Properties

Label 2178.4.a.bx.1.3
Level $2178$
Weight $4$
Character 2178.1
Self dual yes
Analytic conductor $128.506$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2178,4,Mod(1,2178)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2178.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2178, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2178.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,16,6,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.506159993\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.5157648.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 123x^{2} - 132x + 2148 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 726)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-5.62469\) of defining polynomial
Character \(\chi\) \(=\) 2178.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +6.27815 q^{5} -32.0906 q^{7} -8.00000 q^{8} -12.5563 q^{10} +24.1742 q^{13} +64.1812 q^{14} +16.0000 q^{16} -106.291 q^{17} +120.360 q^{19} +25.1126 q^{20} +71.8007 q^{23} -85.5849 q^{25} -48.3484 q^{26} -128.362 q^{28} -66.9125 q^{29} +132.668 q^{31} -32.0000 q^{32} +212.582 q^{34} -201.470 q^{35} +297.528 q^{37} -240.719 q^{38} -50.2252 q^{40} -249.537 q^{41} +218.221 q^{43} -143.601 q^{46} -420.061 q^{47} +686.808 q^{49} +171.170 q^{50} +96.6967 q^{52} +722.272 q^{53} +256.725 q^{56} +133.825 q^{58} +298.900 q^{59} +335.510 q^{61} -265.337 q^{62} +64.0000 q^{64} +151.769 q^{65} -95.1320 q^{67} -425.164 q^{68} +402.939 q^{70} -271.181 q^{71} -983.985 q^{73} -595.056 q^{74} +481.439 q^{76} +1130.58 q^{79} +100.450 q^{80} +499.074 q^{82} -1045.22 q^{83} -667.311 q^{85} -436.441 q^{86} -359.298 q^{89} -775.764 q^{91} +287.203 q^{92} +840.122 q^{94} +755.636 q^{95} -1329.67 q^{97} -1373.62 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 16 q^{4} + 6 q^{5} + 12 q^{7} - 32 q^{8} - 12 q^{10} + 12 q^{13} - 24 q^{14} + 64 q^{16} - 108 q^{17} + 192 q^{19} + 24 q^{20} - 156 q^{23} + 286 q^{25} - 24 q^{26} + 48 q^{28} - 408 q^{29}+ \cdots - 1348 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 6.27815 0.561534 0.280767 0.959776i \(-0.409411\pi\)
0.280767 + 0.959776i \(0.409411\pi\)
\(6\) 0 0
\(7\) −32.0906 −1.73273 −0.866365 0.499411i \(-0.833550\pi\)
−0.866365 + 0.499411i \(0.833550\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −12.5563 −0.397065
\(11\) 0 0
\(12\) 0 0
\(13\) 24.1742 0.515747 0.257874 0.966179i \(-0.416978\pi\)
0.257874 + 0.966179i \(0.416978\pi\)
\(14\) 64.1812 1.22523
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −106.291 −1.51643 −0.758217 0.652002i \(-0.773929\pi\)
−0.758217 + 0.652002i \(0.773929\pi\)
\(18\) 0 0
\(19\) 120.360 1.45328 0.726642 0.687016i \(-0.241080\pi\)
0.726642 + 0.687016i \(0.241080\pi\)
\(20\) 25.1126 0.280767
\(21\) 0 0
\(22\) 0 0
\(23\) 71.8007 0.650934 0.325467 0.945553i \(-0.394479\pi\)
0.325467 + 0.945553i \(0.394479\pi\)
\(24\) 0 0
\(25\) −85.5849 −0.684679
\(26\) −48.3484 −0.364688
\(27\) 0 0
\(28\) −128.362 −0.866365
\(29\) −66.9125 −0.428460 −0.214230 0.976783i \(-0.568724\pi\)
−0.214230 + 0.976783i \(0.568724\pi\)
\(30\) 0 0
\(31\) 132.668 0.768644 0.384322 0.923199i \(-0.374435\pi\)
0.384322 + 0.923199i \(0.374435\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 212.582 1.07228
\(35\) −201.470 −0.972988
\(36\) 0 0
\(37\) 297.528 1.32198 0.660990 0.750394i \(-0.270136\pi\)
0.660990 + 0.750394i \(0.270136\pi\)
\(38\) −240.719 −1.02763
\(39\) 0 0
\(40\) −50.2252 −0.198532
\(41\) −249.537 −0.950515 −0.475258 0.879847i \(-0.657645\pi\)
−0.475258 + 0.879847i \(0.657645\pi\)
\(42\) 0 0
\(43\) 218.221 0.773915 0.386957 0.922098i \(-0.373526\pi\)
0.386957 + 0.922098i \(0.373526\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −143.601 −0.460280
\(47\) −420.061 −1.30366 −0.651832 0.758363i \(-0.725999\pi\)
−0.651832 + 0.758363i \(0.725999\pi\)
\(48\) 0 0
\(49\) 686.808 2.00235
\(50\) 171.170 0.484141
\(51\) 0 0
\(52\) 96.6967 0.257874
\(53\) 722.272 1.87192 0.935960 0.352107i \(-0.114535\pi\)
0.935960 + 0.352107i \(0.114535\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 256.725 0.612613
\(57\) 0 0
\(58\) 133.825 0.302967
\(59\) 298.900 0.659550 0.329775 0.944059i \(-0.393027\pi\)
0.329775 + 0.944059i \(0.393027\pi\)
\(60\) 0 0
\(61\) 335.510 0.704224 0.352112 0.935958i \(-0.385464\pi\)
0.352112 + 0.935958i \(0.385464\pi\)
\(62\) −265.337 −0.543513
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 151.769 0.289610
\(66\) 0 0
\(67\) −95.1320 −0.173466 −0.0867330 0.996232i \(-0.527643\pi\)
−0.0867330 + 0.996232i \(0.527643\pi\)
\(68\) −425.164 −0.758217
\(69\) 0 0
\(70\) 402.939 0.688006
\(71\) −271.181 −0.453285 −0.226642 0.973978i \(-0.572775\pi\)
−0.226642 + 0.973978i \(0.572775\pi\)
\(72\) 0 0
\(73\) −983.985 −1.57763 −0.788813 0.614633i \(-0.789304\pi\)
−0.788813 + 0.614633i \(0.789304\pi\)
\(74\) −595.056 −0.934782
\(75\) 0 0
\(76\) 481.439 0.726642
\(77\) 0 0
\(78\) 0 0
\(79\) 1130.58 1.61013 0.805064 0.593188i \(-0.202131\pi\)
0.805064 + 0.593188i \(0.202131\pi\)
\(80\) 100.450 0.140384
\(81\) 0 0
\(82\) 499.074 0.672116
\(83\) −1045.22 −1.38227 −0.691133 0.722727i \(-0.742888\pi\)
−0.691133 + 0.722727i \(0.742888\pi\)
\(84\) 0 0
\(85\) −667.311 −0.851530
\(86\) −436.441 −0.547240
\(87\) 0 0
\(88\) 0 0
\(89\) −359.298 −0.427927 −0.213964 0.976842i \(-0.568637\pi\)
−0.213964 + 0.976842i \(0.568637\pi\)
\(90\) 0 0
\(91\) −775.764 −0.893651
\(92\) 287.203 0.325467
\(93\) 0 0
\(94\) 840.122 0.921830
\(95\) 755.636 0.816070
\(96\) 0 0
\(97\) −1329.67 −1.39183 −0.695914 0.718126i \(-0.745000\pi\)
−0.695914 + 0.718126i \(0.745000\pi\)
\(98\) −1373.62 −1.41588
\(99\) 0 0
\(100\) −342.340 −0.342340
\(101\) 1395.96 1.37528 0.687640 0.726052i \(-0.258647\pi\)
0.687640 + 0.726052i \(0.258647\pi\)
\(102\) 0 0
\(103\) −162.379 −0.155337 −0.0776683 0.996979i \(-0.524748\pi\)
−0.0776683 + 0.996979i \(0.524748\pi\)
\(104\) −193.393 −0.182344
\(105\) 0 0
\(106\) −1444.54 −1.32365
\(107\) −1.34003 −0.00121071 −0.000605353 1.00000i \(-0.500193\pi\)
−0.000605353 1.00000i \(0.500193\pi\)
\(108\) 0 0
\(109\) −999.993 −0.878733 −0.439367 0.898308i \(-0.644797\pi\)
−0.439367 + 0.898308i \(0.644797\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −513.450 −0.433183
\(113\) 913.603 0.760571 0.380286 0.924869i \(-0.375826\pi\)
0.380286 + 0.924869i \(0.375826\pi\)
\(114\) 0 0
\(115\) 450.775 0.365522
\(116\) −267.650 −0.214230
\(117\) 0 0
\(118\) −597.800 −0.466373
\(119\) 3410.95 2.62757
\(120\) 0 0
\(121\) 0 0
\(122\) −671.020 −0.497961
\(123\) 0 0
\(124\) 530.674 0.384322
\(125\) −1322.08 −0.946005
\(126\) 0 0
\(127\) 106.551 0.0744479 0.0372240 0.999307i \(-0.488149\pi\)
0.0372240 + 0.999307i \(0.488149\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −303.538 −0.204785
\(131\) −2807.45 −1.87243 −0.936214 0.351432i \(-0.885695\pi\)
−0.936214 + 0.351432i \(0.885695\pi\)
\(132\) 0 0
\(133\) −3862.42 −2.51815
\(134\) 190.264 0.122659
\(135\) 0 0
\(136\) 850.329 0.536140
\(137\) −1248.74 −0.778736 −0.389368 0.921082i \(-0.627307\pi\)
−0.389368 + 0.921082i \(0.627307\pi\)
\(138\) 0 0
\(139\) 2211.65 1.34957 0.674783 0.738016i \(-0.264237\pi\)
0.674783 + 0.738016i \(0.264237\pi\)
\(140\) −805.878 −0.486494
\(141\) 0 0
\(142\) 542.361 0.320521
\(143\) 0 0
\(144\) 0 0
\(145\) −420.087 −0.240595
\(146\) 1967.97 1.11555
\(147\) 0 0
\(148\) 1190.11 0.660990
\(149\) −520.288 −0.286065 −0.143032 0.989718i \(-0.545685\pi\)
−0.143032 + 0.989718i \(0.545685\pi\)
\(150\) 0 0
\(151\) −3313.99 −1.78602 −0.893008 0.450041i \(-0.851409\pi\)
−0.893008 + 0.450041i \(0.851409\pi\)
\(152\) −962.878 −0.513814
\(153\) 0 0
\(154\) 0 0
\(155\) 832.912 0.431620
\(156\) 0 0
\(157\) 1067.49 0.542645 0.271322 0.962489i \(-0.412539\pi\)
0.271322 + 0.962489i \(0.412539\pi\)
\(158\) −2261.16 −1.13853
\(159\) 0 0
\(160\) −200.901 −0.0992662
\(161\) −2304.13 −1.12789
\(162\) 0 0
\(163\) −1174.05 −0.564162 −0.282081 0.959391i \(-0.591025\pi\)
−0.282081 + 0.959391i \(0.591025\pi\)
\(164\) −998.148 −0.475258
\(165\) 0 0
\(166\) 2090.45 0.977410
\(167\) 322.625 0.149494 0.0747469 0.997203i \(-0.476185\pi\)
0.0747469 + 0.997203i \(0.476185\pi\)
\(168\) 0 0
\(169\) −1612.61 −0.734005
\(170\) 1334.62 0.602122
\(171\) 0 0
\(172\) 872.882 0.386957
\(173\) −2307.74 −1.01419 −0.507094 0.861891i \(-0.669280\pi\)
−0.507094 + 0.861891i \(0.669280\pi\)
\(174\) 0 0
\(175\) 2746.47 1.18636
\(176\) 0 0
\(177\) 0 0
\(178\) 718.596 0.302590
\(179\) −524.523 −0.219021 −0.109510 0.993986i \(-0.534928\pi\)
−0.109510 + 0.993986i \(0.534928\pi\)
\(180\) 0 0
\(181\) 1033.47 0.424405 0.212203 0.977226i \(-0.431936\pi\)
0.212203 + 0.977226i \(0.431936\pi\)
\(182\) 1551.53 0.631906
\(183\) 0 0
\(184\) −574.406 −0.230140
\(185\) 1867.92 0.742338
\(186\) 0 0
\(187\) 0 0
\(188\) −1680.24 −0.651832
\(189\) 0 0
\(190\) −1511.27 −0.577048
\(191\) 2693.88 1.02054 0.510268 0.860016i \(-0.329546\pi\)
0.510268 + 0.860016i \(0.329546\pi\)
\(192\) 0 0
\(193\) 3518.61 1.31231 0.656153 0.754628i \(-0.272183\pi\)
0.656153 + 0.754628i \(0.272183\pi\)
\(194\) 2659.33 0.984170
\(195\) 0 0
\(196\) 2747.23 1.00118
\(197\) 4868.79 1.76085 0.880424 0.474187i \(-0.157258\pi\)
0.880424 + 0.474187i \(0.157258\pi\)
\(198\) 0 0
\(199\) −4200.44 −1.49629 −0.748144 0.663536i \(-0.769055\pi\)
−0.748144 + 0.663536i \(0.769055\pi\)
\(200\) 684.679 0.242071
\(201\) 0 0
\(202\) −2791.92 −0.972470
\(203\) 2147.26 0.742406
\(204\) 0 0
\(205\) −1566.63 −0.533747
\(206\) 324.758 0.109840
\(207\) 0 0
\(208\) 386.787 0.128937
\(209\) 0 0
\(210\) 0 0
\(211\) 2367.53 0.772454 0.386227 0.922404i \(-0.373778\pi\)
0.386227 + 0.922404i \(0.373778\pi\)
\(212\) 2889.09 0.935960
\(213\) 0 0
\(214\) 2.68006 0.000856099 0
\(215\) 1370.02 0.434580
\(216\) 0 0
\(217\) −4257.41 −1.33185
\(218\) 1999.99 0.621358
\(219\) 0 0
\(220\) 0 0
\(221\) −2569.50 −0.782096
\(222\) 0 0
\(223\) 1363.27 0.409379 0.204690 0.978827i \(-0.434382\pi\)
0.204690 + 0.978827i \(0.434382\pi\)
\(224\) 1026.90 0.306306
\(225\) 0 0
\(226\) −1827.21 −0.537805
\(227\) −6105.77 −1.78526 −0.892630 0.450790i \(-0.851142\pi\)
−0.892630 + 0.450790i \(0.851142\pi\)
\(228\) 0 0
\(229\) 4444.16 1.28244 0.641219 0.767358i \(-0.278429\pi\)
0.641219 + 0.767358i \(0.278429\pi\)
\(230\) −901.551 −0.258463
\(231\) 0 0
\(232\) 535.300 0.151484
\(233\) −3243.92 −0.912087 −0.456043 0.889958i \(-0.650734\pi\)
−0.456043 + 0.889958i \(0.650734\pi\)
\(234\) 0 0
\(235\) −2637.21 −0.732052
\(236\) 1195.60 0.329775
\(237\) 0 0
\(238\) −6821.89 −1.85797
\(239\) −2152.12 −0.582464 −0.291232 0.956652i \(-0.594065\pi\)
−0.291232 + 0.956652i \(0.594065\pi\)
\(240\) 0 0
\(241\) 1454.40 0.388740 0.194370 0.980928i \(-0.437734\pi\)
0.194370 + 0.980928i \(0.437734\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 1342.04 0.352112
\(245\) 4311.88 1.12439
\(246\) 0 0
\(247\) 2909.60 0.749527
\(248\) −1061.35 −0.271757
\(249\) 0 0
\(250\) 2644.17 0.668927
\(251\) −4398.73 −1.10616 −0.553079 0.833129i \(-0.686547\pi\)
−0.553079 + 0.833129i \(0.686547\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −213.102 −0.0526426
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2018.47 0.489918 0.244959 0.969533i \(-0.421225\pi\)
0.244959 + 0.969533i \(0.421225\pi\)
\(258\) 0 0
\(259\) −9547.85 −2.29064
\(260\) 607.076 0.144805
\(261\) 0 0
\(262\) 5614.90 1.32401
\(263\) 4304.49 1.00922 0.504612 0.863346i \(-0.331635\pi\)
0.504612 + 0.863346i \(0.331635\pi\)
\(264\) 0 0
\(265\) 4534.53 1.05115
\(266\) 7724.83 1.78060
\(267\) 0 0
\(268\) −380.528 −0.0867330
\(269\) −185.624 −0.0420733 −0.0210366 0.999779i \(-0.506697\pi\)
−0.0210366 + 0.999779i \(0.506697\pi\)
\(270\) 0 0
\(271\) −6717.78 −1.50582 −0.752908 0.658126i \(-0.771349\pi\)
−0.752908 + 0.658126i \(0.771349\pi\)
\(272\) −1700.66 −0.379108
\(273\) 0 0
\(274\) 2497.48 0.550650
\(275\) 0 0
\(276\) 0 0
\(277\) −873.692 −0.189513 −0.0947564 0.995500i \(-0.530207\pi\)
−0.0947564 + 0.995500i \(0.530207\pi\)
\(278\) −4423.30 −0.954288
\(279\) 0 0
\(280\) 1611.76 0.344003
\(281\) 7130.47 1.51377 0.756883 0.653551i \(-0.226721\pi\)
0.756883 + 0.653551i \(0.226721\pi\)
\(282\) 0 0
\(283\) −4293.78 −0.901903 −0.450952 0.892548i \(-0.648915\pi\)
−0.450952 + 0.892548i \(0.648915\pi\)
\(284\) −1084.72 −0.226642
\(285\) 0 0
\(286\) 0 0
\(287\) 8007.79 1.64699
\(288\) 0 0
\(289\) 6384.79 1.29957
\(290\) 840.173 0.170126
\(291\) 0 0
\(292\) −3935.94 −0.788813
\(293\) −4621.40 −0.921451 −0.460726 0.887543i \(-0.652411\pi\)
−0.460726 + 0.887543i \(0.652411\pi\)
\(294\) 0 0
\(295\) 1876.54 0.370360
\(296\) −2380.22 −0.467391
\(297\) 0 0
\(298\) 1040.58 0.202278
\(299\) 1735.72 0.335717
\(300\) 0 0
\(301\) −7002.83 −1.34099
\(302\) 6627.97 1.26290
\(303\) 0 0
\(304\) 1925.76 0.363321
\(305\) 2106.38 0.395446
\(306\) 0 0
\(307\) −7095.92 −1.31917 −0.659586 0.751630i \(-0.729268\pi\)
−0.659586 + 0.751630i \(0.729268\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1665.82 −0.305201
\(311\) −9557.20 −1.74257 −0.871285 0.490777i \(-0.836713\pi\)
−0.871285 + 0.490777i \(0.836713\pi\)
\(312\) 0 0
\(313\) 2639.27 0.476615 0.238307 0.971190i \(-0.423407\pi\)
0.238307 + 0.971190i \(0.423407\pi\)
\(314\) −2134.99 −0.383708
\(315\) 0 0
\(316\) 4522.32 0.805064
\(317\) 7919.47 1.40316 0.701580 0.712590i \(-0.252478\pi\)
0.701580 + 0.712590i \(0.252478\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 401.801 0.0701918
\(321\) 0 0
\(322\) 4608.26 0.797541
\(323\) −12793.2 −2.20381
\(324\) 0 0
\(325\) −2068.94 −0.353121
\(326\) 2348.09 0.398923
\(327\) 0 0
\(328\) 1996.30 0.336058
\(329\) 13480.0 2.25890
\(330\) 0 0
\(331\) 235.958 0.0391826 0.0195913 0.999808i \(-0.493763\pi\)
0.0195913 + 0.999808i \(0.493763\pi\)
\(332\) −4180.89 −0.691133
\(333\) 0 0
\(334\) −645.250 −0.105708
\(335\) −597.253 −0.0974071
\(336\) 0 0
\(337\) −3734.29 −0.603619 −0.301810 0.953368i \(-0.597591\pi\)
−0.301810 + 0.953368i \(0.597591\pi\)
\(338\) 3225.22 0.519020
\(339\) 0 0
\(340\) −2669.24 −0.425765
\(341\) 0 0
\(342\) 0 0
\(343\) −11033.0 −1.73681
\(344\) −1745.76 −0.273620
\(345\) 0 0
\(346\) 4615.49 0.717139
\(347\) −6149.01 −0.951286 −0.475643 0.879638i \(-0.657785\pi\)
−0.475643 + 0.879638i \(0.657785\pi\)
\(348\) 0 0
\(349\) −7026.80 −1.07775 −0.538877 0.842384i \(-0.681151\pi\)
−0.538877 + 0.842384i \(0.681151\pi\)
\(350\) −5492.94 −0.838886
\(351\) 0 0
\(352\) 0 0
\(353\) −11895.9 −1.79363 −0.896816 0.442403i \(-0.854126\pi\)
−0.896816 + 0.442403i \(0.854126\pi\)
\(354\) 0 0
\(355\) −1702.51 −0.254535
\(356\) −1437.19 −0.213964
\(357\) 0 0
\(358\) 1049.05 0.154871
\(359\) −804.806 −0.118318 −0.0591588 0.998249i \(-0.518842\pi\)
−0.0591588 + 0.998249i \(0.518842\pi\)
\(360\) 0 0
\(361\) 7627.46 1.11204
\(362\) −2066.94 −0.300100
\(363\) 0 0
\(364\) −3103.06 −0.446825
\(365\) −6177.60 −0.885891
\(366\) 0 0
\(367\) −10844.9 −1.54251 −0.771255 0.636527i \(-0.780371\pi\)
−0.771255 + 0.636527i \(0.780371\pi\)
\(368\) 1148.81 0.162733
\(369\) 0 0
\(370\) −3735.85 −0.524912
\(371\) −23178.2 −3.24353
\(372\) 0 0
\(373\) −2421.16 −0.336094 −0.168047 0.985779i \(-0.553746\pi\)
−0.168047 + 0.985779i \(0.553746\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 3360.49 0.460915
\(377\) −1617.56 −0.220977
\(378\) 0 0
\(379\) −4921.73 −0.667051 −0.333526 0.942741i \(-0.608238\pi\)
−0.333526 + 0.942741i \(0.608238\pi\)
\(380\) 3022.54 0.408035
\(381\) 0 0
\(382\) −5387.76 −0.721627
\(383\) −8091.03 −1.07946 −0.539729 0.841839i \(-0.681473\pi\)
−0.539729 + 0.841839i \(0.681473\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −7037.22 −0.927940
\(387\) 0 0
\(388\) −5318.67 −0.695914
\(389\) 13081.1 1.70499 0.852494 0.522737i \(-0.175089\pi\)
0.852494 + 0.522737i \(0.175089\pi\)
\(390\) 0 0
\(391\) −7631.77 −0.987098
\(392\) −5494.46 −0.707939
\(393\) 0 0
\(394\) −9737.58 −1.24511
\(395\) 7097.94 0.904142
\(396\) 0 0
\(397\) −7707.71 −0.974405 −0.487203 0.873289i \(-0.661983\pi\)
−0.487203 + 0.873289i \(0.661983\pi\)
\(398\) 8400.88 1.05804
\(399\) 0 0
\(400\) −1369.36 −0.171170
\(401\) 7838.19 0.976110 0.488055 0.872813i \(-0.337706\pi\)
0.488055 + 0.872813i \(0.337706\pi\)
\(402\) 0 0
\(403\) 3207.15 0.396426
\(404\) 5583.84 0.687640
\(405\) 0 0
\(406\) −4294.53 −0.524960
\(407\) 0 0
\(408\) 0 0
\(409\) 2367.43 0.286215 0.143107 0.989707i \(-0.454291\pi\)
0.143107 + 0.989707i \(0.454291\pi\)
\(410\) 3133.26 0.377416
\(411\) 0 0
\(412\) −649.516 −0.0776683
\(413\) −9591.89 −1.14282
\(414\) 0 0
\(415\) −6562.06 −0.776190
\(416\) −773.574 −0.0911721
\(417\) 0 0
\(418\) 0 0
\(419\) −1221.38 −0.142407 −0.0712033 0.997462i \(-0.522684\pi\)
−0.0712033 + 0.997462i \(0.522684\pi\)
\(420\) 0 0
\(421\) −3696.33 −0.427905 −0.213952 0.976844i \(-0.568634\pi\)
−0.213952 + 0.976844i \(0.568634\pi\)
\(422\) −4735.07 −0.546207
\(423\) 0 0
\(424\) −5778.18 −0.661824
\(425\) 9096.91 1.03827
\(426\) 0 0
\(427\) −10766.7 −1.22023
\(428\) −5.36012 −0.000605353 0
\(429\) 0 0
\(430\) −2740.04 −0.307294
\(431\) −7884.17 −0.881130 −0.440565 0.897721i \(-0.645222\pi\)
−0.440565 + 0.897721i \(0.645222\pi\)
\(432\) 0 0
\(433\) −16140.1 −1.79133 −0.895665 0.444729i \(-0.853300\pi\)
−0.895665 + 0.444729i \(0.853300\pi\)
\(434\) 8514.82 0.941762
\(435\) 0 0
\(436\) −3999.97 −0.439367
\(437\) 8641.91 0.945992
\(438\) 0 0
\(439\) 1026.67 0.111618 0.0558092 0.998441i \(-0.482226\pi\)
0.0558092 + 0.998441i \(0.482226\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 5139.00 0.553026
\(443\) −9365.88 −1.00448 −0.502242 0.864727i \(-0.667491\pi\)
−0.502242 + 0.864727i \(0.667491\pi\)
\(444\) 0 0
\(445\) −2255.73 −0.240296
\(446\) −2726.55 −0.289475
\(447\) 0 0
\(448\) −2053.80 −0.216591
\(449\) −14727.5 −1.54795 −0.773977 0.633213i \(-0.781736\pi\)
−0.773977 + 0.633213i \(0.781736\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 3654.41 0.380286
\(453\) 0 0
\(454\) 12211.5 1.26237
\(455\) −4870.36 −0.501816
\(456\) 0 0
\(457\) 9061.30 0.927505 0.463752 0.885965i \(-0.346503\pi\)
0.463752 + 0.885965i \(0.346503\pi\)
\(458\) −8888.31 −0.906820
\(459\) 0 0
\(460\) 1803.10 0.182761
\(461\) −12699.2 −1.28300 −0.641498 0.767125i \(-0.721687\pi\)
−0.641498 + 0.767125i \(0.721687\pi\)
\(462\) 0 0
\(463\) −16296.0 −1.63572 −0.817861 0.575416i \(-0.804840\pi\)
−0.817861 + 0.575416i \(0.804840\pi\)
\(464\) −1070.60 −0.107115
\(465\) 0 0
\(466\) 6487.84 0.644943
\(467\) 4636.89 0.459464 0.229732 0.973254i \(-0.426215\pi\)
0.229732 + 0.973254i \(0.426215\pi\)
\(468\) 0 0
\(469\) 3052.84 0.300570
\(470\) 5274.41 0.517639
\(471\) 0 0
\(472\) −2391.20 −0.233186
\(473\) 0 0
\(474\) 0 0
\(475\) −10301.0 −0.995034
\(476\) 13643.8 1.31379
\(477\) 0 0
\(478\) 4304.24 0.411865
\(479\) 10495.0 1.00111 0.500553 0.865706i \(-0.333130\pi\)
0.500553 + 0.865706i \(0.333130\pi\)
\(480\) 0 0
\(481\) 7192.49 0.681808
\(482\) −2908.81 −0.274881
\(483\) 0 0
\(484\) 0 0
\(485\) −8347.84 −0.781559
\(486\) 0 0
\(487\) −1027.10 −0.0955695 −0.0477847 0.998858i \(-0.515216\pi\)
−0.0477847 + 0.998858i \(0.515216\pi\)
\(488\) −2684.08 −0.248981
\(489\) 0 0
\(490\) −8623.76 −0.795064
\(491\) 2020.52 0.185713 0.0928564 0.995680i \(-0.470400\pi\)
0.0928564 + 0.995680i \(0.470400\pi\)
\(492\) 0 0
\(493\) 7112.21 0.649732
\(494\) −5819.20 −0.529996
\(495\) 0 0
\(496\) 2122.70 0.192161
\(497\) 8702.35 0.785420
\(498\) 0 0
\(499\) 21173.0 1.89946 0.949731 0.313066i \(-0.101356\pi\)
0.949731 + 0.313066i \(0.101356\pi\)
\(500\) −5288.33 −0.473003
\(501\) 0 0
\(502\) 8797.46 0.782171
\(503\) 5391.50 0.477923 0.238961 0.971029i \(-0.423193\pi\)
0.238961 + 0.971029i \(0.423193\pi\)
\(504\) 0 0
\(505\) 8764.05 0.772267
\(506\) 0 0
\(507\) 0 0
\(508\) 426.205 0.0372240
\(509\) −2012.03 −0.175209 −0.0876047 0.996155i \(-0.527921\pi\)
−0.0876047 + 0.996155i \(0.527921\pi\)
\(510\) 0 0
\(511\) 31576.7 2.73360
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −4036.95 −0.346425
\(515\) −1019.44 −0.0872269
\(516\) 0 0
\(517\) 0 0
\(518\) 19095.7 1.61972
\(519\) 0 0
\(520\) −1214.15 −0.102393
\(521\) −13209.1 −1.11075 −0.555374 0.831600i \(-0.687425\pi\)
−0.555374 + 0.831600i \(0.687425\pi\)
\(522\) 0 0
\(523\) −3584.21 −0.299668 −0.149834 0.988711i \(-0.547874\pi\)
−0.149834 + 0.988711i \(0.547874\pi\)
\(524\) −11229.8 −0.936214
\(525\) 0 0
\(526\) −8608.97 −0.713629
\(527\) −14101.5 −1.16560
\(528\) 0 0
\(529\) −7011.66 −0.576285
\(530\) −9069.06 −0.743274
\(531\) 0 0
\(532\) −15449.7 −1.25908
\(533\) −6032.35 −0.490225
\(534\) 0 0
\(535\) −8.41291 −0.000679854 0
\(536\) 761.056 0.0613295
\(537\) 0 0
\(538\) 371.249 0.0297503
\(539\) 0 0
\(540\) 0 0
\(541\) 4372.63 0.347494 0.173747 0.984790i \(-0.444413\pi\)
0.173747 + 0.984790i \(0.444413\pi\)
\(542\) 13435.6 1.06477
\(543\) 0 0
\(544\) 3401.31 0.268070
\(545\) −6278.10 −0.493439
\(546\) 0 0
\(547\) −15753.5 −1.23139 −0.615696 0.787984i \(-0.711125\pi\)
−0.615696 + 0.787984i \(0.711125\pi\)
\(548\) −4994.95 −0.389368
\(549\) 0 0
\(550\) 0 0
\(551\) −8053.57 −0.622675
\(552\) 0 0
\(553\) −36281.0 −2.78992
\(554\) 1747.38 0.134006
\(555\) 0 0
\(556\) 8846.60 0.674783
\(557\) 13100.6 0.996568 0.498284 0.867014i \(-0.333964\pi\)
0.498284 + 0.867014i \(0.333964\pi\)
\(558\) 0 0
\(559\) 5275.30 0.399144
\(560\) −3223.51 −0.243247
\(561\) 0 0
\(562\) −14260.9 −1.07039
\(563\) −11068.4 −0.828556 −0.414278 0.910150i \(-0.635966\pi\)
−0.414278 + 0.910150i \(0.635966\pi\)
\(564\) 0 0
\(565\) 5735.73 0.427087
\(566\) 8587.56 0.637742
\(567\) 0 0
\(568\) 2169.45 0.160260
\(569\) 624.533 0.0460137 0.0230068 0.999735i \(-0.492676\pi\)
0.0230068 + 0.999735i \(0.492676\pi\)
\(570\) 0 0
\(571\) 24257.0 1.77780 0.888899 0.458104i \(-0.151471\pi\)
0.888899 + 0.458104i \(0.151471\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −16015.6 −1.16460
\(575\) −6145.05 −0.445681
\(576\) 0 0
\(577\) −4484.35 −0.323546 −0.161773 0.986828i \(-0.551721\pi\)
−0.161773 + 0.986828i \(0.551721\pi\)
\(578\) −12769.6 −0.918936
\(579\) 0 0
\(580\) −1680.35 −0.120298
\(581\) 33541.9 2.39510
\(582\) 0 0
\(583\) 0 0
\(584\) 7871.88 0.557775
\(585\) 0 0
\(586\) 9242.80 0.651564
\(587\) −18000.1 −1.26566 −0.632832 0.774289i \(-0.718108\pi\)
−0.632832 + 0.774289i \(0.718108\pi\)
\(588\) 0 0
\(589\) 15967.9 1.11706
\(590\) −3753.08 −0.261884
\(591\) 0 0
\(592\) 4760.45 0.330495
\(593\) 21301.0 1.47509 0.737545 0.675297i \(-0.235985\pi\)
0.737545 + 0.675297i \(0.235985\pi\)
\(594\) 0 0
\(595\) 21414.4 1.47547
\(596\) −2081.15 −0.143032
\(597\) 0 0
\(598\) −3471.45 −0.237388
\(599\) −12898.6 −0.879838 −0.439919 0.898037i \(-0.644993\pi\)
−0.439919 + 0.898037i \(0.644993\pi\)
\(600\) 0 0
\(601\) −20347.0 −1.38099 −0.690493 0.723339i \(-0.742607\pi\)
−0.690493 + 0.723339i \(0.742607\pi\)
\(602\) 14005.7 0.948220
\(603\) 0 0
\(604\) −13255.9 −0.893008
\(605\) 0 0
\(606\) 0 0
\(607\) −1791.89 −0.119820 −0.0599098 0.998204i \(-0.519081\pi\)
−0.0599098 + 0.998204i \(0.519081\pi\)
\(608\) −3851.51 −0.256907
\(609\) 0 0
\(610\) −4212.76 −0.279622
\(611\) −10154.6 −0.672361
\(612\) 0 0
\(613\) 5518.24 0.363588 0.181794 0.983337i \(-0.441810\pi\)
0.181794 + 0.983337i \(0.441810\pi\)
\(614\) 14191.8 0.932795
\(615\) 0 0
\(616\) 0 0
\(617\) 2771.91 0.180864 0.0904319 0.995903i \(-0.471175\pi\)
0.0904319 + 0.995903i \(0.471175\pi\)
\(618\) 0 0
\(619\) 5500.30 0.357150 0.178575 0.983926i \(-0.442851\pi\)
0.178575 + 0.983926i \(0.442851\pi\)
\(620\) 3331.65 0.215810
\(621\) 0 0
\(622\) 19114.4 1.23218
\(623\) 11530.1 0.741482
\(624\) 0 0
\(625\) 2397.88 0.153464
\(626\) −5278.54 −0.337018
\(627\) 0 0
\(628\) 4269.97 0.271322
\(629\) −31624.6 −2.00470
\(630\) 0 0
\(631\) −9506.23 −0.599741 −0.299871 0.953980i \(-0.596944\pi\)
−0.299871 + 0.953980i \(0.596944\pi\)
\(632\) −9044.63 −0.569266
\(633\) 0 0
\(634\) −15838.9 −0.992184
\(635\) 668.944 0.0418051
\(636\) 0 0
\(637\) 16603.0 1.03271
\(638\) 0 0
\(639\) 0 0
\(640\) −803.603 −0.0496331
\(641\) 18945.3 1.16738 0.583692 0.811975i \(-0.301607\pi\)
0.583692 + 0.811975i \(0.301607\pi\)
\(642\) 0 0
\(643\) −14788.0 −0.906969 −0.453485 0.891264i \(-0.649819\pi\)
−0.453485 + 0.891264i \(0.649819\pi\)
\(644\) −9216.51 −0.563946
\(645\) 0 0
\(646\) 25586.3 1.55833
\(647\) 3523.14 0.214079 0.107039 0.994255i \(-0.465863\pi\)
0.107039 + 0.994255i \(0.465863\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 4137.89 0.249694
\(651\) 0 0
\(652\) −4696.18 −0.282081
\(653\) −15408.4 −0.923395 −0.461698 0.887037i \(-0.652759\pi\)
−0.461698 + 0.887037i \(0.652759\pi\)
\(654\) 0 0
\(655\) −17625.6 −1.05143
\(656\) −3992.59 −0.237629
\(657\) 0 0
\(658\) −26960.0 −1.59728
\(659\) 2280.11 0.134781 0.0673905 0.997727i \(-0.478533\pi\)
0.0673905 + 0.997727i \(0.478533\pi\)
\(660\) 0 0
\(661\) 15098.9 0.888473 0.444236 0.895910i \(-0.353475\pi\)
0.444236 + 0.895910i \(0.353475\pi\)
\(662\) −471.917 −0.0277063
\(663\) 0 0
\(664\) 8361.79 0.488705
\(665\) −24248.8 −1.41403
\(666\) 0 0
\(667\) −4804.37 −0.278899
\(668\) 1290.50 0.0747469
\(669\) 0 0
\(670\) 1194.51 0.0688772
\(671\) 0 0
\(672\) 0 0
\(673\) 2188.38 0.125343 0.0626716 0.998034i \(-0.480038\pi\)
0.0626716 + 0.998034i \(0.480038\pi\)
\(674\) 7468.58 0.426823
\(675\) 0 0
\(676\) −6450.44 −0.367002
\(677\) −879.954 −0.0499548 −0.0249774 0.999688i \(-0.507951\pi\)
−0.0249774 + 0.999688i \(0.507951\pi\)
\(678\) 0 0
\(679\) 42669.8 2.41166
\(680\) 5338.49 0.301061
\(681\) 0 0
\(682\) 0 0
\(683\) −16135.6 −0.903972 −0.451986 0.892025i \(-0.649284\pi\)
−0.451986 + 0.892025i \(0.649284\pi\)
\(684\) 0 0
\(685\) −7839.76 −0.437287
\(686\) 22066.0 1.22811
\(687\) 0 0
\(688\) 3491.53 0.193479
\(689\) 17460.3 0.965437
\(690\) 0 0
\(691\) −6909.92 −0.380414 −0.190207 0.981744i \(-0.560916\pi\)
−0.190207 + 0.981744i \(0.560916\pi\)
\(692\) −9230.97 −0.507094
\(693\) 0 0
\(694\) 12298.0 0.672661
\(695\) 13885.1 0.757828
\(696\) 0 0
\(697\) 26523.6 1.44139
\(698\) 14053.6 0.762087
\(699\) 0 0
\(700\) 10985.9 0.593182
\(701\) −15459.7 −0.832959 −0.416479 0.909145i \(-0.636736\pi\)
−0.416479 + 0.909145i \(0.636736\pi\)
\(702\) 0 0
\(703\) 35810.4 1.92121
\(704\) 0 0
\(705\) 0 0
\(706\) 23791.7 1.26829
\(707\) −44797.2 −2.38299
\(708\) 0 0
\(709\) −10097.4 −0.534861 −0.267431 0.963577i \(-0.586175\pi\)
−0.267431 + 0.963577i \(0.586175\pi\)
\(710\) 3405.02 0.179983
\(711\) 0 0
\(712\) 2874.38 0.151295
\(713\) 9525.69 0.500336
\(714\) 0 0
\(715\) 0 0
\(716\) −2098.09 −0.109510
\(717\) 0 0
\(718\) 1609.61 0.0836632
\(719\) 3012.20 0.156239 0.0781197 0.996944i \(-0.475108\pi\)
0.0781197 + 0.996944i \(0.475108\pi\)
\(720\) 0 0
\(721\) 5210.84 0.269157
\(722\) −15254.9 −0.786329
\(723\) 0 0
\(724\) 4133.89 0.212203
\(725\) 5726.70 0.293358
\(726\) 0 0
\(727\) 6256.59 0.319180 0.159590 0.987183i \(-0.448983\pi\)
0.159590 + 0.987183i \(0.448983\pi\)
\(728\) 6206.11 0.315953
\(729\) 0 0
\(730\) 12355.2 0.626420
\(731\) −23194.9 −1.17359
\(732\) 0 0
\(733\) −12249.4 −0.617245 −0.308622 0.951185i \(-0.599868\pi\)
−0.308622 + 0.951185i \(0.599868\pi\)
\(734\) 21689.9 1.09072
\(735\) 0 0
\(736\) −2297.62 −0.115070
\(737\) 0 0
\(738\) 0 0
\(739\) 19117.1 0.951601 0.475800 0.879553i \(-0.342159\pi\)
0.475800 + 0.879553i \(0.342159\pi\)
\(740\) 7471.69 0.371169
\(741\) 0 0
\(742\) 46356.3 2.29352
\(743\) 11615.1 0.573510 0.286755 0.958004i \(-0.407423\pi\)
0.286755 + 0.958004i \(0.407423\pi\)
\(744\) 0 0
\(745\) −3266.44 −0.160635
\(746\) 4842.33 0.237655
\(747\) 0 0
\(748\) 0 0
\(749\) 43.0024 0.00209783
\(750\) 0 0
\(751\) 31001.2 1.50633 0.753163 0.657833i \(-0.228527\pi\)
0.753163 + 0.657833i \(0.228527\pi\)
\(752\) −6720.98 −0.325916
\(753\) 0 0
\(754\) 3235.11 0.156254
\(755\) −20805.7 −1.00291
\(756\) 0 0
\(757\) 1830.43 0.0878837 0.0439418 0.999034i \(-0.486008\pi\)
0.0439418 + 0.999034i \(0.486008\pi\)
\(758\) 9843.46 0.471676
\(759\) 0 0
\(760\) −6045.09 −0.288524
\(761\) 27976.3 1.33264 0.666321 0.745665i \(-0.267868\pi\)
0.666321 + 0.745665i \(0.267868\pi\)
\(762\) 0 0
\(763\) 32090.4 1.52261
\(764\) 10775.5 0.510268
\(765\) 0 0
\(766\) 16182.1 0.763292
\(767\) 7225.66 0.340161
\(768\) 0 0
\(769\) −11867.5 −0.556505 −0.278252 0.960508i \(-0.589755\pi\)
−0.278252 + 0.960508i \(0.589755\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 14074.4 0.656153
\(773\) 5572.82 0.259302 0.129651 0.991560i \(-0.458614\pi\)
0.129651 + 0.991560i \(0.458614\pi\)
\(774\) 0 0
\(775\) −11354.4 −0.526274
\(776\) 10637.3 0.492085
\(777\) 0 0
\(778\) −26162.3 −1.20561
\(779\) −30034.2 −1.38137
\(780\) 0 0
\(781\) 0 0
\(782\) 15263.5 0.697984
\(783\) 0 0
\(784\) 10988.9 0.500589
\(785\) 6701.88 0.304714
\(786\) 0 0
\(787\) 22315.3 1.01074 0.505371 0.862902i \(-0.331356\pi\)
0.505371 + 0.862902i \(0.331356\pi\)
\(788\) 19475.2 0.880424
\(789\) 0 0
\(790\) −14195.9 −0.639325
\(791\) −29318.1 −1.31787
\(792\) 0 0
\(793\) 8110.68 0.363201
\(794\) 15415.4 0.689009
\(795\) 0 0
\(796\) −16801.8 −0.748144
\(797\) −1682.22 −0.0747646 −0.0373823 0.999301i \(-0.511902\pi\)
−0.0373823 + 0.999301i \(0.511902\pi\)
\(798\) 0 0
\(799\) 44648.8 1.97692
\(800\) 2738.72 0.121035
\(801\) 0 0
\(802\) −15676.4 −0.690214
\(803\) 0 0
\(804\) 0 0
\(805\) −14465.7 −0.633351
\(806\) −6414.30 −0.280315
\(807\) 0 0
\(808\) −11167.7 −0.486235
\(809\) −5425.93 −0.235804 −0.117902 0.993025i \(-0.537617\pi\)
−0.117902 + 0.993025i \(0.537617\pi\)
\(810\) 0 0
\(811\) 3182.64 0.137802 0.0689010 0.997624i \(-0.478051\pi\)
0.0689010 + 0.997624i \(0.478051\pi\)
\(812\) 8589.06 0.371203
\(813\) 0 0
\(814\) 0 0
\(815\) −7370.83 −0.316796
\(816\) 0 0
\(817\) 26265.0 1.12472
\(818\) −4734.86 −0.202384
\(819\) 0 0
\(820\) −6266.52 −0.266874
\(821\) 7927.50 0.336993 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(822\) 0 0
\(823\) −15276.4 −0.647026 −0.323513 0.946224i \(-0.604864\pi\)
−0.323513 + 0.946224i \(0.604864\pi\)
\(824\) 1299.03 0.0549198
\(825\) 0 0
\(826\) 19183.8 0.808098
\(827\) −6276.71 −0.263921 −0.131960 0.991255i \(-0.542127\pi\)
−0.131960 + 0.991255i \(0.542127\pi\)
\(828\) 0 0
\(829\) −5476.37 −0.229436 −0.114718 0.993398i \(-0.536596\pi\)
−0.114718 + 0.993398i \(0.536596\pi\)
\(830\) 13124.1 0.548850
\(831\) 0 0
\(832\) 1547.15 0.0644684
\(833\) −73001.5 −3.03644
\(834\) 0 0
\(835\) 2025.49 0.0839459
\(836\) 0 0
\(837\) 0 0
\(838\) 2442.76 0.100697
\(839\) 6283.73 0.258568 0.129284 0.991608i \(-0.458732\pi\)
0.129284 + 0.991608i \(0.458732\pi\)
\(840\) 0 0
\(841\) −19911.7 −0.816422
\(842\) 7392.66 0.302574
\(843\) 0 0
\(844\) 9470.13 0.386227
\(845\) −10124.2 −0.412169
\(846\) 0 0
\(847\) 0 0
\(848\) 11556.4 0.467980
\(849\) 0 0
\(850\) −18193.8 −0.734168
\(851\) 21362.7 0.860522
\(852\) 0 0
\(853\) −13438.3 −0.539413 −0.269707 0.962943i \(-0.586927\pi\)
−0.269707 + 0.962943i \(0.586927\pi\)
\(854\) 21533.4 0.862833
\(855\) 0 0
\(856\) 10.7202 0.000428050 0
\(857\) 20901.6 0.833122 0.416561 0.909108i \(-0.363235\pi\)
0.416561 + 0.909108i \(0.363235\pi\)
\(858\) 0 0
\(859\) 7765.47 0.308445 0.154223 0.988036i \(-0.450713\pi\)
0.154223 + 0.988036i \(0.450713\pi\)
\(860\) 5480.08 0.217290
\(861\) 0 0
\(862\) 15768.3 0.623053
\(863\) −49326.8 −1.94566 −0.972830 0.231521i \(-0.925630\pi\)
−0.972830 + 0.231521i \(0.925630\pi\)
\(864\) 0 0
\(865\) −14488.3 −0.569501
\(866\) 32280.3 1.26666
\(867\) 0 0
\(868\) −17029.6 −0.665926
\(869\) 0 0
\(870\) 0 0
\(871\) −2299.74 −0.0894646
\(872\) 7999.94 0.310679
\(873\) 0 0
\(874\) −17283.8 −0.668918
\(875\) 42426.4 1.63917
\(876\) 0 0
\(877\) −4318.04 −0.166260 −0.0831300 0.996539i \(-0.526492\pi\)
−0.0831300 + 0.996539i \(0.526492\pi\)
\(878\) −2053.35 −0.0789261
\(879\) 0 0
\(880\) 0 0
\(881\) 34689.4 1.32658 0.663290 0.748362i \(-0.269160\pi\)
0.663290 + 0.748362i \(0.269160\pi\)
\(882\) 0 0
\(883\) −41300.1 −1.57402 −0.787010 0.616941i \(-0.788372\pi\)
−0.787010 + 0.616941i \(0.788372\pi\)
\(884\) −10278.0 −0.391048
\(885\) 0 0
\(886\) 18731.8 0.710277
\(887\) 32373.5 1.22547 0.612737 0.790287i \(-0.290068\pi\)
0.612737 + 0.790287i \(0.290068\pi\)
\(888\) 0 0
\(889\) −3419.29 −0.128998
\(890\) 4511.45 0.169915
\(891\) 0 0
\(892\) 5453.09 0.204690
\(893\) −50558.4 −1.89460
\(894\) 0 0
\(895\) −3293.03 −0.122988
\(896\) 4107.60 0.153153
\(897\) 0 0
\(898\) 29454.9 1.09457
\(899\) −8877.18 −0.329333
\(900\) 0 0
\(901\) −76771.1 −2.83864
\(902\) 0 0
\(903\) 0 0
\(904\) −7308.83 −0.268903
\(905\) 6488.29 0.238318
\(906\) 0 0
\(907\) −5922.77 −0.216827 −0.108414 0.994106i \(-0.534577\pi\)
−0.108414 + 0.994106i \(0.534577\pi\)
\(908\) −24423.1 −0.892630
\(909\) 0 0
\(910\) 9740.72 0.354837
\(911\) −1075.02 −0.0390965 −0.0195483 0.999809i \(-0.506223\pi\)
−0.0195483 + 0.999809i \(0.506223\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −18122.6 −0.655845
\(915\) 0 0
\(916\) 17776.6 0.641219
\(917\) 90092.8 3.24441
\(918\) 0 0
\(919\) 11283.5 0.405013 0.202507 0.979281i \(-0.435091\pi\)
0.202507 + 0.979281i \(0.435091\pi\)
\(920\) −3606.20 −0.129231
\(921\) 0 0
\(922\) 25398.4 0.907215
\(923\) −6555.57 −0.233780
\(924\) 0 0
\(925\) −25463.9 −0.905133
\(926\) 32592.0 1.15663
\(927\) 0 0
\(928\) 2141.20 0.0757418
\(929\) 8138.20 0.287412 0.143706 0.989620i \(-0.454098\pi\)
0.143706 + 0.989620i \(0.454098\pi\)
\(930\) 0 0
\(931\) 82664.0 2.90999
\(932\) −12975.7 −0.456043
\(933\) 0 0
\(934\) −9273.79 −0.324890
\(935\) 0 0
\(936\) 0 0
\(937\) 28286.7 0.986217 0.493109 0.869968i \(-0.335861\pi\)
0.493109 + 0.869968i \(0.335861\pi\)
\(938\) −6105.69 −0.212535
\(939\) 0 0
\(940\) −10548.8 −0.366026
\(941\) −20864.3 −0.722803 −0.361402 0.932410i \(-0.617702\pi\)
−0.361402 + 0.932410i \(0.617702\pi\)
\(942\) 0 0
\(943\) −17916.9 −0.618723
\(944\) 4782.40 0.164888
\(945\) 0 0
\(946\) 0 0
\(947\) −18025.8 −0.618543 −0.309271 0.950974i \(-0.600085\pi\)
−0.309271 + 0.950974i \(0.600085\pi\)
\(948\) 0 0
\(949\) −23787.0 −0.813656
\(950\) 20601.9 0.703595
\(951\) 0 0
\(952\) −27287.6 −0.928987
\(953\) −9938.82 −0.337828 −0.168914 0.985631i \(-0.554026\pi\)
−0.168914 + 0.985631i \(0.554026\pi\)
\(954\) 0 0
\(955\) 16912.6 0.573066
\(956\) −8608.48 −0.291232
\(957\) 0 0
\(958\) −20990.0 −0.707889
\(959\) 40072.8 1.34934
\(960\) 0 0
\(961\) −12190.1 −0.409187
\(962\) −14385.0 −0.482111
\(963\) 0 0
\(964\) 5817.62 0.194370
\(965\) 22090.3 0.736905
\(966\) 0 0
\(967\) −35056.9 −1.16582 −0.582912 0.812535i \(-0.698087\pi\)
−0.582912 + 0.812535i \(0.698087\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 16695.7 0.552646
\(971\) 34695.4 1.14668 0.573342 0.819316i \(-0.305647\pi\)
0.573342 + 0.819316i \(0.305647\pi\)
\(972\) 0 0
\(973\) −70973.2 −2.33843
\(974\) 2054.20 0.0675778
\(975\) 0 0
\(976\) 5368.16 0.176056
\(977\) −45795.6 −1.49962 −0.749812 0.661651i \(-0.769856\pi\)
−0.749812 + 0.661651i \(0.769856\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 17247.5 0.562195
\(981\) 0 0
\(982\) −4041.05 −0.131319
\(983\) −26090.6 −0.846551 −0.423276 0.906001i \(-0.639120\pi\)
−0.423276 + 0.906001i \(0.639120\pi\)
\(984\) 0 0
\(985\) 30567.0 0.988777
\(986\) −14224.4 −0.459430
\(987\) 0 0
\(988\) 11638.4 0.374764
\(989\) 15668.4 0.503767
\(990\) 0 0
\(991\) −16965.7 −0.543827 −0.271913 0.962322i \(-0.587656\pi\)
−0.271913 + 0.962322i \(0.587656\pi\)
\(992\) −4245.39 −0.135878
\(993\) 0 0
\(994\) −17404.7 −0.555376
\(995\) −26371.0 −0.840217
\(996\) 0 0
\(997\) −27153.2 −0.862539 −0.431270 0.902223i \(-0.641934\pi\)
−0.431270 + 0.902223i \(0.641934\pi\)
\(998\) −42345.9 −1.34312
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2178.4.a.bx.1.3 4
3.2 odd 2 726.4.a.y.1.2 yes 4
11.10 odd 2 2178.4.a.cb.1.3 4
33.32 even 2 726.4.a.v.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
726.4.a.v.1.2 4 33.32 even 2
726.4.a.y.1.2 yes 4 3.2 odd 2
2178.4.a.bx.1.3 4 1.1 even 1 trivial
2178.4.a.cb.1.3 4 11.10 odd 2