(57\) 8.60435 + 0.150058i 1.13967 + 0.0198756i
\(58\) 0 0
\(59\) 12.2120i 1.58986i 0.606698 + 0.794932i \(0.292494\pi\)
−0.606698 + 0.794932i \(0.707506\pi\)
\(60\) 0 0
\(61\) 10.7975i 1.38248i 0.722623 + 0.691242i \(0.242936\pi\)
−0.722623 + 0.691242i \(0.757064\pi\)
\(62\) 0 0
\(63\) −0.323476 + 9.27129i −0.0407541 + 1.16807i
\(64\) 0 0
\(65\) 1.07983i 0.133936i
\(66\) 0 0
\(67\) 0.0562647 0.00687383 0.00343692 0.999994i \(-0.498906\pi\)
0.00343692 + 0.999994i \(0.498906\pi\)
\(68\) 0 0
\(69\) 1.73179 + 0.0302019i 0.208483 + 0.00363588i
\(70\) 0 0
\(71\) −7.84847 −0.931442 −0.465721 0.884932i \(-0.654205\pi\)
−0.465721 + 0.884932i \(0.654205\pi\)
\(72\) 0 0
\(73\) −7.04796 −0.824902 −0.412451 0.910980i \(-0.635327\pi\)
−0.412451 + 0.910980i \(0.635327\pi\)
\(74\) 0 0
\(75\) −7.34259 0.128053i −0.847850 0.0147863i
\(76\) 0 0
\(77\) −5.88620 −0.670795
\(78\) 0 0
\(79\) 5.10654i 0.574531i 0.957851 + 0.287265i \(0.0927462\pi\)
−0.957851 + 0.287265i \(0.907254\pi\)
\(80\) 0 0
\(81\) 8.97811 + 0.627258i 0.997568 + 0.0696953i
\(82\) 0 0
\(83\) 0.795490i 0.0873163i 0.999047 + 0.0436582i \(0.0139012\pi\)
−0.999047 + 0.0436582i \(0.986099\pi\)
\(84\) 0 0
\(85\) 1.72886i 0.187522i
\(86\) 0 0
\(87\) −4.00232 0.0697994i −0.429094 0.00748329i
\(88\) 0 0
\(89\) 17.3867i 1.84298i −0.388399 0.921491i \(-0.626972\pi\)
0.388399 0.921491i \(-0.373028\pi\)
\(90\) 0 0
\(91\) −3.83001 −0.401494
\(92\) 0 0
\(93\) −0.105251 + 6.03513i −0.0109140 + 0.625814i
\(94\) 0 0
\(95\) 4.33173 0.444426
\(96\) 0 0
\(97\) 9.05221 0.919113 0.459557 0.888149i \(-0.348008\pi\)
0.459557 + 0.888149i \(0.348008\pi\)
\(98\) 0 0
\(99\) −0.199118 + 5.70701i −0.0200121 + 0.573577i
\(100\) 0 0
\(101\) 19.5806 1.94835 0.974173 0.225803i \(-0.0725005\pi\)
0.974173 + 0.225803i \(0.0725005\pi\)
\(102\) 0 0
\(103\) 2.96013i 0.291670i 0.989309 + 0.145835i \(0.0465869\pi\)
−0.989309 + 0.145835i \(0.953413\pi\)
\(104\) 0 0
\(105\) −0.0814244 + 4.66890i −0.00794621 + 0.455638i
\(106\) 0 0
\(107\) 8.95826i 0.866028i −0.901387 0.433014i \(-0.857450\pi\)
0.901387 0.433014i \(-0.142550\pi\)
\(108\) 0 0
\(109\) 9.35024i 0.895591i −0.894136 0.447795i \(-0.852209\pi\)
0.894136 0.447795i \(-0.147791\pi\)
\(110\) 0 0
\(111\) −0.137918 + 7.90829i −0.0130906 + 0.750621i
\(112\) 0 0
\(113\) 1.47151i 0.138428i −0.997602 0.0692140i \(-0.977951\pi\)
0.997602 0.0692140i \(-0.0220491\pi\)
\(114\) 0 0
\(115\) 0.871841 0.0812996
\(116\) 0 0
\(117\) −0.129561 + 3.71342i −0.0119779 + 0.343305i
\(118\) 0 0
\(119\) 6.13206 0.562125
\(120\) 0 0
\(121\) 7.37670 0.670609
\(122\) 0 0
\(123\) 0.263196 15.0918i 0.0237316 1.36078i
\(124\) 0 0
\(125\) −8.05572 −0.720525
\(126\) 0 0
\(127\) 6.90921i 0.613093i −0.951856 0.306547i \(-0.900826\pi\)
0.951856 0.306547i \(-0.0991735\pi\)
\(128\) 0 0
\(129\) 5.65914 + 0.0986939i 0.498260 + 0.00868951i
\(130\) 0 0
\(131\) 12.5716i 1.09839i 0.835695 + 0.549193i \(0.185065\pi\)
−0.835695 + 0.549193i \(0.814935\pi\)
\(132\) 0 0
\(133\) 15.3641i 1.33224i
\(134\) 0 0
\(135\) 4.52402 + 0.236885i 0.389366 + 0.0203878i
\(136\) 0 0
\(137\) 1.78484i 0.152490i 0.997089 + 0.0762448i \(0.0242930\pi\)
−0.997089 + 0.0762448i \(0.975707\pi\)
\(138\) 0 0
\(139\) −5.90847 −0.501150 −0.250575 0.968097i \(-0.580620\pi\)
−0.250575 + 0.968097i \(0.580620\pi\)
\(140\) 0 0
\(141\) −13.3021 0.231985i −1.12024 0.0195367i
\(142\) 0 0
\(143\) −2.35759 −0.197152
\(144\) 0 0
\(145\) −2.01491 −0.167329
\(146\) 0 0
\(147\) −4.43750 0.0773888i −0.365999 0.00638292i
\(148\) 0 0
\(149\) −18.3640 −1.50444 −0.752219 0.658914i \(-0.771016\pi\)
−0.752219 + 0.658914i \(0.771016\pi\)
\(150\) 0 0
\(151\) 5.65286i 0.460023i −0.973188 0.230012i \(-0.926124\pi\)
0.973188 0.230012i \(-0.0738764\pi\)
\(152\) 0 0
\(153\) 0.207435 5.94539i 0.0167701 0.480656i
\(154\) 0 0
\(155\) 3.03829i 0.244041i
\(156\) 0 0
\(157\) 17.6786i 1.41090i −0.708758 0.705451i \(-0.750744\pi\)
0.708758 0.705451i \(-0.249256\pi\)
\(158\) 0 0
\(159\) 13.0412 + 0.227436i 1.03424 + 0.0180368i
\(160\) 0 0
\(161\) 3.09231i 0.243708i
\(162\) 0 0
\(163\) 15.4158 1.20746 0.603728 0.797191i \(-0.293681\pi\)
0.603728 + 0.797191i \(0.293681\pi\)
\(164\) 0 0
\(165\) −0.0501214 + 2.87398i −0.00390195 + 0.223739i
\(166\) 0 0
\(167\) 9.04899 0.700232 0.350116 0.936706i \(-0.386142\pi\)
0.350116 + 0.936706i \(0.386142\pi\)
\(168\) 0 0
\(169\) 11.4660 0.881998
\(170\) 0 0
\(171\) 14.8964 + 0.519736i 1.13915 + 0.0397452i
\(172\) 0 0
\(173\) −2.83727 −0.215714 −0.107857 0.994166i \(-0.534399\pi\)
−0.107857 + 0.994166i \(0.534399\pi\)
\(174\) 0 0
\(175\) 13.1111i 0.991103i
\(176\) 0 0
\(177\) −0.368825 + 21.1486i −0.0277226 + 1.58962i
\(178\) 0 0
\(179\) 10.5834i 0.791043i −0.918457 0.395521i \(-0.870564\pi\)
0.918457 0.395521i \(-0.129436\pi\)
\(180\) 0 0
\(181\) 8.60505i 0.639608i −0.947484 0.319804i \(-0.896383\pi\)
0.947484 0.319804i \(-0.103617\pi\)
\(182\) 0 0
\(183\) −0.326106 + 18.6991i −0.0241065 + 1.38227i
\(184\) 0 0
\(185\) 3.98130i 0.292711i
\(186\) 0 0
\(187\) 3.77464 0.276029
\(188\) 0 0
\(189\) −0.840202 + 16.0461i −0.0611157 + 1.16718i
\(190\) 0 0
\(191\) −14.6068 −1.05691 −0.528454 0.848962i \(-0.677228\pi\)
−0.528454 + 0.848962i \(0.677228\pi\)
\(192\) 0 0
\(193\) −5.48507 −0.394824 −0.197412 0.980321i \(-0.563254\pi\)
−0.197412 + 0.980321i \(0.563254\pi\)
\(194\) 0 0
\(195\) −0.0326128 + 1.87003i −0.00233545 + 0.133916i
\(196\) 0 0
\(197\) 21.8619 1.55760 0.778798 0.627274i \(-0.215830\pi\)
0.778798 + 0.627274i \(0.215830\pi\)
\(198\) 0 0
\(199\) 19.5960i 1.38912i −0.719435 0.694560i \(-0.755599\pi\)
0.719435 0.694560i \(-0.244401\pi\)
\(200\) 0 0
\(201\) 0.0974385 + 0.00169930i 0.00687279 + 0.000119859i
\(202\) 0 0
\(203\) 7.14662i 0.501594i
\(204\) 0 0
\(205\) 7.59772i 0.530647i
\(206\) 0 0
\(207\) 2.99818 + 0.104607i 0.208388 + 0.00727066i
\(208\) 0 0
\(209\) 9.45748i 0.654188i
\(210\) 0 0
\(211\) −9.82214 −0.676184 −0.338092 0.941113i \(-0.609782\pi\)
−0.338092 + 0.941113i \(0.609782\pi\)
\(212\) 0 0
\(213\) −13.5919 0.237039i −0.931300 0.0162416i
\(214\) 0 0
\(215\) 2.84901 0.194301
\(216\) 0 0
\(217\) −10.7764 −0.731552
\(218\) 0 0
\(219\) −12.2056 0.212862i −0.824776 0.0143839i
\(220\) 0 0
\(221\) 2.45607 0.165213
\(222\) 0 0
\(223\) 5.37339i 0.359829i 0.983682 + 0.179914i \(0.0575821\pi\)
−0.983682 + 0.179914i \(0.942418\pi\)
\(224\) 0 0
\(225\) −12.7119 0.443521i −0.847463 0.0295680i
\(226\) 0 0
\(227\) 23.0536i 1.53012i −0.643957 0.765061i \(-0.722709\pi\)
0.643957 0.765061i \(-0.277291\pi\)
\(228\) 0 0
\(229\) 27.2263i 1.79916i −0.436752 0.899582i \(-0.643871\pi\)
0.436752 0.899582i \(-0.356129\pi\)
\(230\) 0 0
\(231\) −10.1936 0.177774i −0.670693 0.0116967i
\(232\) 0 0
\(233\) 21.6173i 1.41620i 0.706114 + 0.708098i \(0.250447\pi\)
−0.706114 + 0.708098i \(0.749553\pi\)
\(234\) 0 0
\(235\) −6.69673 −0.436846
\(236\) 0 0
\(237\) −0.154227 + 8.84345i −0.0100181 + 0.574444i
\(238\) 0 0
\(239\) 17.6777 1.14348 0.571738 0.820436i \(-0.306270\pi\)
0.571738 + 0.820436i \(0.306270\pi\)
\(240\) 0 0
\(241\) −16.3445 −1.05284 −0.526419 0.850225i \(-0.676466\pi\)
−0.526419 + 0.850225i \(0.676466\pi\)
\(242\) 0 0
\(243\) 15.5292 + 1.35743i 0.996201 + 0.0870794i
\(244\) 0 0
\(245\) −2.23399 −0.142724
\(246\) 0 0
\(247\) 6.15376i 0.391554i
\(248\) 0 0
\(249\) −0.0240253 + 1.37762i −0.00152254 + 0.0873030i
\(250\) 0 0
\(251\) 14.1286i 0.891791i 0.895085 + 0.445896i \(0.147115\pi\)
−0.895085 + 0.445896i \(0.852885\pi\)
\(252\) 0 0
\(253\) 1.90350i 0.119672i
\(254\) 0 0
\(255\) 0.0522149 2.99402i 0.00326983 0.187493i
\(256\) 0 0
\(257\) 13.2937i 0.829238i 0.909995 + 0.414619i \(0.136085\pi\)
−0.909995 + 0.414619i \(0.863915\pi\)
\(258\) 0 0
\(259\) −14.1212 −0.877447
\(260\) 0 0
\(261\) −6.92907 0.241756i −0.428898 0.0149643i
\(262\) 0 0
\(263\) −25.3919 −1.56573 −0.782865 0.622192i \(-0.786242\pi\)
−0.782865 + 0.622192i \(0.786242\pi\)
\(264\) 0 0
\(265\) 6.56541 0.403310
\(266\) 0 0
\(267\) 0.525110 30.1100i 0.0321362 1.84270i
\(268\) 0 0
\(269\) 2.58876 0.157840 0.0789198 0.996881i \(-0.474853\pi\)
0.0789198 + 0.996881i \(0.474853\pi\)
\(270\) 0 0
\(271\) 29.5135i 1.79282i −0.443226 0.896410i \(-0.646166\pi\)
0.443226 0.896410i \(-0.353834\pi\)
\(272\) 0 0
\(273\) −6.63276 0.115673i −0.401433 0.00700088i
\(274\) 0 0
\(275\) 8.07062i 0.486677i
\(276\) 0 0
\(277\) 1.08750i 0.0653413i −0.999466 0.0326707i \(-0.989599\pi\)
0.999466 0.0326707i \(-0.0104012\pi\)
\(278\) 0 0
\(279\) −0.364545 + 10.4484i −0.0218247 + 0.625529i
\(280\) 0 0
\(281\) 3.26761i 0.194929i 0.995239 + 0.0974647i \(0.0310733\pi\)
−0.995239 + 0.0974647i \(0.968927\pi\)
\(282\) 0 0
\(283\) −6.37119 −0.378728 −0.189364 0.981907i \(-0.560643\pi\)
−0.189364 + 0.981907i \(0.560643\pi\)
\(284\) 0 0
\(285\) 7.50163 + 0.130826i 0.444358 + 0.00774948i
\(286\) 0 0
\(287\) 26.9481 1.59070
\(288\) 0 0
\(289\) 13.0677 0.768688
\(290\) 0 0
\(291\) 15.6765 + 0.273394i 0.918973 + 0.0160266i
\(292\) 0 0
\(293\) 24.5319 1.43317 0.716584 0.697501i \(-0.245705\pi\)
0.716584 + 0.697501i \(0.245705\pi\)
\(294\) 0 0
\(295\) 10.6469i 0.619887i
\(296\) 0 0
\(297\) −0.517193 + 9.87732i −0.0300106 + 0.573140i
\(298\) 0 0
\(299\) 1.23856i 0.0716277i
\(300\) 0 0
\(301\) 10.1051i 0.582446i
\(302\) 0 0
\(303\) 33.9095 + 0.591372i 1.94805 + 0.0339735i
\(304\) 0 0
\(305\) 9.41374i 0.539029i
\(306\) 0 0
\(307\) −6.49267 −0.370556 −0.185278 0.982686i \(-0.559319\pi\)
−0.185278 + 0.982686i \(0.559319\pi\)
\(308\) 0 0
\(309\) −0.0894015 + 5.12631i −0.00508587 + 0.291626i
\(310\) 0 0
\(311\) −26.3522 −1.49430 −0.747149 0.664657i \(-0.768578\pi\)
−0.747149 + 0.664657i \(0.768578\pi\)
\(312\) 0 0
\(313\) −33.2164 −1.87750 −0.938750 0.344599i \(-0.888015\pi\)
−0.938750 + 0.344599i \(0.888015\pi\)
\(314\) 0 0
\(315\) −0.282019 + 8.08309i −0.0158900 + 0.455430i
\(316\) 0 0
\(317\) −21.3265 −1.19782 −0.598908 0.800818i \(-0.704399\pi\)
−0.598908 + 0.800818i \(0.704399\pi\)
\(318\) 0 0
\(319\) 4.39916i 0.246306i
\(320\) 0 0
\(321\) 0.270556 15.5138i 0.0151010 0.865896i
\(322\) 0 0
\(323\) 9.85251i 0.548208i
\(324\) 0 0
\(325\) 5.25136i 0.291293i
\(326\) 0 0
\(327\) 0.282395 16.1926i 0.0156165 0.895454i
\(328\) 0 0
\(329\) 23.7525i 1.30952i
\(330\) 0 0
\(331\) 7.14989 0.392994 0.196497 0.980504i \(-0.437043\pi\)
0.196497 + 0.980504i \(0.437043\pi\)
\(332\) 0 0
\(333\) −0.477691 + 13.6913i −0.0261773 + 0.750279i
\(334\) 0 0
\(335\) 0.0490539 0.00268010
\(336\) 0 0
\(337\) 7.67027 0.417826 0.208913 0.977934i \(-0.433007\pi\)
0.208913 + 0.977934i \(0.433007\pi\)
\(338\) 0 0
\(339\) 0.0444424 2.54834i 0.00241378 0.138407i
\(340\) 0 0
\(341\) −6.63352 −0.359225
\(342\) 0 0
\(343\) 13.7225i 0.740945i
\(344\) 0 0
\(345\) 1.50984 + 0.0263313i 0.0812872 + 0.00141763i
\(346\) 0 0
\(347\) 27.3593i 1.46872i 0.678759 + 0.734361i \(0.262518\pi\)
−0.678759 + 0.734361i \(0.737482\pi\)
\(348\) 0 0
\(349\) 6.07938i 0.325422i 0.986674 + 0.162711i \(0.0520238\pi\)
−0.986674 + 0.162711i \(0.947976\pi\)
\(350\) 0 0
\(351\) −0.336525 + 6.42693i −0.0179624 + 0.343044i
\(352\) 0 0
\(353\) 25.6872i 1.36719i −0.729861 0.683595i \(-0.760415\pi\)
0.729861 0.683595i \(-0.239585\pi\)
\(354\) 0 0
\(355\) −6.84262 −0.363168
\(356\) 0 0
\(357\) 10.6194 + 0.185200i 0.562039 + 0.00980181i
\(358\) 0 0
\(359\) −17.9590 −0.947838 −0.473919 0.880568i \(-0.657161\pi\)
−0.473919 + 0.880568i \(0.657161\pi\)
\(360\) 0 0
\(361\) 5.68581 0.299253
\(362\) 0 0
\(363\) 12.7749 + 0.222790i 0.670508 + 0.0116935i
\(364\) 0 0
\(365\) −6.14470 −0.321628
\(366\) 0 0
\(367\) 22.5647i 1.17787i 0.808180 + 0.588935i \(0.200453\pi\)
−0.808180 + 0.588935i \(0.799547\pi\)
\(368\) 0 0
\(369\) 0.911601 26.1278i 0.0474560 1.36016i
\(370\) 0 0
\(371\) 23.2867i 1.20898i
\(372\) 0 0
\(373\) 19.6359i 1.01671i 0.861147 + 0.508355i \(0.169746\pi\)
−0.861147 + 0.508355i \(0.830254\pi\)
\(374\) 0 0
\(375\) −13.9508 0.243298i −0.720416 0.0125639i
\(376\) 0 0
\(377\) 2.86243i 0.147422i
\(378\) 0 0
\(379\) 13.9167 0.714855 0.357428 0.933941i \(-0.383654\pi\)
0.357428 + 0.933941i \(0.383654\pi\)
\(380\) 0 0
\(381\) 0.208671 11.9653i 0.0106905 0.613000i
\(382\) 0 0
\(383\) 27.2328 1.39153 0.695766 0.718269i \(-0.255065\pi\)
0.695766 + 0.718269i \(0.255065\pi\)
\(384\) 0 0
\(385\) −5.13183 −0.261542
\(386\) 0 0
\(387\) 9.79745 + 0.341834i 0.498032 + 0.0173764i
\(388\) 0 0
\(389\) −0.198260 −0.0100522 −0.00502608 0.999987i \(-0.501600\pi\)
−0.00502608 + 0.999987i \(0.501600\pi\)
\(390\) 0 0
\(391\) 1.98300i 0.100285i
\(392\) 0 0
\(393\) −0.379687 + 21.7714i −0.0191527 + 1.09822i
\(394\) 0 0
\(395\) 4.45209i 0.224009i
\(396\) 0 0
\(397\) 12.8510i 0.644971i −0.946574 0.322485i \(-0.895482\pi\)
0.946574 0.322485i \(-0.104518\pi\)
\(398\) 0 0
\(399\) −0.464025 + 26.6073i −0.0232303 + 1.33203i
\(400\) 0 0
\(401\) 23.3200i 1.16454i −0.812994 0.582272i \(-0.802164\pi\)
0.812994 0.582272i \(-0.197836\pi\)
\(402\) 0 0
\(403\) −4.31627 −0.215009
\(404\) 0 0
\(405\) 7.82749 + 0.546869i 0.388951 + 0.0271741i
\(406\) 0 0
\(407\) −8.69240 −0.430866
\(408\) 0 0
\(409\) 2.90989 0.143885 0.0719425 0.997409i \(-0.477080\pi\)
0.0719425 + 0.997409i \(0.477080\pi\)
\(410\) 0 0
\(411\) −0.0539057 + 3.09097i −0.00265897 + 0.152466i
\(412\) 0 0
\(413\) −37.7632 −1.85821
\(414\) 0 0
\(415\) 0.693540i 0.0340446i
\(416\) 0 0
\(417\) −10.2322 0.178447i −0.501074 0.00873859i
\(418\) 0 0
\(419\) 15.9445i 0.778941i 0.921039 + 0.389470i \(0.127342\pi\)
−0.921039 + 0.389470i \(0.872658\pi\)
\(420\) 0 0
\(421\) 30.6791i 1.49521i −0.664144 0.747604i \(-0.731204\pi\)
0.664144 0.747604i \(-0.268796\pi\)
\(422\) 0 0
\(423\) −23.0294 0.803497i −1.11973 0.0390674i
\(424\) 0 0
\(425\) 8.40772i 0.407834i
\(426\) 0 0
\(427\) −33.3894 −1.61582
\(428\) 0 0
\(429\) −4.08285 0.0712037i −0.197122 0.00343775i
\(430\) 0 0
\(431\) 35.6205 1.71578 0.857890 0.513833i \(-0.171775\pi\)
0.857890 + 0.513833i \(0.171775\pi\)
\(432\) 0 0
\(433\) 3.15606 0.151670 0.0758352 0.997120i \(-0.475838\pi\)
0.0758352 + 0.997120i \(0.475838\pi\)
\(434\) 0 0
\(435\) −3.48939 0.0608540i −0.167303 0.00291773i
\(436\) 0 0
\(437\) 4.96848 0.237675
\(438\) 0 0
\(439\) 27.8197i 1.32776i −0.747839 0.663880i \(-0.768908\pi\)
0.747839 0.663880i \(-0.231092\pi\)
\(440\) 0 0
\(441\) −7.68247 0.268042i −0.365832 0.0127639i
\(442\) 0 0
\(443\) 6.53287i 0.310386i 0.987884 + 0.155193i \(0.0496000\pi\)
−0.987884 + 0.155193i \(0.950400\pi\)
\(444\) 0 0
\(445\) 15.1584i 0.718577i
\(446\) 0 0
\(447\) −31.8025 0.554628i −1.50421 0.0262330i
\(448\) 0 0
\(449\) 25.4871i 1.20281i 0.798943 + 0.601406i \(0.205393\pi\)
−0.798943 + 0.601406i \(0.794607\pi\)
\(450\) 0 0
\(451\) 16.5881 0.781105
\(452\) 0 0
\(453\) 0.170727 9.78955i 0.00802146 0.459953i
\(454\) 0 0
\(455\) −3.33916 −0.156542
\(456\) 0 0
\(457\) 2.40286 0.112401 0.0562004 0.998420i \(-0.482101\pi\)
0.0562004 + 0.998420i \(0.482101\pi\)
\(458\) 0 0
\(459\) 0.538796 10.2899i 0.0251488 0.480291i
\(460\) 0 0
\(461\) 14.0637 0.655013 0.327506 0.944849i \(-0.393792\pi\)
0.327506 + 0.944849i \(0.393792\pi\)
\(462\) 0 0
\(463\) 35.7689i 1.66232i −0.556031 0.831161i \(-0.687677\pi\)
0.556031 0.831161i \(-0.312323\pi\)
\(464\) 0 0
\(465\) −0.0917622 + 5.26168i −0.00425537 + 0.244004i
\(466\) 0 0
\(467\) 39.3360i 1.82025i −0.414331 0.910126i \(-0.635985\pi\)
0.414331 0.910126i \(-0.364015\pi\)
\(468\) 0 0
\(469\) 0.173988i 0.00803402i
\(470\) 0 0
\(471\) 0.533926 30.6155i 0.0246020 1.41069i
\(472\) 0 0
\(473\) 6.22025i 0.286007i
\(474\) 0 0
\(475\) −21.0658 −0.966567
\(476\) 0 0
\(477\) 22.5778 + 0.787740i 1.03377 + 0.0360682i
\(478\) 0 0
\(479\) 2.16149 0.0987611 0.0493805 0.998780i \(-0.484275\pi\)
0.0493805 + 0.998780i \(0.484275\pi\)
\(480\) 0 0
\(481\) −5.65593 −0.257888
\(482\) 0 0
\(483\) −0.0933936 + 5.35522i −0.00424956 + 0.243671i
\(484\) 0 0
\(485\) 7.89209 0.358361
\(486\) 0 0
\(487\) 28.2115i 1.27839i −0.769046 0.639193i \(-0.779268\pi\)
0.769046 0.639193i \(-0.220732\pi\)
\(488\) 0 0
\(489\) 26.6968 + 0.465585i 1.20727 + 0.0210545i
\(490\) 0 0
\(491\) 5.65453i 0.255185i −0.991827 0.127593i \(-0.959275\pi\)
0.991827 0.127593i \(-0.0407250\pi\)
\(492\) 0 0
\(493\) 4.58291i 0.206404i
\(494\) 0 0
\(495\) −0.173599 + 4.97561i −0.00780271 + 0.223637i
\(496\) 0 0
\(497\) 24.2699i 1.08865i
\(498\) 0 0
\(499\) −31.1605 −1.39494 −0.697468 0.716616i \(-0.745690\pi\)
−0.697468 + 0.716616i \(0.745690\pi\)
\(500\) 0 0
\(501\) 15.6709 + 0.273297i 0.700125 + 0.0122100i
\(502\) 0 0
\(503\) −0.784770 −0.0349912 −0.0174956 0.999847i \(-0.505569\pi\)
−0.0174956 + 0.999847i \(0.505569\pi\)
\(504\) 0 0
\(505\) 17.0712 0.759658
\(506\) 0 0
\(507\) 19.8566 + 0.346294i 0.881864 + 0.0153795i
\(508\) 0 0
\(509\) −1.62618 −0.0720790 −0.0360395 0.999350i \(-0.511474\pi\)
−0.0360395 + 0.999350i \(0.511474\pi\)
\(510\) 0 0
\(511\) 21.7945i 0.964131i
\(512\) 0 0
\(513\) 25.7817 + 1.34997i 1.13829 + 0.0596027i
\(514\) 0 0
\(515\) 2.58076i 0.113722i
\(516\) 0 0
\(517\) 14.6210i 0.643031i
\(518\) 0 0
\(519\) −4.91355 0.0856910i −0.215681 0.00376142i
\(520\) 0 0
\(521\) 22.0363i 0.965429i −0.875778 0.482715i \(-0.839651\pi\)
0.875778 0.482715i \(-0.160349\pi\)
\(522\) 0 0
\(523\) 0.873026 0.0381748 0.0190874 0.999818i \(-0.493924\pi\)
0.0190874 + 0.999818i \(0.493924\pi\)
\(524\) 0 0
\(525\) 0.395979 22.7056i 0.0172819 0.990953i
\(526\) 0 0
\(527\) 6.91060 0.301030
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −1.27745 + 36.6137i −0.0554368 + 1.58890i
\(532\) 0 0
\(533\) 10.7935 0.467518
\(534\) 0 0
\(535\) 7.81018i 0.337663i
\(536\) 0 0
\(537\) 0.319640 18.3282i 0.0137935 0.790922i
\(538\) 0 0
\(539\) 4.87748i 0.210088i
\(540\) 0 0
\(541\) 40.4127i 1.73748i −0.495269 0.868739i \(-0.664931\pi\)
0.495269 0.868739i \(-0.335069\pi\)
\(542\) 0 0
\(543\) 0.259889 14.9021i 0.0111529 0.639511i
\(544\) 0 0
\(545\) 8.15192i 0.349190i
\(546\) 0 0
\(547\) −26.3268 −1.12565 −0.562825 0.826576i \(-0.690286\pi\)
−0.562825 + 0.826576i \(0.690286\pi\)
\(548\) 0 0
\(549\) −1.12949 + 32.3729i −0.0482056 + 1.38164i
\(550\) 0 0
\(551\) −11.4826 −0.489176
\(552\) 0 0
\(553\) −15.7910 −0.671502
\(554\) 0 0
\(555\) −0.120243 + 6.89477i −0.00510402 + 0.292667i
\(556\) 0 0
\(557\) −26.7166 −1.13202 −0.566009 0.824399i \(-0.691513\pi\)
−0.566009 + 0.824399i \(0.691513\pi\)
\(558\) 0 0
\(559\) 4.04737i 0.171185i
\(560\) 0 0
\(561\) 6.53687 + 0.114001i 0.275987 + 0.00481313i
\(562\) 0 0
\(563\) 13.0343i 0.549330i −0.961540 0.274665i \(-0.911433\pi\)
0.961540 0.274665i \(-0.0885669\pi\)
\(564\) 0 0
\(565\) 1.28292i 0.0539729i
\(566\) 0 0
\(567\) −1.93967 + 27.7631i −0.0814587 + 1.16594i
\(568\) 0 0
\(569\) 38.2253i 1.60249i 0.598338 + 0.801244i \(0.295828\pi\)
−0.598338 + 0.801244i \(0.704172\pi\)
\(570\) 0 0
\(571\) −25.1413 −1.05213 −0.526066 0.850444i \(-0.676333\pi\)
−0.526066 + 0.850444i \(0.676333\pi\)
\(572\) 0 0
\(573\) −25.2958 0.441152i −1.05675 0.0184294i
\(574\) 0 0
\(575\) −4.23989 −0.176816
\(576\) 0 0
\(577\) −20.3082 −0.845442 −0.422721 0.906260i \(-0.638925\pi\)
−0.422721 + 0.906260i \(0.638925\pi\)
\(578\) 0 0
\(579\) −9.49898 0.165660i −0.394764 0.00688458i
\(580\) 0 0
\(581\) −2.45990 −0.102054
\(582\) 0 0
\(583\) 14.3343i 0.593666i
\(584\) 0 0
\(585\) −0.112957 + 3.23751i −0.00467019 + 0.133854i
\(586\) 0 0
\(587\) 15.5366i 0.641263i 0.947204 + 0.320631i \(0.103895\pi\)
−0.947204 + 0.320631i \(0.896105\pi\)
\(588\) 0 0
\(589\) 17.3147i 0.713441i
\(590\) 0 0
\(591\) 37.8602 + 0.660271i 1.55736 + 0.0271599i
\(592\) 0 0
\(593\) 6.77501i 0.278216i 0.990277 + 0.139108i \(0.0444236\pi\)
−0.990277 + 0.139108i \(0.955576\pi\)
\(594\) 0 0
\(595\) 5.34618 0.219172
\(596\) 0 0
\(597\) 0.591835 33.9360i 0.0242222 1.38891i
\(598\) 0 0
\(599\) −32.7522 −1.33822 −0.669109 0.743164i \(-0.733324\pi\)
−0.669109 + 0.743164i \(0.733324\pi\)
\(600\) 0 0
\(601\) −7.83996 −0.319799 −0.159899 0.987133i \(-0.551117\pi\)
−0.159899 + 0.987133i \(0.551117\pi\)
\(602\) 0 0
\(603\) 0.168692 + 0.00588566i 0.00686965 + 0.000239683i
\(604\) 0 0
\(605\) 6.43131 0.261470
\(606\) 0 0
\(607\) 11.1151i 0.451147i −0.974226 0.225574i \(-0.927574\pi\)
0.974226 0.225574i \(-0.0724256\pi\)
\(608\) 0 0
\(609\) 0.215841 12.3764i 0.00874634 0.501518i
\(610\) 0 0
\(611\) 9.51354i 0.384877i
\(612\) 0 0
\(613\) 2.83979i 0.114698i −0.998354 0.0573490i \(-0.981735\pi\)
0.998354 0.0573490i \(-0.0182648\pi\)
\(614\) 0 0
\(615\) 0.229465 13.1576i 0.00925294 0.530567i
\(616\) 0 0
\(617\) 2.11914i 0.0853133i 0.999090 + 0.0426566i \(0.0135822\pi\)
−0.999090 + 0.0426566i \(0.986418\pi\)
\(618\) 0 0
\(619\) 19.2856 0.775154 0.387577 0.921837i \(-0.373312\pi\)
0.387577 + 0.921837i \(0.373312\pi\)
\(620\) 0 0
\(621\) 5.18904 + 0.271707i 0.208229 + 0.0109032i
\(622\) 0 0
\(623\) 53.7649 2.15405
\(624\) 0 0
\(625\) 14.1762 0.567047
\(626\) 0 0
\(627\) −0.285634 + 16.3784i −0.0114071 + 0.654088i
\(628\) 0 0
\(629\) 9.05547 0.361065
\(630\) 0 0
\(631\) 12.4518i 0.495696i −0.968799 0.247848i \(-0.920277\pi\)
0.968799 0.247848i \(-0.0797234\pi\)
\(632\) 0 0
\(633\) −17.0099 0.296647i −0.676081 0.0117907i
\(634\) 0 0
\(635\) 6.02373i 0.239044i
\(636\) 0 0
\(637\) 3.17366i 0.125745i
\(638\) 0 0
\(639\) −23.5311 0.821001i −0.930875 0.0324783i
\(640\) 0 0
\(641\) 18.3406i 0.724411i −0.932098 0.362205i \(-0.882024\pi\)
0.932098 0.362205i \(-0.117976\pi\)
\(642\) 0 0
\(643\) −42.8115 −1.68832 −0.844160 0.536091i \(-0.819900\pi\)
−0.844160 + 0.536091i \(0.819900\pi\)
\(644\) 0 0
\(645\) 4.93387 + 0.0860454i 0.194271 + 0.00338803i
\(646\) 0 0
\(647\) −24.2136 −0.951935 −0.475968 0.879463i \(-0.657902\pi\)
−0.475968 + 0.879463i \(0.657902\pi\)
\(648\) 0 0
\(649\) −23.2455 −0.912464
\(650\) 0 0
\(651\) −18.6625 0.325469i −0.731441 0.0127561i
\(652\) 0 0
\(653\) 37.6716 1.47420 0.737101 0.675782i \(-0.236194\pi\)
0.737101 + 0.675782i \(0.236194\pi\)
\(654\) 0 0
\(655\) 10.9604i 0.428260i
\(656\) 0 0
\(657\) −21.1310 0.737263i −0.824400 0.0287634i
\(658\) 0 0
\(659\) 24.6271i 0.959337i −0.877450 0.479669i \(-0.840757\pi\)
0.877450 0.479669i \(-0.159243\pi\)
\(660\) 0 0
\(661\) 43.8276i 1.70470i −0.522976 0.852348i \(-0.675178\pi\)
0.522976 0.852348i \(-0.324822\pi\)
\(662\) 0 0
\(663\) 4.25338 + 0.0741778i 0.165188 + 0.00288083i
\(664\) 0 0
\(665\) 13.3950i 0.519437i
\(666\) 0 0
\(667\) −2.31109 −0.0894859
\(668\) 0 0
\(669\) −0.162287 + 9.30557i −0.00627436 + 0.359774i
\(670\) 0 0
\(671\) −20.5531 −0.793443
\(672\) 0 0
\(673\) −33.5022 −1.29142 −0.645708 0.763584i \(-0.723438\pi\)
−0.645708 + 0.763584i \(0.723438\pi\)
\(674\) 0 0
\(675\) −22.0010 1.15201i −0.846819 0.0443408i
\(676\) 0 0
\(677\) 14.9572 0.574850 0.287425 0.957803i \(-0.407201\pi\)
0.287425 + 0.957803i \(0.407201\pi\)
\(678\) 0 0
\(679\) 27.9923i 1.07424i
\(680\) 0 0
\(681\) 0.696263 39.9240i 0.0266809 1.52989i
\(682\) 0 0
\(683\) 4.05767i 0.155262i −0.996982 0.0776312i \(-0.975264\pi\)
0.996982 0.0776312i \(-0.0247357\pi\)
\(684\) 0 0
\(685\) 1.55610i 0.0594555i
\(686\) 0 0
\(687\) 0.822286 47.1502i 0.0313722 1.79889i
\(688\) 0 0
\(689\) 9.32698i 0.355329i
\(690\) 0 0
\(691\) 23.0400 0.876485 0.438242 0.898857i \(-0.355601\pi\)
0.438242 + 0.898857i \(0.355601\pi\)
\(692\) 0 0
\(693\) −17.6479 0.615735i −0.670387 0.0233898i
\(694\) 0 0
\(695\) −5.15125 −0.195398
\(696\) 0 0
\(697\) −17.2810 −0.654565
\(698\) 0 0
\(699\) −0.652884 + 37.4366i −0.0246943 + 1.41598i
\(700\) 0 0
\(701\) −22.3112 −0.842683 −0.421342 0.906902i \(-0.638441\pi\)
−0.421342 + 0.906902i \(0.638441\pi\)
\(702\) 0 0
\(703\) 22.6888i 0.855724i
\(704\) 0 0
\(705\) −11.5973 0.202254i −0.436780 0.00761732i
\(706\) 0 0
\(707\) 60.5494i 2.27719i
\(708\) 0 0
\(709\) 17.9668i 0.674758i 0.941369 + 0.337379i \(0.109540\pi\)
−0.941369 + 0.337379i \(0.890460\pi\)
\(710\) 0 0
\(711\) −0.534178 + 15.3103i −0.0200332 + 0.574182i
\(712\) 0 0
\(713\) 3.48492i 0.130511i
\(714\) 0 0
\(715\) −2.05544 −0.0768693
\(716\) 0 0
\(717\) 30.6140 + 0.533900i 1.14330 + 0.0199389i
\(718\) 0 0
\(719\) 34.2271 1.27646 0.638228 0.769848i \(-0.279668\pi\)
0.638228 + 0.769848i \(0.279668\pi\)
\(720\) 0 0
\(721\) −9.15363 −0.340899
\(722\) 0 0
\(723\) −28.3051 0.493634i −1.05268 0.0183584i
\(724\) 0 0
\(725\) 9.79879 0.363918
\(726\) 0 0
\(727\) 19.2864i 0.715293i −0.933857 0.357646i \(-0.883579\pi\)
0.933857 0.357646i \(-0.116421\pi\)
\(728\) 0 0
\(729\) 26.8524 + 2.81980i 0.994532 + 0.104437i
\(730\) 0 0
\(731\) 6.48007i 0.239674i
\(732\) 0 0
\(733\) 13.7227i 0.506860i 0.967354 + 0.253430i \(0.0815587\pi\)
−0.967354 + 0.253430i \(0.918441\pi\)
\(734\) 0 0
\(735\) −3.86879 0.0674707i −0.142703 0.00248869i
\(736\) 0 0
\(737\) 0.107100i 0.00394507i
\(738\) 0 0
\(739\) 21.1541 0.778167 0.389083 0.921203i \(-0.372792\pi\)
0.389083 + 0.921203i \(0.372792\pi\)
\(740\) 0 0
\(741\) −0.185855 + 10.6570i −0.00682756 + 0.391495i
\(742\) 0 0
\(743\) −26.8675 −0.985673 −0.492837 0.870122i \(-0.664040\pi\)
−0.492837 + 0.870122i \(0.664040\pi\)
\(744\) 0 0
\(745\) −16.0105 −0.586579
\(746\) 0 0
\(747\) −0.0832134 + 2.38502i −0.00304462 + 0.0872632i
\(748\) 0 0
\(749\) 27.7017 1.01220
\(750\) 0 0
\(751\) 6.80908i 0.248467i −0.992253 0.124233i \(-0.960353\pi\)
0.992253 0.124233i \(-0.0396472\pi\)
\(752\) 0 0
\(753\) −0.426711 + 24.4678i −0.0155502 + 0.891656i
\(754\) 0 0
\(755\) 4.92839i 0.179363i
\(756\) 0 0
\(757\) 5.76958i 0.209699i −0.994488 0.104849i \(-0.966564\pi\)
0.994488 0.104849i \(-0.0334361\pi\)
\(758\) 0 0
\(759\) −0.0574892 + 3.29645i −0.00208673 + 0.119654i
\(760\) 0 0
\(761\) 39.7502i 1.44095i 0.693483 + 0.720473i \(0.256075\pi\)
−0.693483 + 0.720473i \(0.743925\pi\)
\(762\) 0 0
\(763\) 28.9138 1.04675
\(764\) 0 0
\(765\) 0.180850 5.18343i 0.00653866 0.187407i
\(766\) 0 0
\(767\) −15.1253 −0.546141
\(768\) 0 0
\(769\) 44.3637 1.59980 0.799898 0.600136i \(-0.204887\pi\)
0.799898 + 0.600136i \(0.204887\pi\)
\(770\) 0 0
\(771\) −0.401495 + 23.0219i −0.0144595 + 0.829112i
\(772\) 0 0
\(773\) −20.9167 −0.752321 −0.376161 0.926554i \(-0.622756\pi\)
−0.376161 + 0.926554i \(0.622756\pi\)
\(774\) 0 0
\(775\) 14.7757i 0.530758i
\(776\) 0 0
\(777\) −24.4549 0.426486i −0.877314 0.0153001i
\(778\) 0 0
\(779\) 43.2982i 1.55132i
\(780\) 0 0
\(781\) 14.9395i 0.534578i
\(782\) 0 0
\(783\) −11.9924 0.627940i −0.428572 0.0224408i
\(784\) 0 0
\(785\) 15.4129i 0.550110i
\(786\) 0 0
\(787\) 52.1207 1.85790 0.928951 0.370202i \(-0.120711\pi\)
0.928951 + 0.370202i \(0.120711\pi\)
\(788\) 0 0
\(789\) −43.9733 0.766883i −1.56549 0.0273017i
\(790\) 0 0
\(791\) 4.55036 0.161792
\(792\) 0 0
\(793\) −13.3734 −0.474903
\(794\) 0 0
\(795\) 11.3699 + 0.198288i 0.403248 + 0.00703254i
\(796\) 0 0
\(797\) −35.1231 −1.24412 −0.622062 0.782968i \(-0.713705\pi\)
−0.622062 + 0.782968i \(0.713705\pi\)
\(798\) 0 0
\(799\) 15.2317i 0.538859i
\(800\) 0 0
\(801\) 1.81876 52.1283i 0.0642627 1.84186i
\(802\) 0 0
\(803\) 13.4158i 0.473432i
\(804\) 0 0
\(805\) 2.69600i 0.0950216i
\(806\) 0 0
\(807\) 4.48318 + 0.0781855i 0.157816 + 0.00275226i
\(808\) 0 0
\(809\) 11.2110i 0.394157i 0.980388 + 0.197078i \(0.0631454\pi\)
−0.980388 + 0.197078i \(0.936855\pi\)
\(810\) 0 0
\(811\) 23.2309 0.815746 0.407873 0.913039i \(-0.366271\pi\)
0.407873 + 0.913039i \(0.366271\pi\)
\(812\) 0 0
\(813\) 0.891365 51.1112i 0.0312615 1.79255i
\(814\) 0 0
\(815\) 13.4401 0.470786
\(816\) 0 0
\(817\) 16.2360 0.568027
\(818\) 0 0
\(819\) −11.4830 0.400644i −0.401250 0.0139996i
\(820\) 0 0
\(821\) 8.28219 0.289050 0.144525 0.989501i \(-0.453835\pi\)
0.144525 + 0.989501i \(0.453835\pi\)
\(822\) 0 0
\(823\) 17.0583i 0.594616i −0.954782 0.297308i \(-0.903911\pi\)
0.954782 0.297308i \(-0.0960889\pi\)
\(824\) 0 0
\(825\) 0.243748 13.9766i 0.00848622 0.486603i
\(826\) 0 0
\(827\) 11.3622i 0.395101i 0.980293 + 0.197551i \(0.0632987\pi\)
−0.980293 + 0.197551i \(0.936701\pi\)
\(828\) 0 0
\(829\) 33.5403i 1.16490i 0.812865 + 0.582452i \(0.197906\pi\)
−0.812865 + 0.582452i \(0.802094\pi\)
\(830\) 0 0
\(831\) 0.0328444 1.88331i 0.00113936 0.0653314i
\(832\) 0 0
\(833\) 5.08121i 0.176053i
\(834\) 0 0
\(835\) 7.88928 0.273020
\(836\) 0 0
\(837\) −0.946876 + 18.0834i −0.0327288 + 0.625053i
\(838\) 0 0
\(839\) −0.880528 −0.0303992 −0.0151996 0.999884i \(-0.504838\pi\)
−0.0151996 + 0.999884i \(0.504838\pi\)
\(840\) 0 0
\(841\) −23.6588 −0.815822
\(842\) 0 0
\(843\) −0.0986881 + 5.65881i −0.00339900 + 0.194900i
\(844\) 0 0
\(845\) 9.99650 0.343890
\(846\) 0 0
\(847\) 22.8111i 0.783797i
\(848\) 0 0
\(849\) −11.0336 0.192422i −0.378671 0.00660391i
\(850\) 0 0
\(851\) 4.56655i 0.156539i
\(852\) 0 0
\(853\) 51.3054i 1.75666i 0.478052 + 0.878331i \(0.341343\pi\)
−0.478052 + 0.878331i \(0.658657\pi\)
\(854\) 0 0
\(855\) 12.9873 + 0.453127i 0.444155 + 0.0154966i
\(856\) 0 0
\(857\) 20.2353i 0.691224i −0.938378 0.345612i \(-0.887671\pi\)
0.938378 0.345612i \(-0.112329\pi\)
\(858\) 0 0
\(859\) 23.4886 0.801421 0.400710 0.916205i \(-0.368763\pi\)
0.400710 + 0.916205i \(0.368763\pi\)
\(860\) 0 0
\(861\) 46.6685 + 0.813885i 1.59046 + 0.0277371i
\(862\) 0 0
\(863\) 4.02794 0.137113 0.0685563 0.997647i \(-0.478161\pi\)
0.0685563 + 0.997647i \(0.478161\pi\)
\(864\) 0 0
\(865\) −2.47365 −0.0841066
\(866\) 0 0
\(867\) 22.6305 + 0.394669i 0.768571 + 0.0134037i
\(868\) 0 0
\(869\) −9.72028 −0.329738
\(870\) 0 0
\(871\) 0.0696872i 0.00236126i
\(872\) 0 0
\(873\) 27.1401 + 0.946921i 0.918554 + 0.0320484i
\(874\) 0 0
\(875\) 24.9108i 0.842138i
\(876\) 0 0
\(877\) 37.8678i 1.27870i 0.768914 + 0.639352i \(0.220798\pi\)
−0.768914 + 0.639352i \(0.779202\pi\)
\(878\) 0 0
\(879\) 42.4840 + 0.740910i 1.43295 + 0.0249903i
\(880\) 0 0
\(881\) 48.6628i 1.63949i −0.572727 0.819746i \(-0.694115\pi\)
0.572727 0.819746i \(-0.305885\pi\)
\(882\) 0 0
\(883\) 6.80087 0.228868 0.114434 0.993431i \(-0.463495\pi\)
0.114434 + 0.993431i \(0.463495\pi\)
\(884\) 0 0
\(885\) −0.321557 + 18.4382i −0.0108090 + 0.619793i
\(886\) 0 0
\(887\) −2.86430 −0.0961737 −0.0480869 0.998843i \(-0.515312\pi\)
−0.0480869 + 0.998843i \(0.515312\pi\)
\(888\) 0 0
\(889\) 21.3654 0.716573
\(890\) 0 0
\(891\) −1.19398 + 17.0898i −0.0399999 + 0.572530i
\(892\) 0 0
\(893\) −38.1636 −1.27710
\(894\) 0 0
\(895\) 9.22707i 0.308427i
\(896\) 0 0
\(897\) −0.0374068 + 2.14492i −0.00124898 + 0.0716168i
\(898\) 0 0
\(899\) 8.05397i 0.268615i
\(900\) 0 0
\(901\) 14.9330i 0.497491i
\(902\) 0 0
\(903\) −0.305192 + 17.4998i −0.0101562 + 0.582358i
\(904\) 0 0
\(905\) 7.50224i 0.249383i
\(906\) 0 0
\(907\) 19.3695 0.643153 0.321576 0.946884i \(-0.395787\pi\)
0.321576 + 0.946884i \(0.395787\pi\)
\(908\) 0 0
\(909\) 58.7062 + 2.04826i 1.94716 + 0.0679366i
\(910\) 0 0
\(911\) −22.5365 −0.746668 −0.373334 0.927697i \(-0.621785\pi\)
−0.373334 + 0.927697i \(0.621785\pi\)
\(912\) 0 0
\(913\) −1.51421 −0.0501131
\(914\) 0 0
\(915\) −0.284313 + 16.3026i −0.00939909 + 0.538947i
\(916\) 0 0
\(917\) −38.8753 −1.28378
\(918\) 0 0
\(919\) 47.7774i 1.57603i 0.615656 + 0.788015i \(0.288891\pi\)
−0.615656 + 0.788015i \(0.711109\pi\)
\(920\) 0 0
\(921\) −11.2439 0.196091i −0.370500 0.00646142i
\(922\) 0 0
\(923\) 9.72079i 0.319964i
\(924\) 0 0
\(925\) 19.3617i 0.636608i
\(926\) 0 0
\(927\) −0.309649 + 8.87498i −0.0101702 + 0.291493i
\(928\) 0 0
\(929\) 40.9144i 1.34236i 0.741295 + 0.671179i \(0.234212\pi\)
−0.741295 + 0.671179i \(0.765788\pi\)
\(930\) 0 0
\(931\) −12.7311 −0.417246
\(932\) 0 0
\(933\) −45.6365 0.795887i −1.49407 0.0260562i
\(934\) 0 0
\(935\) 3.29088 0.107623
\(936\) 0 0
\(937\) 27.6662 0.903814 0.451907 0.892065i \(-0.350744\pi\)
0.451907 + 0.892065i \(0.350744\pi\)
\(938\) 0 0
\(939\) −57.5237 1.00320i −1.87721 0.0327381i
\(940\) 0 0
\(941\) 6.59325 0.214934 0.107467 0.994209i \(-0.465726\pi\)
0.107467 + 0.994209i \(0.465726\pi\)
\(942\) 0 0
\(943\) 8.71457i 0.283785i
\(944\) 0 0
\(945\) −0.732522 + 13.9897i −0.0238290 + 0.455084i
\(946\) 0 0
\(947\) 48.2638i 1.56836i 0.620531 + 0.784182i \(0.286917\pi\)
−0.620531 + 0.784182i \(0.713083\pi\)
\(948\) 0 0
\(949\) 8.72931i 0.283366i
\(950\) 0 0
\(951\) −36.9330 0.644101i −1.19763 0.0208864i
\(952\) 0 0
\(953\) 48.2640i 1.56342i 0.623640 + 0.781712i \(0.285653\pi\)
−0.623640 + 0.781712i \(0.714347\pi\)
\(954\) 0 0
\(955\) −12.7348 −0.412087
\(956\) 0 0
\(957\) 0.132863 7.61841i 0.00429485 0.246268i
\(958\) 0 0
\(959\) −5.51929 −0.178227
\(960\) 0 0
\(961\) 18.8554 0.608237
\(962\) 0 0
\(963\) 0.937092 26.8584i 0.0301974 0.865501i
\(964\) 0 0
\(965\) −4.78211 −0.153942
\(966\) 0 0
\(967\) 51.1796i 1.64583i −0.568168 0.822913i \(-0.692348\pi\)
0.568168 0.822913i \(-0.307652\pi\)
\(968\) 0 0
\(969\) 0.297565 17.0625i 0.00955915 0.548125i
\(970\) 0 0
\(971\) 31.6471i 1.01560i −0.861474 0.507802i \(-0.830458\pi\)
0.861474 0.507802i \(-0.169542\pi\)
\(972\) 0 0
\(973\) 18.2708i 0.585736i
\(974\) 0 0
\(975\) 0.158601 9.09423i 0.00507929 0.291249i
\(976\) 0 0
\(977\) 25.9886i 0.831448i 0.909491 + 0.415724i \(0.136472\pi\)
−0.909491 + 0.415724i \(0.863528\pi\)
\(978\) 0 0
\(979\) 33.0954 1.05773
\(980\) 0 0
\(981\) 0.978096 28.0337i 0.0312282 0.895046i
\(982\) 0 0
\(983\) 39.6637 1.26507 0.632537 0.774530i \(-0.282014\pi\)
0.632537 + 0.774530i \(0.282014\pi\)
\(984\) 0 0
\(985\) 19.0601 0.607305
\(986\) 0 0
\(987\) 0.717369 41.1342i 0.0228341 1.30932i
\(988\) 0 0
\(989\) 3.26780 0.103910
\(990\) 0 0
\(991\) 13.4539i 0.427378i −0.976902 0.213689i \(-0.931452\pi\)
0.976902 0.213689i \(-0.0685480\pi\)
\(992\) 0 0
\(993\) 12.3821 + 0.215940i 0.392934 + 0.00685266i
\(994\) 0 0
\(995\) 17.0846i 0.541617i
\(996\) 0 0
\(997\) 57.2452i 1.81297i 0.422234 + 0.906487i \(0.361246\pi\)
−0.422234 + 0.906487i \(0.638754\pi\)
\(998\) 0 0
\(999\) −1.24076 + 23.6960i −0.0392560 + 0.749708i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2208.2.j.c.47.42 42
3.2 odd 2 2208.2.j.d.47.41 42
4.3 odd 2 552.2.j.c.323.27 42
8.3 odd 2 2208.2.j.d.47.42 42
8.5 even 2 552.2.j.d.323.15 yes 42
12.11 even 2 552.2.j.d.323.16 yes 42
24.5 odd 2 552.2.j.c.323.28 yes 42
24.11 even 2 inner 2208.2.j.c.47.41 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.j.c.323.27 42 4.3 odd 2
552.2.j.c.323.28 yes 42 24.5 odd 2
552.2.j.d.323.15 yes 42 8.5 even 2
552.2.j.d.323.16 yes 42 12.11 even 2
2208.2.j.c.47.41 42 24.11 even 2 inner
2208.2.j.c.47.42 42 1.1 even 1 trivial
2208.2.j.d.47.41 42 3.2 odd 2
2208.2.j.d.47.42 42 8.3 odd 2