Properties

Label 2178.4.a.bx
Level $2178$
Weight $4$
Character orbit 2178.a
Self dual yes
Analytic conductor $128.506$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2178,4,Mod(1,2178)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2178, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2178.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2178.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,16,6,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.506159993\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.5157648.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 123x^{2} - 132x + 2148 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 726)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + (\beta_{2} - 2 \beta_1 + 2) q^{5} + (\beta_{3} - \beta_{2} - 2 \beta_1 + 2) q^{7} - 8 q^{8} + ( - 2 \beta_{2} + 4 \beta_1 - 4) q^{10} + ( - \beta_{3} - 3 \beta_{2} + 13 \beta_1 + 2) q^{13}+ \cdots + (8 \beta_{3} + 2 \beta_{2} + \cdots - 340) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 16 q^{4} + 6 q^{5} + 12 q^{7} - 32 q^{8} - 12 q^{10} + 12 q^{13} - 24 q^{14} + 64 q^{16} - 108 q^{17} + 192 q^{19} + 24 q^{20} - 156 q^{23} + 286 q^{25} - 24 q^{26} + 48 q^{28} - 408 q^{29}+ \cdots - 1348 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 123x^{2} - 132x + 2148 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 22\nu^{2} - 63\nu + 1254 ) / 424 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 11\nu^{3} - 30\nu^{2} - 693\nu + 650 ) / 212 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -21\nu^{3} + 38\nu^{2} + 2595\nu - 46 ) / 424 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 22\beta _1 + 62 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 21\beta_{3} + 43\beta_{2} - 81\beta _1 + 110 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−9.07657
3.89264
−5.62469
10.8086
−2.00000 0 4.00000 −12.2570 0 11.9445 −8.00000 0 24.5139
1.2 −2.00000 0 4.00000 −10.2063 0 29.4304 −8.00000 0 20.4127
1.3 −2.00000 0 4.00000 6.27815 0 −32.0906 −8.00000 0 −12.5563
1.4 −2.00000 0 4.00000 22.1852 0 2.71575 −8.00000 0 −44.3703
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2178.4.a.bx 4
3.b odd 2 1 726.4.a.y yes 4
11.b odd 2 1 2178.4.a.cb 4
33.d even 2 1 726.4.a.v 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
726.4.a.v 4 33.d even 2 1
726.4.a.y yes 4 3.b odd 2 1
2178.4.a.bx 4 1.a even 1 1 trivial
2178.4.a.cb 4 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2178))\):

\( T_{5}^{4} - 6T_{5}^{3} - 375T_{5}^{2} - 432T_{5} + 17424 \) Copy content Toggle raw display
\( T_{7}^{4} - 12T_{7}^{3} - 951T_{7}^{2} + 13932T_{7} - 30636 \) Copy content Toggle raw display
\( T_{17}^{4} + 108T_{17}^{3} - 4671T_{17}^{2} - 625968T_{17} - 11710656 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 6 T^{3} + \cdots + 17424 \) Copy content Toggle raw display
$7$ \( T^{4} - 12 T^{3} + \cdots - 30636 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 12 T^{3} + \cdots - 2567808 \) Copy content Toggle raw display
$17$ \( T^{4} + 108 T^{3} + \cdots - 11710656 \) Copy content Toggle raw display
$19$ \( T^{4} - 192 T^{3} + \cdots - 3118896 \) Copy content Toggle raw display
$23$ \( T^{4} + 156 T^{3} + \cdots + 177076944 \) Copy content Toggle raw display
$29$ \( T^{4} + 408 T^{3} + \cdots + 56524068 \) Copy content Toggle raw display
$31$ \( T^{4} + 26 T^{3} + \cdots + 549207376 \) Copy content Toggle raw display
$37$ \( T^{4} + 224 T^{3} + \cdots - 691955147 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 3970969596 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 15489329328 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 34460360064 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 6826674492 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 13387922064 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 1167035616 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 39899770364 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 4103639424 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 11096170416 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 80077424544 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 152428283136 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 37459324512 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 411402264937 \) Copy content Toggle raw display
show more
show less