Properties

Label 2205.2.b.c.881.16
Level $2205$
Weight $2$
Character 2205.881
Analytic conductor $17.607$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2205,2,Mod(881,2205)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2205.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2205, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 790 x^{12} - 2192 x^{11} + 5036 x^{10} - 9472 x^{9} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.16
Root \(0.500000 - 0.229342i\) of defining polynomial
Character \(\chi\) \(=\) 2205.881
Dual form 2205.2.b.c.881.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.65421i q^{2} -5.04484 q^{4} -1.00000 q^{5} -8.08165i q^{8} -2.65421i q^{10} +4.28711i q^{11} +3.72027i q^{13} +11.3607 q^{16} -5.64024 q^{17} +6.24192i q^{19} +5.04484 q^{20} -11.3789 q^{22} +2.66983i q^{23} +1.00000 q^{25} -9.87438 q^{26} -10.7034i q^{29} +6.21489i q^{31} +13.9905i q^{32} -14.9704i q^{34} +1.68281 q^{37} -16.5674 q^{38} +8.08165i q^{40} -4.50679 q^{41} +4.89765 q^{43} -21.6278i q^{44} -7.08629 q^{46} -7.85801 q^{47} +2.65421i q^{50} -18.7682i q^{52} -9.01748i q^{53} -4.28711i q^{55} +28.4090 q^{58} +7.79598 q^{59} -13.7521i q^{61} -16.4956 q^{62} -14.4123 q^{64} -3.72027i q^{65} +0.434026 q^{67} +28.4541 q^{68} +6.48172i q^{71} -7.40739i q^{73} +4.46652i q^{74} -31.4895i q^{76} -10.6369 q^{79} -11.3607 q^{80} -11.9620i q^{82} +8.90228 q^{83} +5.64024 q^{85} +12.9994i q^{86} +34.6469 q^{88} -9.92599 q^{89} -13.4689i q^{92} -20.8568i q^{94} -6.24192i q^{95} +3.04079i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} - 16 q^{5} + 16 q^{20} - 16 q^{22} + 16 q^{25} - 32 q^{26} + 16 q^{38} + 32 q^{41} + 32 q^{43} - 16 q^{46} - 32 q^{47} + 48 q^{58} + 32 q^{59} + 32 q^{62} + 16 q^{64} + 16 q^{68} + 32 q^{79}+ \cdots - 64 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2205\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(1081\) \(1226\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.65421i 1.87681i 0.345536 + 0.938406i \(0.387697\pi\)
−0.345536 + 0.938406i \(0.612303\pi\)
\(3\) 0 0
\(4\) −5.04484 −2.52242
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) − 8.08165i − 2.85730i
\(9\) 0 0
\(10\) − 2.65421i − 0.839335i
\(11\) 4.28711i 1.29261i 0.763078 + 0.646306i \(0.223687\pi\)
−0.763078 + 0.646306i \(0.776313\pi\)
\(12\) 0 0
\(13\) 3.72027i 1.03182i 0.856644 + 0.515908i \(0.172546\pi\)
−0.856644 + 0.515908i \(0.827454\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 11.3607 2.84018
\(17\) −5.64024 −1.36796 −0.683980 0.729501i \(-0.739753\pi\)
−0.683980 + 0.729501i \(0.739753\pi\)
\(18\) 0 0
\(19\) 6.24192i 1.43200i 0.698103 + 0.715998i \(0.254028\pi\)
−0.698103 + 0.715998i \(0.745972\pi\)
\(20\) 5.04484 1.12806
\(21\) 0 0
\(22\) −11.3789 −2.42599
\(23\) 2.66983i 0.556698i 0.960480 + 0.278349i \(0.0897871\pi\)
−0.960480 + 0.278349i \(0.910213\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −9.87438 −1.93653
\(27\) 0 0
\(28\) 0 0
\(29\) − 10.7034i − 1.98756i −0.111346 0.993782i \(-0.535516\pi\)
0.111346 0.993782i \(-0.464484\pi\)
\(30\) 0 0
\(31\) 6.21489i 1.11623i 0.829764 + 0.558114i \(0.188475\pi\)
−0.829764 + 0.558114i \(0.811525\pi\)
\(32\) 13.9905i 2.47319i
\(33\) 0 0
\(34\) − 14.9704i − 2.56740i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.68281 0.276652 0.138326 0.990387i \(-0.455828\pi\)
0.138326 + 0.990387i \(0.455828\pi\)
\(38\) −16.5674 −2.68758
\(39\) 0 0
\(40\) 8.08165i 1.27782i
\(41\) −4.50679 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(42\) 0 0
\(43\) 4.89765 0.746884 0.373442 0.927653i \(-0.378177\pi\)
0.373442 + 0.927653i \(0.378177\pi\)
\(44\) − 21.6278i − 3.26051i
\(45\) 0 0
\(46\) −7.08629 −1.04482
\(47\) −7.85801 −1.14621 −0.573104 0.819483i \(-0.694261\pi\)
−0.573104 + 0.819483i \(0.694261\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 2.65421i 0.375362i
\(51\) 0 0
\(52\) − 18.7682i − 2.60268i
\(53\) − 9.01748i − 1.23865i −0.785136 0.619323i \(-0.787407\pi\)
0.785136 0.619323i \(-0.212593\pi\)
\(54\) 0 0
\(55\) − 4.28711i − 0.578074i
\(56\) 0 0
\(57\) 0 0
\(58\) 28.4090 3.73028
\(59\) 7.79598 1.01495 0.507475 0.861667i \(-0.330579\pi\)
0.507475 + 0.861667i \(0.330579\pi\)
\(60\) 0 0
\(61\) − 13.7521i − 1.76078i −0.474248 0.880391i \(-0.657280\pi\)
0.474248 0.880391i \(-0.342720\pi\)
\(62\) −16.4956 −2.09495
\(63\) 0 0
\(64\) −14.4123 −1.80153
\(65\) − 3.72027i − 0.461442i
\(66\) 0 0
\(67\) 0.434026 0.0530247 0.0265124 0.999648i \(-0.491560\pi\)
0.0265124 + 0.999648i \(0.491560\pi\)
\(68\) 28.4541 3.45057
\(69\) 0 0
\(70\) 0 0
\(71\) 6.48172i 0.769239i 0.923075 + 0.384620i \(0.125667\pi\)
−0.923075 + 0.384620i \(0.874333\pi\)
\(72\) 0 0
\(73\) − 7.40739i − 0.866970i −0.901161 0.433485i \(-0.857284\pi\)
0.901161 0.433485i \(-0.142716\pi\)
\(74\) 4.46652i 0.519223i
\(75\) 0 0
\(76\) − 31.4895i − 3.61209i
\(77\) 0 0
\(78\) 0 0
\(79\) −10.6369 −1.19674 −0.598371 0.801219i \(-0.704185\pi\)
−0.598371 + 0.801219i \(0.704185\pi\)
\(80\) −11.3607 −1.27017
\(81\) 0 0
\(82\) − 11.9620i − 1.32098i
\(83\) 8.90228 0.977152 0.488576 0.872521i \(-0.337517\pi\)
0.488576 + 0.872521i \(0.337517\pi\)
\(84\) 0 0
\(85\) 5.64024 0.611770
\(86\) 12.9994i 1.40176i
\(87\) 0 0
\(88\) 34.6469 3.69338
\(89\) −9.92599 −1.05215 −0.526077 0.850437i \(-0.676338\pi\)
−0.526077 + 0.850437i \(0.676338\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 13.4689i − 1.40423i
\(93\) 0 0
\(94\) − 20.8568i − 2.15122i
\(95\) − 6.24192i − 0.640408i
\(96\) 0 0
\(97\) 3.04079i 0.308746i 0.988013 + 0.154373i \(0.0493357\pi\)
−0.988013 + 0.154373i \(0.950664\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.04484 −0.504484
\(101\) −11.9159 −1.18567 −0.592836 0.805323i \(-0.701992\pi\)
−0.592836 + 0.805323i \(0.701992\pi\)
\(102\) 0 0
\(103\) − 11.8981i − 1.17236i −0.810183 0.586178i \(-0.800632\pi\)
0.810183 0.586178i \(-0.199368\pi\)
\(104\) 30.0659 2.94820
\(105\) 0 0
\(106\) 23.9343 2.32471
\(107\) − 3.69509i − 0.357218i −0.983920 0.178609i \(-0.942840\pi\)
0.983920 0.178609i \(-0.0571598\pi\)
\(108\) 0 0
\(109\) 5.08689 0.487236 0.243618 0.969871i \(-0.421666\pi\)
0.243618 + 0.969871i \(0.421666\pi\)
\(110\) 11.3789 1.08494
\(111\) 0 0
\(112\) 0 0
\(113\) − 6.30402i − 0.593032i −0.955028 0.296516i \(-0.904175\pi\)
0.955028 0.296516i \(-0.0958248\pi\)
\(114\) 0 0
\(115\) − 2.66983i − 0.248963i
\(116\) 53.9967i 5.01347i
\(117\) 0 0
\(118\) 20.6922i 1.90487i
\(119\) 0 0
\(120\) 0 0
\(121\) −7.37933 −0.670848
\(122\) 36.5011 3.30466
\(123\) 0 0
\(124\) − 31.3531i − 2.81560i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 2.75023 0.244043 0.122022 0.992527i \(-0.461062\pi\)
0.122022 + 0.992527i \(0.461062\pi\)
\(128\) − 10.2722i − 0.907943i
\(129\) 0 0
\(130\) 9.87438 0.866040
\(131\) −12.4355 −1.08650 −0.543249 0.839572i \(-0.682806\pi\)
−0.543249 + 0.839572i \(0.682806\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.15200i 0.0995174i
\(135\) 0 0
\(136\) 45.5825i 3.90867i
\(137\) 8.50306i 0.726466i 0.931698 + 0.363233i \(0.118327\pi\)
−0.931698 + 0.363233i \(0.881673\pi\)
\(138\) 0 0
\(139\) 10.4963i 0.890287i 0.895459 + 0.445143i \(0.146847\pi\)
−0.895459 + 0.445143i \(0.853153\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −17.2039 −1.44372
\(143\) −15.9492 −1.33374
\(144\) 0 0
\(145\) 10.7034i 0.888865i
\(146\) 19.6608 1.62714
\(147\) 0 0
\(148\) −8.48949 −0.697832
\(149\) 10.5193i 0.861778i 0.902405 + 0.430889i \(0.141800\pi\)
−0.902405 + 0.430889i \(0.858200\pi\)
\(150\) 0 0
\(151\) 9.29005 0.756014 0.378007 0.925803i \(-0.376610\pi\)
0.378007 + 0.925803i \(0.376610\pi\)
\(152\) 50.4450 4.09163
\(153\) 0 0
\(154\) 0 0
\(155\) − 6.21489i − 0.499192i
\(156\) 0 0
\(157\) 8.87768i 0.708516i 0.935148 + 0.354258i \(0.115266\pi\)
−0.935148 + 0.354258i \(0.884734\pi\)
\(158\) − 28.2325i − 2.24606i
\(159\) 0 0
\(160\) − 13.9905i − 1.10605i
\(161\) 0 0
\(162\) 0 0
\(163\) −24.8753 −1.94838 −0.974191 0.225724i \(-0.927525\pi\)
−0.974191 + 0.225724i \(0.927525\pi\)
\(164\) 22.7360 1.77538
\(165\) 0 0
\(166\) 23.6285i 1.83393i
\(167\) −9.07164 −0.701984 −0.350992 0.936378i \(-0.614156\pi\)
−0.350992 + 0.936378i \(0.614156\pi\)
\(168\) 0 0
\(169\) −0.840395 −0.0646457
\(170\) 14.9704i 1.14818i
\(171\) 0 0
\(172\) −24.7079 −1.88396
\(173\) 3.95823 0.300938 0.150469 0.988615i \(-0.451922\pi\)
0.150469 + 0.988615i \(0.451922\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 48.7047i 3.67126i
\(177\) 0 0
\(178\) − 26.3457i − 1.97469i
\(179\) 0.330331i 0.0246901i 0.999924 + 0.0123451i \(0.00392965\pi\)
−0.999924 + 0.0123451i \(0.996070\pi\)
\(180\) 0 0
\(181\) − 2.09148i − 0.155459i −0.996974 0.0777294i \(-0.975233\pi\)
0.996974 0.0777294i \(-0.0247670\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 21.5766 1.59065
\(185\) −1.68281 −0.123722
\(186\) 0 0
\(187\) − 24.1804i − 1.76824i
\(188\) 39.6424 2.89122
\(189\) 0 0
\(190\) 16.5674 1.20192
\(191\) 7.72494i 0.558957i 0.960152 + 0.279479i \(0.0901616\pi\)
−0.960152 + 0.279479i \(0.909838\pi\)
\(192\) 0 0
\(193\) 8.30309 0.597669 0.298835 0.954305i \(-0.403402\pi\)
0.298835 + 0.954305i \(0.403402\pi\)
\(194\) −8.07090 −0.579457
\(195\) 0 0
\(196\) 0 0
\(197\) − 25.4881i − 1.81595i −0.419019 0.907977i \(-0.637626\pi\)
0.419019 0.907977i \(-0.362374\pi\)
\(198\) 0 0
\(199\) 2.06372i 0.146293i 0.997321 + 0.0731465i \(0.0233041\pi\)
−0.997321 + 0.0731465i \(0.976696\pi\)
\(200\) − 8.08165i − 0.571459i
\(201\) 0 0
\(202\) − 31.6272i − 2.22528i
\(203\) 0 0
\(204\) 0 0
\(205\) 4.50679 0.314768
\(206\) 31.5801 2.20029
\(207\) 0 0
\(208\) 42.2650i 2.93055i
\(209\) −26.7598 −1.85102
\(210\) 0 0
\(211\) −6.21339 −0.427747 −0.213874 0.976861i \(-0.568608\pi\)
−0.213874 + 0.976861i \(0.568608\pi\)
\(212\) 45.4918i 3.12439i
\(213\) 0 0
\(214\) 9.80756 0.670431
\(215\) −4.89765 −0.334017
\(216\) 0 0
\(217\) 0 0
\(218\) 13.5017i 0.914450i
\(219\) 0 0
\(220\) 21.6278i 1.45815i
\(221\) − 20.9832i − 1.41148i
\(222\) 0 0
\(223\) − 24.0589i − 1.61110i −0.592526 0.805552i \(-0.701869\pi\)
0.592526 0.805552i \(-0.298131\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 16.7322 1.11301
\(227\) 8.19698 0.544053 0.272026 0.962290i \(-0.412306\pi\)
0.272026 + 0.962290i \(0.412306\pi\)
\(228\) 0 0
\(229\) − 3.06400i − 0.202475i −0.994862 0.101237i \(-0.967720\pi\)
0.994862 0.101237i \(-0.0322802\pi\)
\(230\) 7.08629 0.467256
\(231\) 0 0
\(232\) −86.5008 −5.67906
\(233\) − 13.3600i − 0.875245i −0.899159 0.437623i \(-0.855821\pi\)
0.899159 0.437623i \(-0.144179\pi\)
\(234\) 0 0
\(235\) 7.85801 0.512600
\(236\) −39.3295 −2.56013
\(237\) 0 0
\(238\) 0 0
\(239\) 6.31296i 0.408352i 0.978934 + 0.204176i \(0.0654514\pi\)
−0.978934 + 0.204176i \(0.934549\pi\)
\(240\) 0 0
\(241\) 19.9082i 1.28240i 0.767374 + 0.641200i \(0.221563\pi\)
−0.767374 + 0.641200i \(0.778437\pi\)
\(242\) − 19.5863i − 1.25905i
\(243\) 0 0
\(244\) 69.3774i 4.44143i
\(245\) 0 0
\(246\) 0 0
\(247\) −23.2216 −1.47756
\(248\) 50.2266 3.18939
\(249\) 0 0
\(250\) − 2.65421i − 0.167867i
\(251\) 1.12767 0.0711778 0.0355889 0.999367i \(-0.488669\pi\)
0.0355889 + 0.999367i \(0.488669\pi\)
\(252\) 0 0
\(253\) −11.4459 −0.719595
\(254\) 7.29969i 0.458023i
\(255\) 0 0
\(256\) −1.55991 −0.0974942
\(257\) −6.58199 −0.410573 −0.205287 0.978702i \(-0.565813\pi\)
−0.205287 + 0.978702i \(0.565813\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 18.7682i 1.16395i
\(261\) 0 0
\(262\) − 33.0065i − 2.03915i
\(263\) − 20.5273i − 1.26577i −0.774246 0.632885i \(-0.781871\pi\)
0.774246 0.632885i \(-0.218129\pi\)
\(264\) 0 0
\(265\) 9.01748i 0.553939i
\(266\) 0 0
\(267\) 0 0
\(268\) −2.18959 −0.133751
\(269\) −11.2229 −0.684271 −0.342135 0.939651i \(-0.611150\pi\)
−0.342135 + 0.939651i \(0.611150\pi\)
\(270\) 0 0
\(271\) − 1.33130i − 0.0808705i −0.999182 0.0404352i \(-0.987126\pi\)
0.999182 0.0404352i \(-0.0128744\pi\)
\(272\) −64.0773 −3.88526
\(273\) 0 0
\(274\) −22.5689 −1.36344
\(275\) 4.28711i 0.258523i
\(276\) 0 0
\(277\) 4.49357 0.269992 0.134996 0.990846i \(-0.456898\pi\)
0.134996 + 0.990846i \(0.456898\pi\)
\(278\) −27.8595 −1.67090
\(279\) 0 0
\(280\) 0 0
\(281\) − 7.64141i − 0.455848i −0.973679 0.227924i \(-0.926806\pi\)
0.973679 0.227924i \(-0.0731938\pi\)
\(282\) 0 0
\(283\) 26.6304i 1.58301i 0.611160 + 0.791507i \(0.290703\pi\)
−0.611160 + 0.791507i \(0.709297\pi\)
\(284\) − 32.6993i − 1.94034i
\(285\) 0 0
\(286\) − 42.3326i − 2.50318i
\(287\) 0 0
\(288\) 0 0
\(289\) 14.8124 0.871316
\(290\) −28.4090 −1.66823
\(291\) 0 0
\(292\) 37.3691i 2.18686i
\(293\) −8.53715 −0.498746 −0.249373 0.968408i \(-0.580224\pi\)
−0.249373 + 0.968408i \(0.580224\pi\)
\(294\) 0 0
\(295\) −7.79598 −0.453899
\(296\) − 13.5999i − 0.790475i
\(297\) 0 0
\(298\) −27.9206 −1.61739
\(299\) −9.93248 −0.574410
\(300\) 0 0
\(301\) 0 0
\(302\) 24.6578i 1.41889i
\(303\) 0 0
\(304\) 70.9128i 4.06713i
\(305\) 13.7521i 0.787446i
\(306\) 0 0
\(307\) 34.1889i 1.95126i 0.219418 + 0.975631i \(0.429584\pi\)
−0.219418 + 0.975631i \(0.570416\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 16.4956 0.936890
\(311\) −16.2975 −0.924148 −0.462074 0.886841i \(-0.652894\pi\)
−0.462074 + 0.886841i \(0.652894\pi\)
\(312\) 0 0
\(313\) 27.1468i 1.53443i 0.641392 + 0.767214i \(0.278357\pi\)
−0.641392 + 0.767214i \(0.721643\pi\)
\(314\) −23.5632 −1.32975
\(315\) 0 0
\(316\) 53.6614 3.01869
\(317\) 16.0827i 0.903295i 0.892196 + 0.451648i \(0.149164\pi\)
−0.892196 + 0.451648i \(0.850836\pi\)
\(318\) 0 0
\(319\) 45.8865 2.56915
\(320\) 14.4123 0.805670
\(321\) 0 0
\(322\) 0 0
\(323\) − 35.2060i − 1.95891i
\(324\) 0 0
\(325\) 3.72027i 0.206363i
\(326\) − 66.0243i − 3.65675i
\(327\) 0 0
\(328\) 36.4223i 2.01108i
\(329\) 0 0
\(330\) 0 0
\(331\) 7.39789 0.406625 0.203312 0.979114i \(-0.434829\pi\)
0.203312 + 0.979114i \(0.434829\pi\)
\(332\) −44.9106 −2.46479
\(333\) 0 0
\(334\) − 24.0780i − 1.31749i
\(335\) −0.434026 −0.0237134
\(336\) 0 0
\(337\) −5.88030 −0.320320 −0.160160 0.987091i \(-0.551201\pi\)
−0.160160 + 0.987091i \(0.551201\pi\)
\(338\) − 2.23059i − 0.121328i
\(339\) 0 0
\(340\) −28.4541 −1.54314
\(341\) −26.6439 −1.44285
\(342\) 0 0
\(343\) 0 0
\(344\) − 39.5811i − 2.13407i
\(345\) 0 0
\(346\) 10.5060i 0.564805i
\(347\) − 6.26608i − 0.336381i −0.985755 0.168190i \(-0.946208\pi\)
0.985755 0.168190i \(-0.0537923\pi\)
\(348\) 0 0
\(349\) 5.67407i 0.303726i 0.988402 + 0.151863i \(0.0485273\pi\)
−0.988402 + 0.151863i \(0.951473\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −59.9788 −3.19688
\(353\) 18.4457 0.981768 0.490884 0.871225i \(-0.336674\pi\)
0.490884 + 0.871225i \(0.336674\pi\)
\(354\) 0 0
\(355\) − 6.48172i − 0.344014i
\(356\) 50.0751 2.65397
\(357\) 0 0
\(358\) −0.876769 −0.0463387
\(359\) 17.8403i 0.941574i 0.882247 + 0.470787i \(0.156030\pi\)
−0.882247 + 0.470787i \(0.843970\pi\)
\(360\) 0 0
\(361\) −19.9616 −1.05061
\(362\) 5.55124 0.291767
\(363\) 0 0
\(364\) 0 0
\(365\) 7.40739i 0.387721i
\(366\) 0 0
\(367\) − 23.3572i − 1.21923i −0.792696 0.609617i \(-0.791323\pi\)
0.792696 0.609617i \(-0.208677\pi\)
\(368\) 30.3312i 1.58112i
\(369\) 0 0
\(370\) − 4.46652i − 0.232203i
\(371\) 0 0
\(372\) 0 0
\(373\) −21.2967 −1.10270 −0.551350 0.834274i \(-0.685887\pi\)
−0.551350 + 0.834274i \(0.685887\pi\)
\(374\) 64.1798 3.31866
\(375\) 0 0
\(376\) 63.5057i 3.27506i
\(377\) 39.8194 2.05080
\(378\) 0 0
\(379\) 19.2933 0.991028 0.495514 0.868600i \(-0.334980\pi\)
0.495514 + 0.868600i \(0.334980\pi\)
\(380\) 31.4895i 1.61538i
\(381\) 0 0
\(382\) −20.5036 −1.04906
\(383\) 5.66172 0.289300 0.144650 0.989483i \(-0.453794\pi\)
0.144650 + 0.989483i \(0.453794\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 22.0382i 1.12171i
\(387\) 0 0
\(388\) − 15.3403i − 0.778786i
\(389\) 34.7086i 1.75980i 0.475162 + 0.879898i \(0.342389\pi\)
−0.475162 + 0.879898i \(0.657611\pi\)
\(390\) 0 0
\(391\) − 15.0585i − 0.761540i
\(392\) 0 0
\(393\) 0 0
\(394\) 67.6509 3.40820
\(395\) 10.6369 0.535200
\(396\) 0 0
\(397\) − 0.535451i − 0.0268735i −0.999910 0.0134367i \(-0.995723\pi\)
0.999910 0.0134367i \(-0.00427718\pi\)
\(398\) −5.47754 −0.274564
\(399\) 0 0
\(400\) 11.3607 0.568037
\(401\) 15.2904i 0.763568i 0.924252 + 0.381784i \(0.124690\pi\)
−0.924252 + 0.381784i \(0.875310\pi\)
\(402\) 0 0
\(403\) −23.1211 −1.15174
\(404\) 60.1136 2.99077
\(405\) 0 0
\(406\) 0 0
\(407\) 7.21438i 0.357603i
\(408\) 0 0
\(409\) − 28.5693i − 1.41266i −0.707881 0.706331i \(-0.750349\pi\)
0.707881 0.706331i \(-0.249651\pi\)
\(410\) 11.9620i 0.590759i
\(411\) 0 0
\(412\) 60.0241i 2.95717i
\(413\) 0 0
\(414\) 0 0
\(415\) −8.90228 −0.436996
\(416\) −52.0484 −2.55188
\(417\) 0 0
\(418\) − 71.0262i − 3.47401i
\(419\) 12.3199 0.601869 0.300934 0.953645i \(-0.402702\pi\)
0.300934 + 0.953645i \(0.402702\pi\)
\(420\) 0 0
\(421\) 13.5311 0.659466 0.329733 0.944074i \(-0.393041\pi\)
0.329733 + 0.944074i \(0.393041\pi\)
\(422\) − 16.4916i − 0.802801i
\(423\) 0 0
\(424\) −72.8761 −3.53918
\(425\) −5.64024 −0.273592
\(426\) 0 0
\(427\) 0 0
\(428\) 18.6412i 0.901055i
\(429\) 0 0
\(430\) − 12.9994i − 0.626887i
\(431\) 29.7477i 1.43289i 0.697641 + 0.716447i \(0.254233\pi\)
−0.697641 + 0.716447i \(0.745767\pi\)
\(432\) 0 0
\(433\) − 26.2953i − 1.26367i −0.775102 0.631836i \(-0.782301\pi\)
0.775102 0.631836i \(-0.217699\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −25.6626 −1.22901
\(437\) −16.6649 −0.797188
\(438\) 0 0
\(439\) 16.4055i 0.782993i 0.920180 + 0.391497i \(0.128043\pi\)
−0.920180 + 0.391497i \(0.871957\pi\)
\(440\) −34.6469 −1.65173
\(441\) 0 0
\(442\) 55.6939 2.64909
\(443\) − 19.8413i − 0.942689i −0.881949 0.471345i \(-0.843769\pi\)
0.881949 0.471345i \(-0.156231\pi\)
\(444\) 0 0
\(445\) 9.92599 0.470537
\(446\) 63.8574 3.02374
\(447\) 0 0
\(448\) 0 0
\(449\) 3.55114i 0.167589i 0.996483 + 0.0837944i \(0.0267039\pi\)
−0.996483 + 0.0837944i \(0.973296\pi\)
\(450\) 0 0
\(451\) − 19.3211i − 0.909795i
\(452\) 31.8028i 1.49588i
\(453\) 0 0
\(454\) 21.7565i 1.02108i
\(455\) 0 0
\(456\) 0 0
\(457\) −0.513005 −0.0239973 −0.0119987 0.999928i \(-0.503819\pi\)
−0.0119987 + 0.999928i \(0.503819\pi\)
\(458\) 8.13251 0.380007
\(459\) 0 0
\(460\) 13.4689i 0.627989i
\(461\) 4.51083 0.210091 0.105045 0.994467i \(-0.466501\pi\)
0.105045 + 0.994467i \(0.466501\pi\)
\(462\) 0 0
\(463\) 18.2002 0.845834 0.422917 0.906168i \(-0.361006\pi\)
0.422917 + 0.906168i \(0.361006\pi\)
\(464\) − 121.598i − 5.64504i
\(465\) 0 0
\(466\) 35.4604 1.64267
\(467\) 20.1747 0.933574 0.466787 0.884370i \(-0.345412\pi\)
0.466787 + 0.884370i \(0.345412\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 20.8568i 0.962053i
\(471\) 0 0
\(472\) − 63.0044i − 2.90001i
\(473\) 20.9968i 0.965432i
\(474\) 0 0
\(475\) 6.24192i 0.286399i
\(476\) 0 0
\(477\) 0 0
\(478\) −16.7559 −0.766399
\(479\) −29.5954 −1.35225 −0.676125 0.736787i \(-0.736342\pi\)
−0.676125 + 0.736787i \(0.736342\pi\)
\(480\) 0 0
\(481\) 6.26049i 0.285454i
\(482\) −52.8406 −2.40682
\(483\) 0 0
\(484\) 37.2275 1.69216
\(485\) − 3.04079i − 0.138075i
\(486\) 0 0
\(487\) 2.74195 0.124249 0.0621247 0.998068i \(-0.480212\pi\)
0.0621247 + 0.998068i \(0.480212\pi\)
\(488\) −111.140 −5.03107
\(489\) 0 0
\(490\) 0 0
\(491\) 5.66445i 0.255633i 0.991798 + 0.127816i \(0.0407968\pi\)
−0.991798 + 0.127816i \(0.959203\pi\)
\(492\) 0 0
\(493\) 60.3696i 2.71891i
\(494\) − 61.6351i − 2.77309i
\(495\) 0 0
\(496\) 70.6058i 3.17029i
\(497\) 0 0
\(498\) 0 0
\(499\) −32.9701 −1.47595 −0.737973 0.674830i \(-0.764217\pi\)
−0.737973 + 0.674830i \(0.764217\pi\)
\(500\) 5.04484 0.225612
\(501\) 0 0
\(502\) 2.99307i 0.133587i
\(503\) −20.1522 −0.898543 −0.449271 0.893395i \(-0.648316\pi\)
−0.449271 + 0.893395i \(0.648316\pi\)
\(504\) 0 0
\(505\) 11.9159 0.530249
\(506\) − 30.3797i − 1.35054i
\(507\) 0 0
\(508\) −13.8745 −0.615580
\(509\) −20.3914 −0.903834 −0.451917 0.892060i \(-0.649260\pi\)
−0.451917 + 0.892060i \(0.649260\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 24.6847i − 1.09092i
\(513\) 0 0
\(514\) − 17.4700i − 0.770569i
\(515\) 11.8981i 0.524293i
\(516\) 0 0
\(517\) − 33.6882i − 1.48160i
\(518\) 0 0
\(519\) 0 0
\(520\) −30.0659 −1.31848
\(521\) −15.1913 −0.665545 −0.332772 0.943007i \(-0.607984\pi\)
−0.332772 + 0.943007i \(0.607984\pi\)
\(522\) 0 0
\(523\) − 45.5824i − 1.99318i −0.0825054 0.996591i \(-0.526292\pi\)
0.0825054 0.996591i \(-0.473708\pi\)
\(524\) 62.7352 2.74060
\(525\) 0 0
\(526\) 54.4839 2.37561
\(527\) − 35.0535i − 1.52696i
\(528\) 0 0
\(529\) 15.8720 0.690088
\(530\) −23.9343 −1.03964
\(531\) 0 0
\(532\) 0 0
\(533\) − 16.7665i − 0.726236i
\(534\) 0 0
\(535\) 3.69509i 0.159753i
\(536\) − 3.50765i − 0.151507i
\(537\) 0 0
\(538\) − 29.7879i − 1.28425i
\(539\) 0 0
\(540\) 0 0
\(541\) −22.9445 −0.986460 −0.493230 0.869899i \(-0.664184\pi\)
−0.493230 + 0.869899i \(0.664184\pi\)
\(542\) 3.53354 0.151779
\(543\) 0 0
\(544\) − 78.9098i − 3.38323i
\(545\) −5.08689 −0.217899
\(546\) 0 0
\(547\) −42.2306 −1.80565 −0.902825 0.430008i \(-0.858511\pi\)
−0.902825 + 0.430008i \(0.858511\pi\)
\(548\) − 42.8966i − 1.83245i
\(549\) 0 0
\(550\) −11.3789 −0.485198
\(551\) 66.8095 2.84618
\(552\) 0 0
\(553\) 0 0
\(554\) 11.9269i 0.506724i
\(555\) 0 0
\(556\) − 52.9523i − 2.24568i
\(557\) − 39.9842i − 1.69419i −0.531444 0.847093i \(-0.678351\pi\)
0.531444 0.847093i \(-0.321649\pi\)
\(558\) 0 0
\(559\) 18.2206i 0.770648i
\(560\) 0 0
\(561\) 0 0
\(562\) 20.2819 0.855541
\(563\) −31.0191 −1.30730 −0.653649 0.756798i \(-0.726763\pi\)
−0.653649 + 0.756798i \(0.726763\pi\)
\(564\) 0 0
\(565\) 6.30402i 0.265212i
\(566\) −70.6828 −2.97102
\(567\) 0 0
\(568\) 52.3830 2.19794
\(569\) − 28.0105i − 1.17426i −0.809492 0.587131i \(-0.800257\pi\)
0.809492 0.587131i \(-0.199743\pi\)
\(570\) 0 0
\(571\) 27.3784 1.14575 0.572875 0.819642i \(-0.305828\pi\)
0.572875 + 0.819642i \(0.305828\pi\)
\(572\) 80.4612 3.36425
\(573\) 0 0
\(574\) 0 0
\(575\) 2.66983i 0.111340i
\(576\) 0 0
\(577\) 42.4728i 1.76817i 0.467329 + 0.884084i \(0.345217\pi\)
−0.467329 + 0.884084i \(0.654783\pi\)
\(578\) 39.3152i 1.63529i
\(579\) 0 0
\(580\) − 53.9967i − 2.24209i
\(581\) 0 0
\(582\) 0 0
\(583\) 38.6589 1.60109
\(584\) −59.8640 −2.47719
\(585\) 0 0
\(586\) − 22.6594i − 0.936052i
\(587\) −29.2099 −1.20562 −0.602811 0.797884i \(-0.705953\pi\)
−0.602811 + 0.797884i \(0.705953\pi\)
\(588\) 0 0
\(589\) −38.7929 −1.59843
\(590\) − 20.6922i − 0.851883i
\(591\) 0 0
\(592\) 19.1179 0.785741
\(593\) 18.3488 0.753496 0.376748 0.926316i \(-0.377042\pi\)
0.376748 + 0.926316i \(0.377042\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 53.0684i − 2.17377i
\(597\) 0 0
\(598\) − 26.3629i − 1.07806i
\(599\) 39.2269i 1.60277i 0.598149 + 0.801385i \(0.295903\pi\)
−0.598149 + 0.801385i \(0.704097\pi\)
\(600\) 0 0
\(601\) 20.7149i 0.844977i 0.906368 + 0.422488i \(0.138843\pi\)
−0.906368 + 0.422488i \(0.861157\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −46.8668 −1.90698
\(605\) 7.37933 0.300012
\(606\) 0 0
\(607\) 11.2157i 0.455229i 0.973751 + 0.227615i \(0.0730927\pi\)
−0.973751 + 0.227615i \(0.926907\pi\)
\(608\) −87.3275 −3.54160
\(609\) 0 0
\(610\) −36.5011 −1.47789
\(611\) − 29.2339i − 1.18268i
\(612\) 0 0
\(613\) −44.6233 −1.80232 −0.901158 0.433490i \(-0.857282\pi\)
−0.901158 + 0.433490i \(0.857282\pi\)
\(614\) −90.7445 −3.66215
\(615\) 0 0
\(616\) 0 0
\(617\) 9.26765i 0.373102i 0.982445 + 0.186551i \(0.0597309\pi\)
−0.982445 + 0.186551i \(0.940269\pi\)
\(618\) 0 0
\(619\) − 27.0338i − 1.08658i −0.839546 0.543289i \(-0.817179\pi\)
0.839546 0.543289i \(-0.182821\pi\)
\(620\) 31.3531i 1.25917i
\(621\) 0 0
\(622\) − 43.2571i − 1.73445i
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −72.0533 −2.87983
\(627\) 0 0
\(628\) − 44.7865i − 1.78717i
\(629\) −9.49144 −0.378448
\(630\) 0 0
\(631\) −10.6725 −0.424864 −0.212432 0.977176i \(-0.568138\pi\)
−0.212432 + 0.977176i \(0.568138\pi\)
\(632\) 85.9636i 3.41945i
\(633\) 0 0
\(634\) −42.6869 −1.69531
\(635\) −2.75023 −0.109140
\(636\) 0 0
\(637\) 0 0
\(638\) 121.792i 4.82181i
\(639\) 0 0
\(640\) 10.2722i 0.406045i
\(641\) − 36.2449i − 1.43159i −0.698311 0.715794i \(-0.746065\pi\)
0.698311 0.715794i \(-0.253935\pi\)
\(642\) 0 0
\(643\) 5.28720i 0.208507i 0.994551 + 0.104253i \(0.0332453\pi\)
−0.994551 + 0.104253i \(0.966755\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 93.4441 3.67651
\(647\) 6.28826 0.247217 0.123608 0.992331i \(-0.460553\pi\)
0.123608 + 0.992331i \(0.460553\pi\)
\(648\) 0 0
\(649\) 33.4222i 1.31194i
\(650\) −9.87438 −0.387305
\(651\) 0 0
\(652\) 125.492 4.91464
\(653\) 26.7840i 1.04814i 0.851675 + 0.524070i \(0.175587\pi\)
−0.851675 + 0.524070i \(0.824413\pi\)
\(654\) 0 0
\(655\) 12.4355 0.485896
\(656\) −51.2004 −1.99904
\(657\) 0 0
\(658\) 0 0
\(659\) 46.3143i 1.80415i 0.431579 + 0.902075i \(0.357957\pi\)
−0.431579 + 0.902075i \(0.642043\pi\)
\(660\) 0 0
\(661\) 14.5037i 0.564127i 0.959396 + 0.282063i \(0.0910189\pi\)
−0.959396 + 0.282063i \(0.908981\pi\)
\(662\) 19.6356i 0.763158i
\(663\) 0 0
\(664\) − 71.9451i − 2.79201i
\(665\) 0 0
\(666\) 0 0
\(667\) 28.5761 1.10647
\(668\) 45.7650 1.77070
\(669\) 0 0
\(670\) − 1.15200i − 0.0445055i
\(671\) 58.9570 2.27601
\(672\) 0 0
\(673\) −42.3105 −1.63095 −0.815475 0.578792i \(-0.803524\pi\)
−0.815475 + 0.578792i \(0.803524\pi\)
\(674\) − 15.6076i − 0.601181i
\(675\) 0 0
\(676\) 4.23966 0.163064
\(677\) −29.9586 −1.15140 −0.575702 0.817660i \(-0.695271\pi\)
−0.575702 + 0.817660i \(0.695271\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) − 45.5825i − 1.74801i
\(681\) 0 0
\(682\) − 70.7187i − 2.70796i
\(683\) 13.0827i 0.500597i 0.968169 + 0.250298i \(0.0805287\pi\)
−0.968169 + 0.250298i \(0.919471\pi\)
\(684\) 0 0
\(685\) − 8.50306i − 0.324885i
\(686\) 0 0
\(687\) 0 0
\(688\) 55.6409 2.12129
\(689\) 33.5474 1.27806
\(690\) 0 0
\(691\) − 22.9993i − 0.874934i −0.899234 0.437467i \(-0.855876\pi\)
0.899234 0.437467i \(-0.144124\pi\)
\(692\) −19.9686 −0.759093
\(693\) 0 0
\(694\) 16.6315 0.631323
\(695\) − 10.4963i − 0.398148i
\(696\) 0 0
\(697\) 25.4194 0.962827
\(698\) −15.0602 −0.570037
\(699\) 0 0
\(700\) 0 0
\(701\) − 4.26800i − 0.161200i −0.996747 0.0806000i \(-0.974316\pi\)
0.996747 0.0806000i \(-0.0256836\pi\)
\(702\) 0 0
\(703\) 10.5039i 0.396164i
\(704\) − 61.7870i − 2.32868i
\(705\) 0 0
\(706\) 48.9589i 1.84259i
\(707\) 0 0
\(708\) 0 0
\(709\) −9.39557 −0.352858 −0.176429 0.984313i \(-0.556455\pi\)
−0.176429 + 0.984313i \(0.556455\pi\)
\(710\) 17.2039 0.645650
\(711\) 0 0
\(712\) 80.2184i 3.00631i
\(713\) −16.5927 −0.621402
\(714\) 0 0
\(715\) 15.9492 0.596466
\(716\) − 1.66647i − 0.0622788i
\(717\) 0 0
\(718\) −47.3519 −1.76716
\(719\) 5.99462 0.223561 0.111781 0.993733i \(-0.464345\pi\)
0.111781 + 0.993733i \(0.464345\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 52.9823i − 1.97180i
\(723\) 0 0
\(724\) 10.5512i 0.392132i
\(725\) − 10.7034i − 0.397513i
\(726\) 0 0
\(727\) − 5.62979i − 0.208797i −0.994536 0.104399i \(-0.966708\pi\)
0.994536 0.104399i \(-0.0332918\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −19.6608 −0.727678
\(731\) −27.6239 −1.02171
\(732\) 0 0
\(733\) − 18.5974i − 0.686911i −0.939169 0.343455i \(-0.888403\pi\)
0.939169 0.343455i \(-0.111597\pi\)
\(734\) 61.9948 2.28827
\(735\) 0 0
\(736\) −37.3522 −1.37682
\(737\) 1.86072i 0.0685404i
\(738\) 0 0
\(739\) 2.50186 0.0920326 0.0460163 0.998941i \(-0.485347\pi\)
0.0460163 + 0.998941i \(0.485347\pi\)
\(740\) 8.48949 0.312080
\(741\) 0 0
\(742\) 0 0
\(743\) − 12.2890i − 0.450840i −0.974262 0.225420i \(-0.927624\pi\)
0.974262 0.225420i \(-0.0723755\pi\)
\(744\) 0 0
\(745\) − 10.5193i − 0.385399i
\(746\) − 56.5259i − 2.06956i
\(747\) 0 0
\(748\) 121.986i 4.46025i
\(749\) 0 0
\(750\) 0 0
\(751\) −3.91861 −0.142992 −0.0714960 0.997441i \(-0.522777\pi\)
−0.0714960 + 0.997441i \(0.522777\pi\)
\(752\) −89.2727 −3.25544
\(753\) 0 0
\(754\) 105.689i 3.84897i
\(755\) −9.29005 −0.338100
\(756\) 0 0
\(757\) 2.47039 0.0897878 0.0448939 0.998992i \(-0.485705\pi\)
0.0448939 + 0.998992i \(0.485705\pi\)
\(758\) 51.2084i 1.85997i
\(759\) 0 0
\(760\) −50.4450 −1.82983
\(761\) 13.1684 0.477356 0.238678 0.971099i \(-0.423286\pi\)
0.238678 + 0.971099i \(0.423286\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) − 38.9711i − 1.40993i
\(765\) 0 0
\(766\) 15.0274i 0.542962i
\(767\) 29.0031i 1.04724i
\(768\) 0 0
\(769\) 28.6058i 1.03155i 0.856723 + 0.515776i \(0.172496\pi\)
−0.856723 + 0.515776i \(0.827504\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −41.8878 −1.50757
\(773\) 27.3916 0.985207 0.492604 0.870254i \(-0.336045\pi\)
0.492604 + 0.870254i \(0.336045\pi\)
\(774\) 0 0
\(775\) 6.21489i 0.223246i
\(776\) 24.5746 0.882177
\(777\) 0 0
\(778\) −92.1240 −3.30281
\(779\) − 28.1310i − 1.00790i
\(780\) 0 0
\(781\) −27.7879 −0.994328
\(782\) 39.9684 1.42927
\(783\) 0 0
\(784\) 0 0
\(785\) − 8.87768i − 0.316858i
\(786\) 0 0
\(787\) 37.7772i 1.34661i 0.739363 + 0.673307i \(0.235127\pi\)
−0.739363 + 0.673307i \(0.764873\pi\)
\(788\) 128.584i 4.58060i
\(789\) 0 0
\(790\) 28.2325i 1.00447i
\(791\) 0 0
\(792\) 0 0
\(793\) 51.1617 1.81680
\(794\) 1.42120 0.0504365
\(795\) 0 0
\(796\) − 10.4111i − 0.369013i
\(797\) −7.98820 −0.282956 −0.141478 0.989941i \(-0.545186\pi\)
−0.141478 + 0.989941i \(0.545186\pi\)
\(798\) 0 0
\(799\) 44.3211 1.56797
\(800\) 13.9905i 0.494639i
\(801\) 0 0
\(802\) −40.5840 −1.43307
\(803\) 31.7563 1.12066
\(804\) 0 0
\(805\) 0 0
\(806\) − 61.3682i − 2.16160i
\(807\) 0 0
\(808\) 96.2999i 3.38782i
\(809\) 23.0803i 0.811460i 0.913993 + 0.405730i \(0.132983\pi\)
−0.913993 + 0.405730i \(0.867017\pi\)
\(810\) 0 0
\(811\) 6.69330i 0.235033i 0.993071 + 0.117517i \(0.0374934\pi\)
−0.993071 + 0.117517i \(0.962507\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −19.1485 −0.671154
\(815\) 24.8753 0.871343
\(816\) 0 0
\(817\) 30.5707i 1.06953i
\(818\) 75.8291 2.65130
\(819\) 0 0
\(820\) −22.7360 −0.793976
\(821\) − 17.1276i − 0.597759i −0.954291 0.298880i \(-0.903387\pi\)
0.954291 0.298880i \(-0.0966129\pi\)
\(822\) 0 0
\(823\) −9.93194 −0.346206 −0.173103 0.984904i \(-0.555379\pi\)
−0.173103 + 0.984904i \(0.555379\pi\)
\(824\) −96.1564 −3.34977
\(825\) 0 0
\(826\) 0 0
\(827\) 35.1507i 1.22231i 0.791511 + 0.611155i \(0.209295\pi\)
−0.791511 + 0.611155i \(0.790705\pi\)
\(828\) 0 0
\(829\) − 47.9501i − 1.66537i −0.553743 0.832687i \(-0.686801\pi\)
0.553743 0.832687i \(-0.313199\pi\)
\(830\) − 23.6285i − 0.820158i
\(831\) 0 0
\(832\) − 53.6175i − 1.85885i
\(833\) 0 0
\(834\) 0 0
\(835\) 9.07164 0.313937
\(836\) 134.999 4.66904
\(837\) 0 0
\(838\) 32.6997i 1.12959i
\(839\) −10.2976 −0.355512 −0.177756 0.984075i \(-0.556884\pi\)
−0.177756 + 0.984075i \(0.556884\pi\)
\(840\) 0 0
\(841\) −85.5619 −2.95041
\(842\) 35.9144i 1.23769i
\(843\) 0 0
\(844\) 31.3456 1.07896
\(845\) 0.840395 0.0289105
\(846\) 0 0
\(847\) 0 0
\(848\) − 102.445i − 3.51798i
\(849\) 0 0
\(850\) − 14.9704i − 0.513481i
\(851\) 4.49280i 0.154011i
\(852\) 0 0
\(853\) − 2.97705i − 0.101932i −0.998700 0.0509662i \(-0.983770\pi\)
0.998700 0.0509662i \(-0.0162301\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −29.8625 −1.02068
\(857\) −20.3724 −0.695907 −0.347954 0.937512i \(-0.613123\pi\)
−0.347954 + 0.937512i \(0.613123\pi\)
\(858\) 0 0
\(859\) 46.0709i 1.57192i 0.618279 + 0.785959i \(0.287830\pi\)
−0.618279 + 0.785959i \(0.712170\pi\)
\(860\) 24.7079 0.842531
\(861\) 0 0
\(862\) −78.9566 −2.68927
\(863\) 6.24165i 0.212468i 0.994341 + 0.106234i \(0.0338793\pi\)
−0.994341 + 0.106234i \(0.966121\pi\)
\(864\) 0 0
\(865\) −3.95823 −0.134584
\(866\) 69.7934 2.37167
\(867\) 0 0
\(868\) 0 0
\(869\) − 45.6015i − 1.54693i
\(870\) 0 0
\(871\) 1.61469i 0.0547118i
\(872\) − 41.1105i − 1.39218i
\(873\) 0 0
\(874\) − 44.2321i − 1.49617i
\(875\) 0 0
\(876\) 0 0
\(877\) 24.1876 0.816756 0.408378 0.912813i \(-0.366094\pi\)
0.408378 + 0.912813i \(0.366094\pi\)
\(878\) −43.5438 −1.46953
\(879\) 0 0
\(880\) − 48.7047i − 1.64184i
\(881\) 22.4548 0.756522 0.378261 0.925699i \(-0.376522\pi\)
0.378261 + 0.925699i \(0.376522\pi\)
\(882\) 0 0
\(883\) 32.8640 1.10596 0.552981 0.833194i \(-0.313490\pi\)
0.552981 + 0.833194i \(0.313490\pi\)
\(884\) 105.857i 3.56036i
\(885\) 0 0
\(886\) 52.6631 1.76925
\(887\) −2.51188 −0.0843407 −0.0421703 0.999110i \(-0.513427\pi\)
−0.0421703 + 0.999110i \(0.513427\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 26.3457i 0.883110i
\(891\) 0 0
\(892\) 121.373i 4.06388i
\(893\) − 49.0491i − 1.64136i
\(894\) 0 0
\(895\) − 0.330331i − 0.0110418i
\(896\) 0 0
\(897\) 0 0
\(898\) −9.42549 −0.314533
\(899\) 66.5202 2.21857
\(900\) 0 0
\(901\) 50.8608i 1.69442i
\(902\) 51.2823 1.70751
\(903\) 0 0
\(904\) −50.9469 −1.69447
\(905\) 2.09148i 0.0695233i
\(906\) 0 0
\(907\) −34.9873 −1.16174 −0.580868 0.813998i \(-0.697287\pi\)
−0.580868 + 0.813998i \(0.697287\pi\)
\(908\) −41.3525 −1.37233
\(909\) 0 0
\(910\) 0 0
\(911\) 19.0468i 0.631048i 0.948918 + 0.315524i \(0.102180\pi\)
−0.948918 + 0.315524i \(0.897820\pi\)
\(912\) 0 0
\(913\) 38.1651i 1.26308i
\(914\) − 1.36162i − 0.0450385i
\(915\) 0 0
\(916\) 15.4574i 0.510727i
\(917\) 0 0
\(918\) 0 0
\(919\) 32.3628 1.06755 0.533775 0.845626i \(-0.320773\pi\)
0.533775 + 0.845626i \(0.320773\pi\)
\(920\) −21.5766 −0.711360
\(921\) 0 0
\(922\) 11.9727i 0.394300i
\(923\) −24.1138 −0.793714
\(924\) 0 0
\(925\) 1.68281 0.0553303
\(926\) 48.3071i 1.58747i
\(927\) 0 0
\(928\) 149.745 4.91563
\(929\) 11.5607 0.379295 0.189647 0.981852i \(-0.439265\pi\)
0.189647 + 0.981852i \(0.439265\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 67.3993i 2.20774i
\(933\) 0 0
\(934\) 53.5479i 1.75214i
\(935\) 24.1804i 0.790782i
\(936\) 0 0
\(937\) 11.5562i 0.377524i 0.982023 + 0.188762i \(0.0604475\pi\)
−0.982023 + 0.188762i \(0.939553\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −39.6424 −1.29299
\(941\) −7.69522 −0.250857 −0.125428 0.992103i \(-0.540031\pi\)
−0.125428 + 0.992103i \(0.540031\pi\)
\(942\) 0 0
\(943\) − 12.0323i − 0.391827i
\(944\) 88.5680 2.88264
\(945\) 0 0
\(946\) −55.7299 −1.81193
\(947\) − 29.6330i − 0.962944i −0.876462 0.481472i \(-0.840102\pi\)
0.876462 0.481472i \(-0.159898\pi\)
\(948\) 0 0
\(949\) 27.5575 0.894554
\(950\) −16.5674 −0.537517
\(951\) 0 0
\(952\) 0 0
\(953\) 3.73027i 0.120835i 0.998173 + 0.0604177i \(0.0192433\pi\)
−0.998173 + 0.0604177i \(0.980757\pi\)
\(954\) 0 0
\(955\) − 7.72494i − 0.249973i
\(956\) − 31.8479i − 1.03003i
\(957\) 0 0
\(958\) − 78.5525i − 2.53792i
\(959\) 0 0
\(960\) 0 0
\(961\) −7.62491 −0.245965
\(962\) −16.6167 −0.535743
\(963\) 0 0
\(964\) − 100.434i − 3.23475i
\(965\) −8.30309 −0.267286
\(966\) 0 0
\(967\) 7.55618 0.242990 0.121495 0.992592i \(-0.461231\pi\)
0.121495 + 0.992592i \(0.461231\pi\)
\(968\) 59.6371i 1.91681i
\(969\) 0 0
\(970\) 8.07090 0.259141
\(971\) −23.8452 −0.765229 −0.382614 0.923908i \(-0.624976\pi\)
−0.382614 + 0.923908i \(0.624976\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 7.27771i 0.233193i
\(975\) 0 0
\(976\) − 156.235i − 5.00094i
\(977\) − 6.93993i − 0.222028i −0.993819 0.111014i \(-0.964590\pi\)
0.993819 0.111014i \(-0.0354099\pi\)
\(978\) 0 0
\(979\) − 42.5538i − 1.36003i
\(980\) 0 0
\(981\) 0 0
\(982\) −15.0346 −0.479775
\(983\) 9.73963 0.310646 0.155323 0.987864i \(-0.450358\pi\)
0.155323 + 0.987864i \(0.450358\pi\)
\(984\) 0 0
\(985\) 25.4881i 0.812120i
\(986\) −160.234 −5.10288
\(987\) 0 0
\(988\) 117.149 3.72702
\(989\) 13.0759i 0.415789i
\(990\) 0 0
\(991\) −56.3031 −1.78853 −0.894263 0.447541i \(-0.852300\pi\)
−0.894263 + 0.447541i \(0.852300\pi\)
\(992\) −86.9494 −2.76065
\(993\) 0 0
\(994\) 0 0
\(995\) − 2.06372i − 0.0654242i
\(996\) 0 0
\(997\) − 52.5782i − 1.66517i −0.553899 0.832584i \(-0.686861\pi\)
0.553899 0.832584i \(-0.313139\pi\)
\(998\) − 87.5097i − 2.77007i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.2.b.c.881.16 yes 16
3.2 odd 2 2205.2.b.d.881.1 yes 16
7.6 odd 2 2205.2.b.d.881.16 yes 16
21.20 even 2 inner 2205.2.b.c.881.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2205.2.b.c.881.1 16 21.20 even 2 inner
2205.2.b.c.881.16 yes 16 1.1 even 1 trivial
2205.2.b.d.881.1 yes 16 3.2 odd 2
2205.2.b.d.881.16 yes 16 7.6 odd 2