Properties

Label 2-2178-1.1-c3-0-123
Degree $2$
Conductor $2178$
Sign $-1$
Analytic cond. $128.506$
Root an. cond. $11.3360$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s + 7.94·5-s − 16.6·7-s + 8·8-s + 15.8·10-s + 5.90·13-s − 33.2·14-s + 16·16-s + 5.29·17-s − 19.2·19-s + 31.7·20-s + 63.5·23-s − 61.8·25-s + 11.8·26-s − 66.4·28-s − 204.·29-s − 209.·31-s + 32·32-s + 10.5·34-s − 132·35-s + 35.5·37-s − 38.5·38-s + 63.5·40-s + 116.·41-s − 70.3·43-s + 127.·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.710·5-s − 0.896·7-s + 0.353·8-s + 0.502·10-s + 0.126·13-s − 0.634·14-s + 0.250·16-s + 0.0755·17-s − 0.232·19-s + 0.355·20-s + 0.576·23-s − 0.494·25-s + 0.0891·26-s − 0.448·28-s − 1.30·29-s − 1.21·31-s + 0.176·32-s + 0.0534·34-s − 0.637·35-s + 0.158·37-s − 0.164·38-s + 0.251·40-s + 0.445·41-s − 0.249·43-s + 0.407·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2178 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2178 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2178\)    =    \(2 \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(128.506\)
Root analytic conductor: \(11.3360\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2178,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 - 7.94T + 125T^{2} \)
7 \( 1 + 16.6T + 343T^{2} \)
13 \( 1 - 5.90T + 2.19e3T^{2} \)
17 \( 1 - 5.29T + 4.91e3T^{2} \)
19 \( 1 + 19.2T + 6.85e3T^{2} \)
23 \( 1 - 63.5T + 1.21e4T^{2} \)
29 \( 1 + 204.T + 2.43e4T^{2} \)
31 \( 1 + 209.T + 2.97e4T^{2} \)
37 \( 1 - 35.5T + 5.06e4T^{2} \)
41 \( 1 - 116.T + 6.89e4T^{2} \)
43 \( 1 + 70.3T + 7.95e4T^{2} \)
47 \( 1 + 199.T + 1.03e5T^{2} \)
53 \( 1 - 430.T + 1.48e5T^{2} \)
59 \( 1 - 198.T + 2.05e5T^{2} \)
61 \( 1 + 686.T + 2.26e5T^{2} \)
67 \( 1 - 528.T + 3.00e5T^{2} \)
71 \( 1 - 690.T + 3.57e5T^{2} \)
73 \( 1 + 253.T + 3.89e5T^{2} \)
79 \( 1 + 768.T + 4.93e5T^{2} \)
83 \( 1 + 93.8T + 5.71e5T^{2} \)
89 \( 1 + 572.T + 7.04e5T^{2} \)
97 \( 1 + 1.49e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.295042635959984203279946864459, −7.28048711081393046551614452864, −6.65314390516332054102920331803, −5.81248967696074726590883748644, −5.35069881628645334102214643411, −4.15537075763804919839569757481, −3.40212912185427238408115820122, −2.46650637606046359725522856325, −1.50937131056665588793146679394, 0, 1.50937131056665588793146679394, 2.46650637606046359725522856325, 3.40212912185427238408115820122, 4.15537075763804919839569757481, 5.35069881628645334102214643411, 5.81248967696074726590883748644, 6.65314390516332054102920331803, 7.28048711081393046551614452864, 8.295042635959984203279946864459

Graph of the $Z$-function along the critical line