L(s) = 1 | + 1.69i·2-s − 0.877·4-s + 5-s + 1.90i·8-s + 1.69i·10-s − 0.421i·11-s + 2.17i·13-s − 4.98·16-s + 5.88·17-s − 1.60i·19-s − 0.877·20-s + 0.715·22-s − 0.156i·23-s + 25-s − 3.68·26-s + ⋯ |
L(s) = 1 | + 1.19i·2-s − 0.438·4-s + 0.447·5-s + 0.673i·8-s + 0.536i·10-s − 0.127i·11-s + 0.602i·13-s − 1.24·16-s + 1.42·17-s − 0.367i·19-s − 0.196·20-s + 0.152·22-s − 0.0325i·23-s + 0.200·25-s − 0.722·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.860 - 0.508i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.860 - 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.985672618\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.985672618\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 1.69iT - 2T^{2} \) |
| 11 | \( 1 + 0.421iT - 11T^{2} \) |
| 13 | \( 1 - 2.17iT - 13T^{2} \) |
| 17 | \( 1 - 5.88T + 17T^{2} \) |
| 19 | \( 1 + 1.60iT - 19T^{2} \) |
| 23 | \( 1 + 0.156iT - 23T^{2} \) |
| 29 | \( 1 - 6.40iT - 29T^{2} \) |
| 31 | \( 1 - 8.33iT - 31T^{2} \) |
| 37 | \( 1 + 5.87T + 37T^{2} \) |
| 41 | \( 1 - 0.916T + 41T^{2} \) |
| 43 | \( 1 - 1.68T + 43T^{2} \) |
| 47 | \( 1 - 6.12T + 47T^{2} \) |
| 53 | \( 1 + 13.1iT - 53T^{2} \) |
| 59 | \( 1 - 8.44T + 59T^{2} \) |
| 61 | \( 1 - 6.71iT - 61T^{2} \) |
| 67 | \( 1 + 10.2T + 67T^{2} \) |
| 71 | \( 1 - 16.5iT - 71T^{2} \) |
| 73 | \( 1 + 0.804iT - 73T^{2} \) |
| 79 | \( 1 - 2.06T + 79T^{2} \) |
| 83 | \( 1 - 4.20T + 83T^{2} \) |
| 89 | \( 1 - 0.722T + 89T^{2} \) |
| 97 | \( 1 - 14.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.987206495355046916790081519302, −8.610378336396949097335215444058, −7.62690995280625730588202164956, −6.98209101702201913193718862389, −6.40677954750867078988911792599, −5.38506253320475636016261201769, −5.10411267716795844156742016980, −3.75840409586331702143049383150, −2.65017947497627006077962796871, −1.41168235540183808609424463424,
0.71201666427146431009797039093, 1.81515818485964547541475819061, 2.72768603611412392744028766988, 3.55093839011958010307125687771, 4.42019278967549595104715226577, 5.59708397777136507131549144200, 6.17727221291762810007036501533, 7.35134054752757967053146905033, 7.947936827657056495460371389451, 9.083367344391792076633667619394