Properties

Label 2178.4.a.ca
Level $2178$
Weight $4$
Character orbit 2178.a
Self dual yes
Analytic conductor $128.506$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2178,4,Mod(1,2178)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2178, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2178.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2178.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,8,0,16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.506159993\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{67})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 35x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + ( - \beta_{2} - 2 \beta_1) q^{5} + (\beta_{2} - 3 \beta_1) q^{7} + 8 q^{8} + ( - 2 \beta_{2} - 4 \beta_1) q^{10} + (\beta_{2} + 10 \beta_1) q^{13} + (2 \beta_{2} - 6 \beta_1) q^{14}+ \cdots + ( - 10 \beta_{3} - 352) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} + 16 q^{4} + 32 q^{8} + 64 q^{16} - 234 q^{17} + 178 q^{25} - 222 q^{29} - 242 q^{31} + 128 q^{32} - 468 q^{34} - 528 q^{35} - 368 q^{37} + 42 q^{41} - 694 q^{49} + 356 q^{50} - 444 q^{58}+ \cdots - 1388 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 35x^{2} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 19\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 67\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 3\nu^{2} - 53 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 53 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 19\beta_{2} + 67\beta_1 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.95870
3.22665
−3.22665
−4.95870
2.00000 0 4.00000 −16.6082 0 7.94790 8.00000 0 −33.2163
1.2 2.00000 0 4.00000 −7.94790 0 16.6082 8.00000 0 −15.8958
1.3 2.00000 0 4.00000 7.94790 0 −16.6082 8.00000 0 15.8958
1.4 2.00000 0 4.00000 16.6082 0 −7.94790 8.00000 0 33.2163
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(11\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2178.4.a.ca yes 4
3.b odd 2 1 2178.4.a.bv 4
11.b odd 2 1 2178.4.a.bv 4
33.d even 2 1 inner 2178.4.a.ca yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2178.4.a.bv 4 3.b odd 2 1
2178.4.a.bv 4 11.b odd 2 1
2178.4.a.ca yes 4 1.a even 1 1 trivial
2178.4.a.ca yes 4 33.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2178))\):

\( T_{5}^{4} - 339T_{5}^{2} + 17424 \) Copy content Toggle raw display
\( T_{7}^{4} - 339T_{7}^{2} + 17424 \) Copy content Toggle raw display
\( T_{17}^{2} + 117T_{17} - 648 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 339 T^{2} + 17424 \) Copy content Toggle raw display
$7$ \( T^{4} - 339 T^{2} + 17424 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 963 T^{2} + 32400 \) Copy content Toggle raw display
$17$ \( (T^{2} + 117 T - 648)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 23667 T^{2} + 8643600 \) Copy content Toggle raw display
$23$ \( T^{4} - 21696 T^{2} + 71368704 \) Copy content Toggle raw display
$29$ \( (T^{2} + 111 T - 19080)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 121 T - 18500)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 184 T - 7817)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 21 T - 11196)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 143100 T^{2} + 683090496 \) Copy content Toggle raw display
$47$ \( T^{4} - 48816 T^{2} + 361304064 \) Copy content Toggle raw display
$53$ \( T^{4} - 189675 T^{2} + 729000000 \) Copy content Toggle raw display
$59$ \( T^{4} - 49200 T^{2} + 391090176 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 178249462416 \) Copy content Toggle raw display
$67$ \( (T^{2} + 517 T - 552308)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 4305459456 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 13493145600 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 246857935104 \) Copy content Toggle raw display
$83$ \( (T^{2} + 528 T + 40752)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 870197928336 \) Copy content Toggle raw display
$97$ \( (T^{2} + 1544 T + 73183)^{2} \) Copy content Toggle raw display
show more
show less