Properties

Label 2205.2.b.d.881.12
Level $2205$
Weight $2$
Character 2205.881
Analytic conductor $17.607$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2205,2,Mod(881,2205)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2205, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2205.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 790 x^{12} - 2192 x^{11} + 5036 x^{10} - 9472 x^{9} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.12
Root \(0.500000 + 2.12518i\) of defining polynomial
Character \(\chi\) \(=\) 2205.881
Dual form 2205.2.b.d.881.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.69637i q^{2} -0.877672 q^{4} +1.00000 q^{5} +1.90388i q^{8} +1.69637i q^{10} -0.421924i q^{11} +2.17300i q^{13} -4.98504 q^{16} +5.88935 q^{17} -1.60310i q^{19} -0.877672 q^{20} +0.715740 q^{22} -0.156191i q^{23} +1.00000 q^{25} -3.68621 q^{26} +6.40873i q^{29} +8.33203i q^{31} -4.64870i q^{32} +9.99051i q^{34} -5.87346 q^{37} +2.71946 q^{38} +1.90388i q^{40} +0.916349 q^{41} +1.68638 q^{43} +0.370311i q^{44} +0.264958 q^{46} +6.12938 q^{47} +1.69637i q^{50} -1.90718i q^{52} -13.1297i q^{53} -0.421924i q^{55} -10.8716 q^{58} +8.44691 q^{59} +6.71530i q^{61} -14.1342 q^{62} -2.08416 q^{64} +2.17300i q^{65} -10.2055 q^{67} -5.16892 q^{68} +16.5279i q^{71} -0.804332i q^{73} -9.96356i q^{74} +1.40700i q^{76} +2.06547 q^{79} -4.98504 q^{80} +1.55447i q^{82} +4.20554 q^{83} +5.88935 q^{85} +2.86073i q^{86} +0.803295 q^{88} +0.722456 q^{89} +0.137085i q^{92} +10.3977i q^{94} -1.60310i q^{95} +14.4435i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 16 q^{5} - 16 q^{20} - 16 q^{22} + 16 q^{25} + 32 q^{26} - 16 q^{38} - 32 q^{41} + 32 q^{43} - 16 q^{46} + 32 q^{47} + 48 q^{58} - 32 q^{59} - 32 q^{62} + 16 q^{64} - 16 q^{68} + 32 q^{79}+ \cdots + 64 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2205\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(1081\) \(1226\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.69637i 1.19951i 0.800182 + 0.599757i \(0.204736\pi\)
−0.800182 + 0.599757i \(0.795264\pi\)
\(3\) 0 0
\(4\) −0.877672 −0.438836
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 1.90388i 0.673124i
\(9\) 0 0
\(10\) 1.69637i 0.536439i
\(11\) − 0.421924i − 0.127215i −0.997975 0.0636075i \(-0.979739\pi\)
0.997975 0.0636075i \(-0.0202606\pi\)
\(12\) 0 0
\(13\) 2.17300i 0.602681i 0.953517 + 0.301341i \(0.0974341\pi\)
−0.953517 + 0.301341i \(0.902566\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.98504 −1.24626
\(17\) 5.88935 1.42838 0.714188 0.699954i \(-0.246796\pi\)
0.714188 + 0.699954i \(0.246796\pi\)
\(18\) 0 0
\(19\) − 1.60310i − 0.367777i −0.982947 0.183889i \(-0.941131\pi\)
0.982947 0.183889i \(-0.0588686\pi\)
\(20\) −0.877672 −0.196253
\(21\) 0 0
\(22\) 0.715740 0.152596
\(23\) − 0.156191i − 0.0325681i −0.999867 0.0162841i \(-0.994816\pi\)
0.999867 0.0162841i \(-0.00518360\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −3.68621 −0.722925
\(27\) 0 0
\(28\) 0 0
\(29\) 6.40873i 1.19007i 0.803699 + 0.595036i \(0.202862\pi\)
−0.803699 + 0.595036i \(0.797138\pi\)
\(30\) 0 0
\(31\) 8.33203i 1.49648i 0.663430 + 0.748238i \(0.269100\pi\)
−0.663430 + 0.748238i \(0.730900\pi\)
\(32\) − 4.64870i − 0.821782i
\(33\) 0 0
\(34\) 9.99051i 1.71336i
\(35\) 0 0
\(36\) 0 0
\(37\) −5.87346 −0.965591 −0.482795 0.875733i \(-0.660379\pi\)
−0.482795 + 0.875733i \(0.660379\pi\)
\(38\) 2.71946 0.441154
\(39\) 0 0
\(40\) 1.90388i 0.301030i
\(41\) 0.916349 0.143110 0.0715548 0.997437i \(-0.477204\pi\)
0.0715548 + 0.997437i \(0.477204\pi\)
\(42\) 0 0
\(43\) 1.68638 0.257171 0.128585 0.991698i \(-0.458956\pi\)
0.128585 + 0.991698i \(0.458956\pi\)
\(44\) 0.370311i 0.0558265i
\(45\) 0 0
\(46\) 0.264958 0.0390659
\(47\) 6.12938 0.894062 0.447031 0.894519i \(-0.352481\pi\)
0.447031 + 0.894519i \(0.352481\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.69637i 0.239903i
\(51\) 0 0
\(52\) − 1.90718i − 0.264478i
\(53\) − 13.1297i − 1.80351i −0.432252 0.901753i \(-0.642281\pi\)
0.432252 0.901753i \(-0.357719\pi\)
\(54\) 0 0
\(55\) − 0.421924i − 0.0568923i
\(56\) 0 0
\(57\) 0 0
\(58\) −10.8716 −1.42751
\(59\) 8.44691 1.09969 0.549847 0.835265i \(-0.314686\pi\)
0.549847 + 0.835265i \(0.314686\pi\)
\(60\) 0 0
\(61\) 6.71530i 0.859806i 0.902875 + 0.429903i \(0.141452\pi\)
−0.902875 + 0.429903i \(0.858548\pi\)
\(62\) −14.1342 −1.79505
\(63\) 0 0
\(64\) −2.08416 −0.260519
\(65\) 2.17300i 0.269527i
\(66\) 0 0
\(67\) −10.2055 −1.24680 −0.623402 0.781901i \(-0.714250\pi\)
−0.623402 + 0.781901i \(0.714250\pi\)
\(68\) −5.16892 −0.626823
\(69\) 0 0
\(70\) 0 0
\(71\) 16.5279i 1.96150i 0.195274 + 0.980749i \(0.437440\pi\)
−0.195274 + 0.980749i \(0.562560\pi\)
\(72\) 0 0
\(73\) − 0.804332i − 0.0941399i −0.998892 0.0470700i \(-0.985012\pi\)
0.998892 0.0470700i \(-0.0149884\pi\)
\(74\) − 9.96356i − 1.15824i
\(75\) 0 0
\(76\) 1.40700i 0.161394i
\(77\) 0 0
\(78\) 0 0
\(79\) 2.06547 0.232383 0.116192 0.993227i \(-0.462931\pi\)
0.116192 + 0.993227i \(0.462931\pi\)
\(80\) −4.98504 −0.557344
\(81\) 0 0
\(82\) 1.55447i 0.171662i
\(83\) 4.20554 0.461617 0.230809 0.972999i \(-0.425863\pi\)
0.230809 + 0.972999i \(0.425863\pi\)
\(84\) 0 0
\(85\) 5.88935 0.638789
\(86\) 2.86073i 0.308480i
\(87\) 0 0
\(88\) 0.803295 0.0856315
\(89\) 0.722456 0.0765802 0.0382901 0.999267i \(-0.487809\pi\)
0.0382901 + 0.999267i \(0.487809\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.137085i 0.0142921i
\(93\) 0 0
\(94\) 10.3977i 1.07244i
\(95\) − 1.60310i − 0.164475i
\(96\) 0 0
\(97\) 14.4435i 1.46652i 0.679951 + 0.733258i \(0.262001\pi\)
−0.679951 + 0.733258i \(0.737999\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.877672 −0.0877672
\(101\) 0.0839075 0.00834911 0.00417455 0.999991i \(-0.498671\pi\)
0.00417455 + 0.999991i \(0.498671\pi\)
\(102\) 0 0
\(103\) 9.56809i 0.942772i 0.881927 + 0.471386i \(0.156246\pi\)
−0.881927 + 0.471386i \(0.843754\pi\)
\(104\) −4.13713 −0.405679
\(105\) 0 0
\(106\) 22.2729 2.16333
\(107\) 5.06681i 0.489827i 0.969545 + 0.244913i \(0.0787595\pi\)
−0.969545 + 0.244913i \(0.921240\pi\)
\(108\) 0 0
\(109\) −0.705584 −0.0675827 −0.0337913 0.999429i \(-0.510758\pi\)
−0.0337913 + 0.999429i \(0.510758\pi\)
\(110\) 0.715740 0.0682431
\(111\) 0 0
\(112\) 0 0
\(113\) − 3.26734i − 0.307366i −0.988120 0.153683i \(-0.950887\pi\)
0.988120 0.153683i \(-0.0491134\pi\)
\(114\) 0 0
\(115\) − 0.156191i − 0.0145649i
\(116\) − 5.62476i − 0.522246i
\(117\) 0 0
\(118\) 14.3291i 1.31910i
\(119\) 0 0
\(120\) 0 0
\(121\) 10.8220 0.983816
\(122\) −11.3916 −1.03135
\(123\) 0 0
\(124\) − 7.31279i − 0.656708i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −20.4480 −1.81446 −0.907231 0.420632i \(-0.861808\pi\)
−0.907231 + 0.420632i \(0.861808\pi\)
\(128\) − 12.8329i − 1.13428i
\(129\) 0 0
\(130\) −3.68621 −0.323302
\(131\) −13.5344 −1.18250 −0.591252 0.806487i \(-0.701366\pi\)
−0.591252 + 0.806487i \(0.701366\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) − 17.3124i − 1.49556i
\(135\) 0 0
\(136\) 11.2126i 0.961475i
\(137\) 4.86423i 0.415579i 0.978174 + 0.207790i \(0.0666270\pi\)
−0.978174 + 0.207790i \(0.933373\pi\)
\(138\) 0 0
\(139\) 17.7105i 1.50218i 0.660198 + 0.751092i \(0.270472\pi\)
−0.660198 + 0.751092i \(0.729528\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −28.0374 −2.35285
\(143\) 0.916841 0.0766701
\(144\) 0 0
\(145\) 6.40873i 0.532216i
\(146\) 1.36444 0.112922
\(147\) 0 0
\(148\) 5.15497 0.423736
\(149\) − 20.6400i − 1.69089i −0.534060 0.845447i \(-0.679334\pi\)
0.534060 0.845447i \(-0.320666\pi\)
\(150\) 0 0
\(151\) −19.1135 −1.55543 −0.777716 0.628616i \(-0.783622\pi\)
−0.777716 + 0.628616i \(0.783622\pi\)
\(152\) 3.05212 0.247560
\(153\) 0 0
\(154\) 0 0
\(155\) 8.33203i 0.669245i
\(156\) 0 0
\(157\) − 21.1807i − 1.69040i −0.534450 0.845200i \(-0.679481\pi\)
0.534450 0.845200i \(-0.320519\pi\)
\(158\) 3.50380i 0.278747i
\(159\) 0 0
\(160\) − 4.64870i − 0.367512i
\(161\) 0 0
\(162\) 0 0
\(163\) 18.7515 1.46873 0.734367 0.678753i \(-0.237479\pi\)
0.734367 + 0.678753i \(0.237479\pi\)
\(164\) −0.804254 −0.0628017
\(165\) 0 0
\(166\) 7.13415i 0.553717i
\(167\) −18.6004 −1.43934 −0.719672 0.694314i \(-0.755708\pi\)
−0.719672 + 0.694314i \(0.755708\pi\)
\(168\) 0 0
\(169\) 8.27808 0.636775
\(170\) 9.99051i 0.766237i
\(171\) 0 0
\(172\) −1.48009 −0.112856
\(173\) 18.2051 1.38411 0.692054 0.721845i \(-0.256706\pi\)
0.692054 + 0.721845i \(0.256706\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.10331i 0.158543i
\(177\) 0 0
\(178\) 1.22555i 0.0918591i
\(179\) 5.05092i 0.377524i 0.982023 + 0.188762i \(0.0604474\pi\)
−0.982023 + 0.188762i \(0.939553\pi\)
\(180\) 0 0
\(181\) − 25.2795i − 1.87901i −0.342534 0.939505i \(-0.611285\pi\)
0.342534 0.939505i \(-0.388715\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.297370 0.0219224
\(185\) −5.87346 −0.431825
\(186\) 0 0
\(187\) − 2.48486i − 0.181711i
\(188\) −5.37959 −0.392347
\(189\) 0 0
\(190\) 2.71946 0.197290
\(191\) − 3.60523i − 0.260865i −0.991457 0.130433i \(-0.958363\pi\)
0.991457 0.130433i \(-0.0416366\pi\)
\(192\) 0 0
\(193\) −16.3036 −1.17356 −0.586781 0.809746i \(-0.699605\pi\)
−0.586781 + 0.809746i \(0.699605\pi\)
\(194\) −24.5015 −1.75911
\(195\) 0 0
\(196\) 0 0
\(197\) − 1.96777i − 0.140198i −0.997540 0.0700989i \(-0.977668\pi\)
0.997540 0.0700989i \(-0.0223315\pi\)
\(198\) 0 0
\(199\) − 19.7989i − 1.40351i −0.712420 0.701753i \(-0.752401\pi\)
0.712420 0.701753i \(-0.247599\pi\)
\(200\) 1.90388i 0.134625i
\(201\) 0 0
\(202\) 0.142338i 0.0100149i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.916349 0.0640006
\(206\) −16.2310 −1.13087
\(207\) 0 0
\(208\) − 10.8325i − 0.751097i
\(209\) −0.676389 −0.0467868
\(210\) 0 0
\(211\) 22.9079 1.57705 0.788524 0.615004i \(-0.210846\pi\)
0.788524 + 0.615004i \(0.210846\pi\)
\(212\) 11.5236i 0.791444i
\(213\) 0 0
\(214\) −8.59518 −0.587554
\(215\) 1.68638 0.115010
\(216\) 0 0
\(217\) 0 0
\(218\) − 1.19693i − 0.0810664i
\(219\) 0 0
\(220\) 0.370311i 0.0249664i
\(221\) 12.7975i 0.860855i
\(222\) 0 0
\(223\) 4.50216i 0.301487i 0.988573 + 0.150744i \(0.0481668\pi\)
−0.988573 + 0.150744i \(0.951833\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 5.54262 0.368690
\(227\) 1.28684 0.0854107 0.0427053 0.999088i \(-0.486402\pi\)
0.0427053 + 0.999088i \(0.486402\pi\)
\(228\) 0 0
\(229\) − 6.87038i − 0.454007i −0.973894 0.227004i \(-0.927107\pi\)
0.973894 0.227004i \(-0.0728929\pi\)
\(230\) 0.264958 0.0174708
\(231\) 0 0
\(232\) −12.2015 −0.801066
\(233\) − 17.1479i − 1.12340i −0.827342 0.561698i \(-0.810148\pi\)
0.827342 0.561698i \(-0.189852\pi\)
\(234\) 0 0
\(235\) 6.12938 0.399837
\(236\) −7.41362 −0.482585
\(237\) 0 0
\(238\) 0 0
\(239\) − 10.7501i − 0.695367i −0.937612 0.347684i \(-0.886968\pi\)
0.937612 0.347684i \(-0.113032\pi\)
\(240\) 0 0
\(241\) 7.36348i 0.474323i 0.971470 + 0.237162i \(0.0762171\pi\)
−0.971470 + 0.237162i \(0.923783\pi\)
\(242\) 18.3581i 1.18010i
\(243\) 0 0
\(244\) − 5.89383i − 0.377314i
\(245\) 0 0
\(246\) 0 0
\(247\) 3.48354 0.221652
\(248\) −15.8632 −1.00731
\(249\) 0 0
\(250\) 1.69637i 0.107288i
\(251\) 16.1171 1.01730 0.508651 0.860973i \(-0.330144\pi\)
0.508651 + 0.860973i \(0.330144\pi\)
\(252\) 0 0
\(253\) −0.0659009 −0.00414315
\(254\) − 34.6873i − 2.17648i
\(255\) 0 0
\(256\) 17.6010 1.10006
\(257\) 25.0530 1.56277 0.781383 0.624052i \(-0.214515\pi\)
0.781383 + 0.624052i \(0.214515\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) − 1.90718i − 0.118278i
\(261\) 0 0
\(262\) − 22.9593i − 1.41843i
\(263\) 3.19594i 0.197070i 0.995134 + 0.0985352i \(0.0314157\pi\)
−0.995134 + 0.0985352i \(0.968584\pi\)
\(264\) 0 0
\(265\) − 13.1297i − 0.806552i
\(266\) 0 0
\(267\) 0 0
\(268\) 8.95711 0.547143
\(269\) 18.6820 1.13906 0.569532 0.821969i \(-0.307125\pi\)
0.569532 + 0.821969i \(0.307125\pi\)
\(270\) 0 0
\(271\) 1.71027i 0.103892i 0.998650 + 0.0519458i \(0.0165423\pi\)
−0.998650 + 0.0519458i \(0.983458\pi\)
\(272\) −29.3586 −1.78013
\(273\) 0 0
\(274\) −8.25154 −0.498494
\(275\) − 0.421924i − 0.0254430i
\(276\) 0 0
\(277\) −19.4613 −1.16932 −0.584658 0.811280i \(-0.698771\pi\)
−0.584658 + 0.811280i \(0.698771\pi\)
\(278\) −30.0435 −1.80189
\(279\) 0 0
\(280\) 0 0
\(281\) 26.5135i 1.58166i 0.612036 + 0.790830i \(0.290351\pi\)
−0.612036 + 0.790830i \(0.709649\pi\)
\(282\) 0 0
\(283\) − 2.82100i − 0.167691i −0.996479 0.0838456i \(-0.973280\pi\)
0.996479 0.0838456i \(-0.0267202\pi\)
\(284\) − 14.5061i − 0.860776i
\(285\) 0 0
\(286\) 1.55530i 0.0919669i
\(287\) 0 0
\(288\) 0 0
\(289\) 17.6844 1.04026
\(290\) −10.8716 −0.638401
\(291\) 0 0
\(292\) 0.705940i 0.0413120i
\(293\) 0.356494 0.0208266 0.0104133 0.999946i \(-0.496685\pi\)
0.0104133 + 0.999946i \(0.496685\pi\)
\(294\) 0 0
\(295\) 8.44691 0.491798
\(296\) − 11.1824i − 0.649963i
\(297\) 0 0
\(298\) 35.0131 2.02825
\(299\) 0.339403 0.0196282
\(300\) 0 0
\(301\) 0 0
\(302\) − 32.4235i − 1.86576i
\(303\) 0 0
\(304\) 7.99153i 0.458346i
\(305\) 6.71530i 0.384517i
\(306\) 0 0
\(307\) − 26.4987i − 1.51236i −0.654365 0.756179i \(-0.727064\pi\)
0.654365 0.756179i \(-0.272936\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −14.1342 −0.802769
\(311\) −28.1716 −1.59747 −0.798733 0.601686i \(-0.794496\pi\)
−0.798733 + 0.601686i \(0.794496\pi\)
\(312\) 0 0
\(313\) − 22.2111i − 1.25544i −0.778438 0.627722i \(-0.783988\pi\)
0.778438 0.627722i \(-0.216012\pi\)
\(314\) 35.9302 2.02766
\(315\) 0 0
\(316\) −1.81280 −0.101978
\(317\) 7.45636i 0.418791i 0.977831 + 0.209396i \(0.0671496\pi\)
−0.977831 + 0.209396i \(0.932850\pi\)
\(318\) 0 0
\(319\) 2.70400 0.151395
\(320\) −2.08416 −0.116508
\(321\) 0 0
\(322\) 0 0
\(323\) − 9.44123i − 0.525324i
\(324\) 0 0
\(325\) 2.17300i 0.120536i
\(326\) 31.8095i 1.76177i
\(327\) 0 0
\(328\) 1.74462i 0.0963306i
\(329\) 0 0
\(330\) 0 0
\(331\) 16.0494 0.882157 0.441079 0.897468i \(-0.354596\pi\)
0.441079 + 0.897468i \(0.354596\pi\)
\(332\) −3.69108 −0.202574
\(333\) 0 0
\(334\) − 31.5532i − 1.72651i
\(335\) −10.2055 −0.557588
\(336\) 0 0
\(337\) 3.87759 0.211226 0.105613 0.994407i \(-0.466320\pi\)
0.105613 + 0.994407i \(0.466320\pi\)
\(338\) 14.0427i 0.763822i
\(339\) 0 0
\(340\) −5.16892 −0.280324
\(341\) 3.51549 0.190374
\(342\) 0 0
\(343\) 0 0
\(344\) 3.21068i 0.173108i
\(345\) 0 0
\(346\) 30.8826i 1.66026i
\(347\) − 0.312664i − 0.0167847i −0.999965 0.00839234i \(-0.997329\pi\)
0.999965 0.00839234i \(-0.00267139\pi\)
\(348\) 0 0
\(349\) 10.7227i 0.573973i 0.957935 + 0.286987i \(0.0926535\pi\)
−0.957935 + 0.286987i \(0.907346\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.96140 −0.104543
\(353\) 20.0165 1.06537 0.532684 0.846314i \(-0.321183\pi\)
0.532684 + 0.846314i \(0.321183\pi\)
\(354\) 0 0
\(355\) 16.5279i 0.877208i
\(356\) −0.634080 −0.0336062
\(357\) 0 0
\(358\) −8.56824 −0.452845
\(359\) 11.1677i 0.589411i 0.955588 + 0.294706i \(0.0952216\pi\)
−0.955588 + 0.294706i \(0.904778\pi\)
\(360\) 0 0
\(361\) 16.4301 0.864740
\(362\) 42.8834 2.25390
\(363\) 0 0
\(364\) 0 0
\(365\) − 0.804332i − 0.0421007i
\(366\) 0 0
\(367\) − 32.4067i − 1.69162i −0.533488 0.845808i \(-0.679119\pi\)
0.533488 0.845808i \(-0.320881\pi\)
\(368\) 0.778619i 0.0405883i
\(369\) 0 0
\(370\) − 9.96356i − 0.517981i
\(371\) 0 0
\(372\) 0 0
\(373\) 3.62970 0.187939 0.0939695 0.995575i \(-0.470044\pi\)
0.0939695 + 0.995575i \(0.470044\pi\)
\(374\) 4.21524 0.217965
\(375\) 0 0
\(376\) 11.6696i 0.601815i
\(377\) −13.9262 −0.717233
\(378\) 0 0
\(379\) −27.9146 −1.43387 −0.716937 0.697138i \(-0.754457\pi\)
−0.716937 + 0.697138i \(0.754457\pi\)
\(380\) 1.40700i 0.0721775i
\(381\) 0 0
\(382\) 6.11581 0.312912
\(383\) 10.5449 0.538820 0.269410 0.963026i \(-0.413171\pi\)
0.269410 + 0.963026i \(0.413171\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 27.6570i − 1.40770i
\(387\) 0 0
\(388\) − 12.6767i − 0.643560i
\(389\) 11.2605i 0.570929i 0.958389 + 0.285465i \(0.0921479\pi\)
−0.958389 + 0.285465i \(0.907852\pi\)
\(390\) 0 0
\(391\) − 0.919864i − 0.0465195i
\(392\) 0 0
\(393\) 0 0
\(394\) 3.33807 0.168169
\(395\) 2.06547 0.103925
\(396\) 0 0
\(397\) − 1.15486i − 0.0579608i −0.999580 0.0289804i \(-0.990774\pi\)
0.999580 0.0289804i \(-0.00922604\pi\)
\(398\) 33.5863 1.68353
\(399\) 0 0
\(400\) −4.98504 −0.249252
\(401\) 24.7946i 1.23818i 0.785319 + 0.619091i \(0.212499\pi\)
−0.785319 + 0.619091i \(0.787501\pi\)
\(402\) 0 0
\(403\) −18.1055 −0.901898
\(404\) −0.0736433 −0.00366389
\(405\) 0 0
\(406\) 0 0
\(407\) 2.47816i 0.122838i
\(408\) 0 0
\(409\) − 27.9661i − 1.38283i −0.722456 0.691417i \(-0.756987\pi\)
0.722456 0.691417i \(-0.243013\pi\)
\(410\) 1.55447i 0.0767697i
\(411\) 0 0
\(412\) − 8.39765i − 0.413722i
\(413\) 0 0
\(414\) 0 0
\(415\) 4.20554 0.206442
\(416\) 10.1016 0.495272
\(417\) 0 0
\(418\) − 1.14741i − 0.0561214i
\(419\) 33.9771 1.65989 0.829945 0.557845i \(-0.188371\pi\)
0.829945 + 0.557845i \(0.188371\pi\)
\(420\) 0 0
\(421\) 8.14359 0.396895 0.198447 0.980112i \(-0.436410\pi\)
0.198447 + 0.980112i \(0.436410\pi\)
\(422\) 38.8603i 1.89169i
\(423\) 0 0
\(424\) 24.9975 1.21398
\(425\) 5.88935 0.285675
\(426\) 0 0
\(427\) 0 0
\(428\) − 4.44700i − 0.214954i
\(429\) 0 0
\(430\) 2.86073i 0.137957i
\(431\) − 33.1596i − 1.59724i −0.601834 0.798621i \(-0.705563\pi\)
0.601834 0.798621i \(-0.294437\pi\)
\(432\) 0 0
\(433\) − 26.5417i − 1.27551i −0.770239 0.637756i \(-0.779863\pi\)
0.770239 0.637756i \(-0.220137\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.619271 0.0296577
\(437\) −0.250391 −0.0119778
\(438\) 0 0
\(439\) 24.3693i 1.16308i 0.813517 + 0.581541i \(0.197550\pi\)
−0.813517 + 0.581541i \(0.802450\pi\)
\(440\) 0.803295 0.0382956
\(441\) 0 0
\(442\) −21.7094 −1.03261
\(443\) − 3.49881i − 0.166233i −0.996540 0.0831167i \(-0.973513\pi\)
0.996540 0.0831167i \(-0.0264874\pi\)
\(444\) 0 0
\(445\) 0.722456 0.0342477
\(446\) −7.63733 −0.361638
\(447\) 0 0
\(448\) 0 0
\(449\) 4.58599i 0.216426i 0.994128 + 0.108213i \(0.0345129\pi\)
−0.994128 + 0.108213i \(0.965487\pi\)
\(450\) 0 0
\(451\) − 0.386630i − 0.0182057i
\(452\) 2.86766i 0.134883i
\(453\) 0 0
\(454\) 2.18296i 0.102451i
\(455\) 0 0
\(456\) 0 0
\(457\) −21.3080 −0.996746 −0.498373 0.866963i \(-0.666069\pi\)
−0.498373 + 0.866963i \(0.666069\pi\)
\(458\) 11.6547 0.544589
\(459\) 0 0
\(460\) 0.137085i 0.00639160i
\(461\) 39.4276 1.83633 0.918164 0.396201i \(-0.129672\pi\)
0.918164 + 0.396201i \(0.129672\pi\)
\(462\) 0 0
\(463\) −9.87407 −0.458887 −0.229443 0.973322i \(-0.573691\pi\)
−0.229443 + 0.973322i \(0.573691\pi\)
\(464\) − 31.9477i − 1.48314i
\(465\) 0 0
\(466\) 29.0892 1.34753
\(467\) 2.71056 0.125430 0.0627148 0.998031i \(-0.480024\pi\)
0.0627148 + 0.998031i \(0.480024\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 10.3977i 0.479610i
\(471\) 0 0
\(472\) 16.0819i 0.740231i
\(473\) − 0.711526i − 0.0327160i
\(474\) 0 0
\(475\) − 1.60310i − 0.0735554i
\(476\) 0 0
\(477\) 0 0
\(478\) 18.2362 0.834103
\(479\) 29.7608 1.35980 0.679902 0.733303i \(-0.262022\pi\)
0.679902 + 0.733303i \(0.262022\pi\)
\(480\) 0 0
\(481\) − 12.7630i − 0.581943i
\(482\) −12.4912 −0.568958
\(483\) 0 0
\(484\) −9.49815 −0.431734
\(485\) 14.4435i 0.655846i
\(486\) 0 0
\(487\) 12.0256 0.544931 0.272465 0.962166i \(-0.412161\pi\)
0.272465 + 0.962166i \(0.412161\pi\)
\(488\) −12.7851 −0.578756
\(489\) 0 0
\(490\) 0 0
\(491\) − 0.923603i − 0.0416816i −0.999783 0.0208408i \(-0.993366\pi\)
0.999783 0.0208408i \(-0.00663431\pi\)
\(492\) 0 0
\(493\) 37.7432i 1.69987i
\(494\) 5.90937i 0.265875i
\(495\) 0 0
\(496\) − 41.5355i − 1.86500i
\(497\) 0 0
\(498\) 0 0
\(499\) 30.7766 1.37775 0.688876 0.724880i \(-0.258105\pi\)
0.688876 + 0.724880i \(0.258105\pi\)
\(500\) −0.877672 −0.0392507
\(501\) 0 0
\(502\) 27.3406i 1.22027i
\(503\) 6.28875 0.280401 0.140201 0.990123i \(-0.455225\pi\)
0.140201 + 0.990123i \(0.455225\pi\)
\(504\) 0 0
\(505\) 0.0839075 0.00373384
\(506\) − 0.111792i − 0.00496977i
\(507\) 0 0
\(508\) 17.9466 0.796252
\(509\) −36.5692 −1.62090 −0.810451 0.585806i \(-0.800778\pi\)
−0.810451 + 0.585806i \(0.800778\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 4.19208i 0.185266i
\(513\) 0 0
\(514\) 42.4992i 1.87456i
\(515\) 9.56809i 0.421621i
\(516\) 0 0
\(517\) − 2.58613i − 0.113738i
\(518\) 0 0
\(519\) 0 0
\(520\) −4.13713 −0.181425
\(521\) 4.94611 0.216693 0.108347 0.994113i \(-0.465444\pi\)
0.108347 + 0.994113i \(0.465444\pi\)
\(522\) 0 0
\(523\) − 12.2773i − 0.536850i −0.963301 0.268425i \(-0.913497\pi\)
0.963301 0.268425i \(-0.0865032\pi\)
\(524\) 11.8788 0.518926
\(525\) 0 0
\(526\) −5.42150 −0.236389
\(527\) 49.0702i 2.13753i
\(528\) 0 0
\(529\) 22.9756 0.998939
\(530\) 22.2729 0.967472
\(531\) 0 0
\(532\) 0 0
\(533\) 1.99122i 0.0862495i
\(534\) 0 0
\(535\) 5.06681i 0.219057i
\(536\) − 19.4301i − 0.839254i
\(537\) 0 0
\(538\) 31.6916i 1.36632i
\(539\) 0 0
\(540\) 0 0
\(541\) 0.589732 0.0253546 0.0126773 0.999920i \(-0.495965\pi\)
0.0126773 + 0.999920i \(0.495965\pi\)
\(542\) −2.90126 −0.124620
\(543\) 0 0
\(544\) − 27.3778i − 1.17381i
\(545\) −0.705584 −0.0302239
\(546\) 0 0
\(547\) −35.3759 −1.51257 −0.756283 0.654245i \(-0.772987\pi\)
−0.756283 + 0.654245i \(0.772987\pi\)
\(548\) − 4.26920i − 0.182371i
\(549\) 0 0
\(550\) 0.715740 0.0305193
\(551\) 10.2739 0.437681
\(552\) 0 0
\(553\) 0 0
\(554\) − 33.0135i − 1.40261i
\(555\) 0 0
\(556\) − 15.5440i − 0.659212i
\(557\) − 10.7404i − 0.455086i −0.973768 0.227543i \(-0.926931\pi\)
0.973768 0.227543i \(-0.0730692\pi\)
\(558\) 0 0
\(559\) 3.66451i 0.154992i
\(560\) 0 0
\(561\) 0 0
\(562\) −44.9766 −1.89722
\(563\) 20.7643 0.875110 0.437555 0.899192i \(-0.355845\pi\)
0.437555 + 0.899192i \(0.355845\pi\)
\(564\) 0 0
\(565\) − 3.26734i − 0.137458i
\(566\) 4.78546 0.201148
\(567\) 0 0
\(568\) −31.4671 −1.32033
\(569\) − 0.616823i − 0.0258586i −0.999916 0.0129293i \(-0.995884\pi\)
0.999916 0.0129293i \(-0.00411563\pi\)
\(570\) 0 0
\(571\) −12.2339 −0.511971 −0.255986 0.966681i \(-0.582400\pi\)
−0.255986 + 0.966681i \(0.582400\pi\)
\(572\) −0.804686 −0.0336456
\(573\) 0 0
\(574\) 0 0
\(575\) − 0.156191i − 0.00651362i
\(576\) 0 0
\(577\) − 2.02832i − 0.0844402i −0.999108 0.0422201i \(-0.986557\pi\)
0.999108 0.0422201i \(-0.0134431\pi\)
\(578\) 29.9993i 1.24781i
\(579\) 0 0
\(580\) − 5.62476i − 0.233556i
\(581\) 0 0
\(582\) 0 0
\(583\) −5.53975 −0.229433
\(584\) 1.53135 0.0633679
\(585\) 0 0
\(586\) 0.604746i 0.0249818i
\(587\) 22.6594 0.935253 0.467627 0.883926i \(-0.345109\pi\)
0.467627 + 0.883926i \(0.345109\pi\)
\(588\) 0 0
\(589\) 13.3571 0.550370
\(590\) 14.3291i 0.589919i
\(591\) 0 0
\(592\) 29.2794 1.20338
\(593\) −10.1329 −0.416110 −0.208055 0.978117i \(-0.566713\pi\)
−0.208055 + 0.978117i \(0.566713\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 18.1151i 0.742025i
\(597\) 0 0
\(598\) 0.575753i 0.0235443i
\(599\) − 33.0325i − 1.34967i −0.737969 0.674835i \(-0.764215\pi\)
0.737969 0.674835i \(-0.235785\pi\)
\(600\) 0 0
\(601\) 1.82019i 0.0742472i 0.999311 + 0.0371236i \(0.0118195\pi\)
−0.999311 + 0.0371236i \(0.988180\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 16.7754 0.682580
\(605\) 10.8220 0.439976
\(606\) 0 0
\(607\) 6.79608i 0.275844i 0.990443 + 0.137922i \(0.0440424\pi\)
−0.990443 + 0.137922i \(0.955958\pi\)
\(608\) −7.45235 −0.302233
\(609\) 0 0
\(610\) −11.3916 −0.461234
\(611\) 13.3191i 0.538834i
\(612\) 0 0
\(613\) 23.0064 0.929219 0.464609 0.885516i \(-0.346195\pi\)
0.464609 + 0.885516i \(0.346195\pi\)
\(614\) 44.9515 1.81410
\(615\) 0 0
\(616\) 0 0
\(617\) 15.5535i 0.626162i 0.949726 + 0.313081i \(0.101361\pi\)
−0.949726 + 0.313081i \(0.898639\pi\)
\(618\) 0 0
\(619\) 26.4304i 1.06233i 0.847269 + 0.531164i \(0.178245\pi\)
−0.847269 + 0.531164i \(0.821755\pi\)
\(620\) − 7.31279i − 0.293689i
\(621\) 0 0
\(622\) − 47.7895i − 1.91618i
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 37.6782 1.50592
\(627\) 0 0
\(628\) 18.5897i 0.741809i
\(629\) −34.5908 −1.37923
\(630\) 0 0
\(631\) −29.6661 −1.18099 −0.590494 0.807042i \(-0.701067\pi\)
−0.590494 + 0.807042i \(0.701067\pi\)
\(632\) 3.93241i 0.156423i
\(633\) 0 0
\(634\) −12.6488 −0.502346
\(635\) −20.4480 −0.811452
\(636\) 0 0
\(637\) 0 0
\(638\) 4.58698i 0.181600i
\(639\) 0 0
\(640\) − 12.8329i − 0.507265i
\(641\) − 3.08663i − 0.121915i −0.998140 0.0609573i \(-0.980585\pi\)
0.998140 0.0609573i \(-0.0194154\pi\)
\(642\) 0 0
\(643\) − 31.9782i − 1.26110i −0.776150 0.630549i \(-0.782830\pi\)
0.776150 0.630549i \(-0.217170\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 16.0158 0.630134
\(647\) −22.9939 −0.903982 −0.451991 0.892022i \(-0.649286\pi\)
−0.451991 + 0.892022i \(0.649286\pi\)
\(648\) 0 0
\(649\) − 3.56396i − 0.139898i
\(650\) −3.68621 −0.144585
\(651\) 0 0
\(652\) −16.4577 −0.644533
\(653\) 30.9691i 1.21191i 0.795497 + 0.605957i \(0.207210\pi\)
−0.795497 + 0.605957i \(0.792790\pi\)
\(654\) 0 0
\(655\) −13.5344 −0.528832
\(656\) −4.56803 −0.178352
\(657\) 0 0
\(658\) 0 0
\(659\) 11.6761i 0.454835i 0.973797 + 0.227417i \(0.0730281\pi\)
−0.973797 + 0.227417i \(0.926972\pi\)
\(660\) 0 0
\(661\) − 32.8962i − 1.27951i −0.768578 0.639757i \(-0.779035\pi\)
0.768578 0.639757i \(-0.220965\pi\)
\(662\) 27.2258i 1.05816i
\(663\) 0 0
\(664\) 8.00685i 0.310726i
\(665\) 0 0
\(666\) 0 0
\(667\) 1.00099 0.0387584
\(668\) 16.3251 0.631636
\(669\) 0 0
\(670\) − 17.3124i − 0.668835i
\(671\) 2.83335 0.109380
\(672\) 0 0
\(673\) 40.9627 1.57900 0.789498 0.613753i \(-0.210341\pi\)
0.789498 + 0.613753i \(0.210341\pi\)
\(674\) 6.57783i 0.253368i
\(675\) 0 0
\(676\) −7.26544 −0.279440
\(677\) 34.2063 1.31466 0.657328 0.753604i \(-0.271686\pi\)
0.657328 + 0.753604i \(0.271686\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 11.2126i 0.429985i
\(681\) 0 0
\(682\) 5.96357i 0.228357i
\(683\) − 29.6923i − 1.13615i −0.822978 0.568073i \(-0.807689\pi\)
0.822978 0.568073i \(-0.192311\pi\)
\(684\) 0 0
\(685\) 4.86423i 0.185853i
\(686\) 0 0
\(687\) 0 0
\(688\) −8.40668 −0.320502
\(689\) 28.5309 1.08694
\(690\) 0 0
\(691\) 9.07297i 0.345152i 0.984996 + 0.172576i \(0.0552090\pi\)
−0.984996 + 0.172576i \(0.944791\pi\)
\(692\) −15.9781 −0.607397
\(693\) 0 0
\(694\) 0.530394 0.0201335
\(695\) 17.7105i 0.671797i
\(696\) 0 0
\(697\) 5.39670 0.204414
\(698\) −18.1897 −0.688489
\(699\) 0 0
\(700\) 0 0
\(701\) 3.16585i 0.119573i 0.998211 + 0.0597863i \(0.0190419\pi\)
−0.998211 + 0.0597863i \(0.980958\pi\)
\(702\) 0 0
\(703\) 9.41576i 0.355122i
\(704\) 0.879356i 0.0331420i
\(705\) 0 0
\(706\) 33.9553i 1.27793i
\(707\) 0 0
\(708\) 0 0
\(709\) 2.44533 0.0918363 0.0459181 0.998945i \(-0.485379\pi\)
0.0459181 + 0.998945i \(0.485379\pi\)
\(710\) −28.0374 −1.05222
\(711\) 0 0
\(712\) 1.37547i 0.0515480i
\(713\) 1.30139 0.0487374
\(714\) 0 0
\(715\) 0.916841 0.0342879
\(716\) − 4.43306i − 0.165671i
\(717\) 0 0
\(718\) −18.9446 −0.707008
\(719\) −36.8543 −1.37444 −0.687218 0.726452i \(-0.741168\pi\)
−0.687218 + 0.726452i \(0.741168\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 27.8715i 1.03727i
\(723\) 0 0
\(724\) 22.1871i 0.824578i
\(725\) 6.40873i 0.238014i
\(726\) 0 0
\(727\) 6.77506i 0.251273i 0.992076 + 0.125637i \(0.0400973\pi\)
−0.992076 + 0.125637i \(0.959903\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.36444 0.0505004
\(731\) 9.93169 0.367337
\(732\) 0 0
\(733\) − 46.3529i − 1.71208i −0.516906 0.856042i \(-0.672916\pi\)
0.516906 0.856042i \(-0.327084\pi\)
\(734\) 54.9737 2.02912
\(735\) 0 0
\(736\) −0.726086 −0.0267639
\(737\) 4.30596i 0.158612i
\(738\) 0 0
\(739\) 43.0028 1.58188 0.790942 0.611892i \(-0.209591\pi\)
0.790942 + 0.611892i \(0.209591\pi\)
\(740\) 5.15497 0.189501
\(741\) 0 0
\(742\) 0 0
\(743\) − 34.0373i − 1.24871i −0.781142 0.624353i \(-0.785363\pi\)
0.781142 0.624353i \(-0.214637\pi\)
\(744\) 0 0
\(745\) − 20.6400i − 0.756191i
\(746\) 6.15732i 0.225436i
\(747\) 0 0
\(748\) 2.18089i 0.0797413i
\(749\) 0 0
\(750\) 0 0
\(751\) −16.3270 −0.595781 −0.297891 0.954600i \(-0.596283\pi\)
−0.297891 + 0.954600i \(0.596283\pi\)
\(752\) −30.5552 −1.11423
\(753\) 0 0
\(754\) − 23.6239i − 0.860332i
\(755\) −19.1135 −0.695610
\(756\) 0 0
\(757\) 27.4559 0.997900 0.498950 0.866631i \(-0.333719\pi\)
0.498950 + 0.866631i \(0.333719\pi\)
\(758\) − 47.3534i − 1.71995i
\(759\) 0 0
\(760\) 3.05212 0.110712
\(761\) 21.9331 0.795075 0.397537 0.917586i \(-0.369865\pi\)
0.397537 + 0.917586i \(0.369865\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 3.16421i 0.114477i
\(765\) 0 0
\(766\) 17.8881i 0.646323i
\(767\) 18.3551i 0.662765i
\(768\) 0 0
\(769\) 19.7466i 0.712082i 0.934470 + 0.356041i \(0.115874\pi\)
−0.934470 + 0.356041i \(0.884126\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 14.3092 0.515001
\(773\) 35.9983 1.29477 0.647385 0.762163i \(-0.275863\pi\)
0.647385 + 0.762163i \(0.275863\pi\)
\(774\) 0 0
\(775\) 8.33203i 0.299295i
\(776\) −27.4987 −0.987148
\(777\) 0 0
\(778\) −19.1020 −0.684838
\(779\) − 1.46900i − 0.0526325i
\(780\) 0 0
\(781\) 6.97351 0.249532
\(782\) 1.56043 0.0558009
\(783\) 0 0
\(784\) 0 0
\(785\) − 21.1807i − 0.755970i
\(786\) 0 0
\(787\) 1.13004i 0.0402817i 0.999797 + 0.0201409i \(0.00641147\pi\)
−0.999797 + 0.0201409i \(0.993589\pi\)
\(788\) 1.72706i 0.0615239i
\(789\) 0 0
\(790\) 3.50380i 0.124659i
\(791\) 0 0
\(792\) 0 0
\(793\) −14.5923 −0.518189
\(794\) 1.95907 0.0695248
\(795\) 0 0
\(796\) 17.3769i 0.615909i
\(797\) −4.06109 −0.143851 −0.0719257 0.997410i \(-0.522914\pi\)
−0.0719257 + 0.997410i \(0.522914\pi\)
\(798\) 0 0
\(799\) 36.0980 1.27706
\(800\) − 4.64870i − 0.164356i
\(801\) 0 0
\(802\) −42.0608 −1.48522
\(803\) −0.339367 −0.0119760
\(804\) 0 0
\(805\) 0 0
\(806\) − 30.7136i − 1.08184i
\(807\) 0 0
\(808\) 0.159750i 0.00561999i
\(809\) 18.9378i 0.665817i 0.942959 + 0.332908i \(0.108030\pi\)
−0.942959 + 0.332908i \(0.891970\pi\)
\(810\) 0 0
\(811\) 29.5835i 1.03882i 0.854526 + 0.519408i \(0.173848\pi\)
−0.854526 + 0.519408i \(0.826152\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −4.20387 −0.147346
\(815\) 18.7515 0.656837
\(816\) 0 0
\(817\) − 2.70345i − 0.0945816i
\(818\) 47.4408 1.65873
\(819\) 0 0
\(820\) −0.804254 −0.0280858
\(821\) − 37.9510i − 1.32450i −0.749284 0.662249i \(-0.769602\pi\)
0.749284 0.662249i \(-0.230398\pi\)
\(822\) 0 0
\(823\) −38.3882 −1.33813 −0.669065 0.743204i \(-0.733305\pi\)
−0.669065 + 0.743204i \(0.733305\pi\)
\(824\) −18.2165 −0.634603
\(825\) 0 0
\(826\) 0 0
\(827\) − 7.85718i − 0.273221i −0.990625 0.136610i \(-0.956379\pi\)
0.990625 0.136610i \(-0.0436208\pi\)
\(828\) 0 0
\(829\) − 9.22844i − 0.320517i −0.987075 0.160259i \(-0.948767\pi\)
0.987075 0.160259i \(-0.0512328\pi\)
\(830\) 7.13415i 0.247630i
\(831\) 0 0
\(832\) − 4.52886i − 0.157010i
\(833\) 0 0
\(834\) 0 0
\(835\) −18.6004 −0.643694
\(836\) 0.593647 0.0205317
\(837\) 0 0
\(838\) 57.6378i 1.99106i
\(839\) 1.21933 0.0420959 0.0210479 0.999778i \(-0.493300\pi\)
0.0210479 + 0.999778i \(0.493300\pi\)
\(840\) 0 0
\(841\) −12.0718 −0.416269
\(842\) 13.8146i 0.476081i
\(843\) 0 0
\(844\) −20.1057 −0.692065
\(845\) 8.27808 0.284775
\(846\) 0 0
\(847\) 0 0
\(848\) 65.4521i 2.24764i
\(849\) 0 0
\(850\) 9.99051i 0.342672i
\(851\) 0.917383i 0.0314475i
\(852\) 0 0
\(853\) − 29.4604i − 1.00871i −0.863498 0.504353i \(-0.831731\pi\)
0.863498 0.504353i \(-0.168269\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −9.64661 −0.329714
\(857\) −39.1712 −1.33806 −0.669032 0.743234i \(-0.733291\pi\)
−0.669032 + 0.743234i \(0.733291\pi\)
\(858\) 0 0
\(859\) 10.9319i 0.372991i 0.982456 + 0.186495i \(0.0597129\pi\)
−0.982456 + 0.186495i \(0.940287\pi\)
\(860\) −1.48009 −0.0504707
\(861\) 0 0
\(862\) 56.2510 1.91592
\(863\) − 41.5258i − 1.41356i −0.707436 0.706778i \(-0.750148\pi\)
0.707436 0.706778i \(-0.249852\pi\)
\(864\) 0 0
\(865\) 18.2051 0.618992
\(866\) 45.0245 1.53000
\(867\) 0 0
\(868\) 0 0
\(869\) − 0.871471i − 0.0295626i
\(870\) 0 0
\(871\) − 22.1766i − 0.751425i
\(872\) − 1.34335i − 0.0454916i
\(873\) 0 0
\(874\) − 0.424755i − 0.0143676i
\(875\) 0 0
\(876\) 0 0
\(877\) −6.55222 −0.221253 −0.110626 0.993862i \(-0.535286\pi\)
−0.110626 + 0.993862i \(0.535286\pi\)
\(878\) −41.3393 −1.39513
\(879\) 0 0
\(880\) 2.10331i 0.0709025i
\(881\) 15.4985 0.522156 0.261078 0.965318i \(-0.415922\pi\)
0.261078 + 0.965318i \(0.415922\pi\)
\(882\) 0 0
\(883\) 12.8809 0.433477 0.216738 0.976230i \(-0.430458\pi\)
0.216738 + 0.976230i \(0.430458\pi\)
\(884\) − 11.2320i − 0.377774i
\(885\) 0 0
\(886\) 5.93528 0.199400
\(887\) −42.8287 −1.43805 −0.719024 0.694985i \(-0.755411\pi\)
−0.719024 + 0.694985i \(0.755411\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.22555i 0.0410806i
\(891\) 0 0
\(892\) − 3.95142i − 0.132303i
\(893\) − 9.82603i − 0.328816i
\(894\) 0 0
\(895\) 5.05092i 0.168834i
\(896\) 0 0
\(897\) 0 0
\(898\) −7.77954 −0.259607
\(899\) −53.3977 −1.78091
\(900\) 0 0
\(901\) − 77.3255i − 2.57609i
\(902\) 0.655868 0.0218380
\(903\) 0 0
\(904\) 6.22064 0.206895
\(905\) − 25.2795i − 0.840319i
\(906\) 0 0
\(907\) −27.1932 −0.902936 −0.451468 0.892287i \(-0.649099\pi\)
−0.451468 + 0.892287i \(0.649099\pi\)
\(908\) −1.12943 −0.0374813
\(909\) 0 0
\(910\) 0 0
\(911\) − 30.4716i − 1.00957i −0.863245 0.504785i \(-0.831572\pi\)
0.863245 0.504785i \(-0.168428\pi\)
\(912\) 0 0
\(913\) − 1.77442i − 0.0587247i
\(914\) − 36.1462i − 1.19561i
\(915\) 0 0
\(916\) 6.02994i 0.199235i
\(917\) 0 0
\(918\) 0 0
\(919\) 21.0277 0.693640 0.346820 0.937932i \(-0.387261\pi\)
0.346820 + 0.937932i \(0.387261\pi\)
\(920\) 0.297370 0.00980399
\(921\) 0 0
\(922\) 66.8838i 2.20270i
\(923\) −35.9150 −1.18216
\(924\) 0 0
\(925\) −5.87346 −0.193118
\(926\) − 16.7501i − 0.550442i
\(927\) 0 0
\(928\) 29.7923 0.977979
\(929\) −4.85466 −0.159276 −0.0796382 0.996824i \(-0.525376\pi\)
−0.0796382 + 0.996824i \(0.525376\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 15.0502i 0.492987i
\(933\) 0 0
\(934\) 4.59811i 0.150455i
\(935\) − 2.48486i − 0.0812636i
\(936\) 0 0
\(937\) − 17.1825i − 0.561329i −0.959806 0.280664i \(-0.909445\pi\)
0.959806 0.280664i \(-0.0905548\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −5.37959 −0.175463
\(941\) −36.7030 −1.19648 −0.598242 0.801316i \(-0.704134\pi\)
−0.598242 + 0.801316i \(0.704134\pi\)
\(942\) 0 0
\(943\) − 0.143126i − 0.00466081i
\(944\) −42.1081 −1.37050
\(945\) 0 0
\(946\) 1.20701 0.0392433
\(947\) − 3.79258i − 0.123242i −0.998100 0.0616211i \(-0.980373\pi\)
0.998100 0.0616211i \(-0.0196271\pi\)
\(948\) 0 0
\(949\) 1.74781 0.0567364
\(950\) 2.71946 0.0882308
\(951\) 0 0
\(952\) 0 0
\(953\) − 20.4628i − 0.662856i −0.943481 0.331428i \(-0.892470\pi\)
0.943481 0.331428i \(-0.107530\pi\)
\(954\) 0 0
\(955\) − 3.60523i − 0.116663i
\(956\) 9.43508i 0.305152i
\(957\) 0 0
\(958\) 50.4853i 1.63111i
\(959\) 0 0
\(960\) 0 0
\(961\) −38.4227 −1.23944
\(962\) 21.6508 0.698050
\(963\) 0 0
\(964\) − 6.46272i − 0.208150i
\(965\) −16.3036 −0.524833
\(966\) 0 0
\(967\) 56.6843 1.82284 0.911422 0.411473i \(-0.134986\pi\)
0.911422 + 0.411473i \(0.134986\pi\)
\(968\) 20.6038i 0.662231i
\(969\) 0 0
\(970\) −24.5015 −0.786697
\(971\) −43.4291 −1.39370 −0.696852 0.717215i \(-0.745417\pi\)
−0.696852 + 0.717215i \(0.745417\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 20.3998i 0.653653i
\(975\) 0 0
\(976\) − 33.4760i − 1.07154i
\(977\) − 41.8099i − 1.33762i −0.743435 0.668809i \(-0.766805\pi\)
0.743435 0.668809i \(-0.233195\pi\)
\(978\) 0 0
\(979\) − 0.304822i − 0.00974215i
\(980\) 0 0
\(981\) 0 0
\(982\) 1.56677 0.0499977
\(983\) −32.2607 −1.02896 −0.514478 0.857504i \(-0.672014\pi\)
−0.514478 + 0.857504i \(0.672014\pi\)
\(984\) 0 0
\(985\) − 1.96777i − 0.0626984i
\(986\) −64.0265 −2.03902
\(987\) 0 0
\(988\) −3.05741 −0.0972691
\(989\) − 0.263398i − 0.00837557i
\(990\) 0 0
\(991\) −41.2806 −1.31132 −0.655661 0.755056i \(-0.727610\pi\)
−0.655661 + 0.755056i \(0.727610\pi\)
\(992\) 38.7331 1.22978
\(993\) 0 0
\(994\) 0 0
\(995\) − 19.7989i − 0.627667i
\(996\) 0 0
\(997\) − 9.14133i − 0.289509i −0.989468 0.144754i \(-0.953761\pi\)
0.989468 0.144754i \(-0.0462392\pi\)
\(998\) 52.2086i 1.65263i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.2.b.d.881.12 yes 16
3.2 odd 2 2205.2.b.c.881.5 16
7.6 odd 2 2205.2.b.c.881.12 yes 16
21.20 even 2 inner 2205.2.b.d.881.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2205.2.b.c.881.5 16 3.2 odd 2
2205.2.b.c.881.12 yes 16 7.6 odd 2
2205.2.b.d.881.5 yes 16 21.20 even 2 inner
2205.2.b.d.881.12 yes 16 1.1 even 1 trivial