L(s) = 1 | + 2.65i·2-s − 5.04·4-s − 5-s − 8.08i·8-s − 2.65i·10-s + 4.28i·11-s + 3.72i·13-s + 11.3·16-s − 5.64·17-s + 6.24i·19-s + 5.04·20-s − 11.3·22-s + 2.66i·23-s + 25-s − 9.87·26-s + ⋯ |
L(s) = 1 | + 1.87i·2-s − 2.52·4-s − 0.447·5-s − 2.85i·8-s − 0.839i·10-s + 1.29i·11-s + 1.03i·13-s + 2.84·16-s − 1.36·17-s + 1.43i·19-s + 1.12·20-s − 2.42·22-s + 0.556i·23-s + 0.200·25-s − 1.93·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.860 + 0.508i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.860 + 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2883742766\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2883742766\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 2.65iT - 2T^{2} \) |
| 11 | \( 1 - 4.28iT - 11T^{2} \) |
| 13 | \( 1 - 3.72iT - 13T^{2} \) |
| 17 | \( 1 + 5.64T + 17T^{2} \) |
| 19 | \( 1 - 6.24iT - 19T^{2} \) |
| 23 | \( 1 - 2.66iT - 23T^{2} \) |
| 29 | \( 1 + 10.7iT - 29T^{2} \) |
| 31 | \( 1 - 6.21iT - 31T^{2} \) |
| 37 | \( 1 - 1.68T + 37T^{2} \) |
| 41 | \( 1 + 4.50T + 41T^{2} \) |
| 43 | \( 1 - 4.89T + 43T^{2} \) |
| 47 | \( 1 + 7.85T + 47T^{2} \) |
| 53 | \( 1 + 9.01iT - 53T^{2} \) |
| 59 | \( 1 - 7.79T + 59T^{2} \) |
| 61 | \( 1 + 13.7iT - 61T^{2} \) |
| 67 | \( 1 - 0.434T + 67T^{2} \) |
| 71 | \( 1 - 6.48iT - 71T^{2} \) |
| 73 | \( 1 + 7.40iT - 73T^{2} \) |
| 79 | \( 1 + 10.6T + 79T^{2} \) |
| 83 | \( 1 - 8.90T + 83T^{2} \) |
| 89 | \( 1 + 9.92T + 89T^{2} \) |
| 97 | \( 1 - 3.04iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.635797481456148999530265795171, −8.615103080254473986376588777430, −8.101192087742069108748238445714, −7.29308069523883858732853241556, −6.74320861796971671267658466551, −6.11504420685060871080440163965, −5.05256966309982419387915971071, −4.39649918983589734367711678525, −3.79645809496703238071631302505, −1.90256940300889754161669107360,
0.11928028119005752631140259181, 1.05944792100274133867830212578, 2.54119918596584863427191181780, 3.05256325046368886346413173381, 3.98425264157909187209226178309, 4.77455452110702973438923739904, 5.59505290395816920677964114803, 6.80722353860485567517777446973, 7.992337924528828063234354327624, 8.848128943512438157246376985372