Properties

Label 2-2208-24.11-c1-0-45
Degree $2$
Conductor $2208$
Sign $0.534 - 0.845i$
Analytic cond. $17.6309$
Root an. cond. $4.19892$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.73 + 0.0302i)3-s + 0.871·5-s + 3.09i·7-s + (2.99 + 0.104i)9-s + 1.90i·11-s + 1.23i·13-s + (1.50 + 0.0263i)15-s − 1.98i·17-s + 4.96·19-s + (−0.0933 + 5.35i)21-s + 23-s − 4.23·25-s + (5.18 + 0.271i)27-s − 2.31·29-s + 3.48i·31-s + ⋯
L(s)  = 1  + (0.999 + 0.0174i)3-s + 0.389·5-s + 1.16i·7-s + (0.999 + 0.0348i)9-s + 0.573i·11-s + 0.343i·13-s + (0.389 + 0.00679i)15-s − 0.480i·17-s + 1.13·19-s + (−0.0203 + 1.16i)21-s + 0.208·23-s − 0.847·25-s + (0.998 + 0.0522i)27-s − 0.429·29-s + 0.625i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.534 - 0.845i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.534 - 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2208\)    =    \(2^{5} \cdot 3 \cdot 23\)
Sign: $0.534 - 0.845i$
Analytic conductor: \(17.6309\)
Root analytic conductor: \(4.19892\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2208} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2208,\ (\ :1/2),\ 0.534 - 0.845i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.839512533\)
\(L(\frac12)\) \(\approx\) \(2.839512533\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.73 - 0.0302i)T \)
23 \( 1 - T \)
good5 \( 1 - 0.871T + 5T^{2} \)
7 \( 1 - 3.09iT - 7T^{2} \)
11 \( 1 - 1.90iT - 11T^{2} \)
13 \( 1 - 1.23iT - 13T^{2} \)
17 \( 1 + 1.98iT - 17T^{2} \)
19 \( 1 - 4.96T + 19T^{2} \)
29 \( 1 + 2.31T + 29T^{2} \)
31 \( 1 - 3.48iT - 31T^{2} \)
37 \( 1 - 4.56iT - 37T^{2} \)
41 \( 1 + 8.71iT - 41T^{2} \)
43 \( 1 - 3.26T + 43T^{2} \)
47 \( 1 + 7.68T + 47T^{2} \)
53 \( 1 - 7.53T + 53T^{2} \)
59 \( 1 - 12.2iT - 59T^{2} \)
61 \( 1 - 10.7iT - 61T^{2} \)
67 \( 1 - 0.0562T + 67T^{2} \)
71 \( 1 + 7.84T + 71T^{2} \)
73 \( 1 + 7.04T + 73T^{2} \)
79 \( 1 - 5.10iT - 79T^{2} \)
83 \( 1 - 0.795iT - 83T^{2} \)
89 \( 1 + 17.3iT - 89T^{2} \)
97 \( 1 - 9.05T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.966244370334071660812568075373, −8.746753539168447119493150823682, −7.55452417834798732959182586215, −7.11653752704858707357158077220, −5.95774031550514809569733582909, −5.21924662611711561435076542919, −4.26916024812433023008290166928, −3.16977228032794386908346570606, −2.40984707447075556807161771108, −1.54165088855169069397428714549, 0.910304375206241497734866801899, 2.01781156558248032859605449416, 3.23772856761617943211200888096, 3.78984719025595877047631640806, 4.77015901597561111148419461791, 5.84012282903547991474079466903, 6.73175449937227201148158842531, 7.66872174628804174946811955340, 7.935400466034620003505620363123, 8.987905257125049352542678196258

Graph of the $Z$-function along the critical line