Properties

Label 2178.3.d.n.1693.15
Level $2178$
Weight $3$
Character 2178.1693
Analytic conductor $59.346$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2178,3,Mod(1693,2178)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2178.1693"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2178, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2178.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.3462015777\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 889x^{12} - 18240x^{10} + 235606x^{8} - 2565840x^{6} + 30314764x^{4} - 184688100x^{2} + 519885601 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 11^{4} \)
Twist minimal: no (minimal twist has level 198)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1693.15
Root \(2.29126 - 0.744477i\) of defining polynomial
Character \(\chi\) \(=\) 2178.1693
Dual form 2178.3.d.n.1693.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +5.68763 q^{5} -10.8351i q^{7} -2.82843i q^{8} +8.04353i q^{10} -4.50286i q^{13} +15.3231 q^{14} +4.00000 q^{16} -17.4537i q^{17} -33.6518i q^{19} -11.3753 q^{20} +7.03543 q^{23} +7.34916 q^{25} +6.36801 q^{26} +21.6701i q^{28} +54.2307i q^{29} -38.4817 q^{31} +5.65685i q^{32} +24.6833 q^{34} -61.6259i q^{35} -20.0715 q^{37} +47.5908 q^{38} -16.0871i q^{40} +15.0259i q^{41} -67.5682i q^{43} +9.94960i q^{46} -29.8783 q^{47} -68.3988 q^{49} +10.3933i q^{50} +9.00572i q^{52} -15.5208 q^{53} -30.6462 q^{56} -76.6938 q^{58} -38.7571 q^{59} +40.9048i q^{61} -54.4213i q^{62} -8.00000 q^{64} -25.6106i q^{65} -33.1092 q^{67} +34.9075i q^{68} +87.1522 q^{70} +86.4062 q^{71} +101.171i q^{73} -28.3854i q^{74} +67.3036i q^{76} -50.0905i q^{79} +22.7505 q^{80} -21.2498 q^{82} +14.6875i q^{83} -99.2704i q^{85} +95.5559 q^{86} -81.0524 q^{89} -48.7888 q^{91} -14.0709 q^{92} -42.2543i q^{94} -191.399i q^{95} +24.7275 q^{97} -96.7305i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{4} + 64 q^{16} + 136 q^{25} + 40 q^{31} - 64 q^{34} + 240 q^{37} - 544 q^{49} - 320 q^{58} - 128 q^{64} - 280 q^{67} + 256 q^{70} - 400 q^{82} - 32 q^{91} + 520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2178\mathbb{Z}\right)^\times\).

\(n\) \(1333\) \(1937\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 5.68763 1.13753 0.568763 0.822501i \(-0.307422\pi\)
0.568763 + 0.822501i \(0.307422\pi\)
\(6\) 0 0
\(7\) − 10.8351i − 1.54787i −0.633267 0.773934i \(-0.718286\pi\)
0.633267 0.773934i \(-0.281714\pi\)
\(8\) − 2.82843i − 0.353553i
\(9\) 0 0
\(10\) 8.04353i 0.804353i
\(11\) 0 0
\(12\) 0 0
\(13\) − 4.50286i − 0.346374i −0.984889 0.173187i \(-0.944594\pi\)
0.984889 0.173187i \(-0.0554065\pi\)
\(14\) 15.3231 1.09451
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 17.4537i − 1.02669i −0.858182 0.513345i \(-0.828406\pi\)
0.858182 0.513345i \(-0.171594\pi\)
\(18\) 0 0
\(19\) − 33.6518i − 1.77115i −0.464499 0.885574i \(-0.653765\pi\)
0.464499 0.885574i \(-0.346235\pi\)
\(20\) −11.3753 −0.568763
\(21\) 0 0
\(22\) 0 0
\(23\) 7.03543 0.305888 0.152944 0.988235i \(-0.451125\pi\)
0.152944 + 0.988235i \(0.451125\pi\)
\(24\) 0 0
\(25\) 7.34916 0.293966
\(26\) 6.36801 0.244923
\(27\) 0 0
\(28\) 21.6701i 0.773934i
\(29\) 54.2307i 1.87003i 0.354614 + 0.935013i \(0.384612\pi\)
−0.354614 + 0.935013i \(0.615388\pi\)
\(30\) 0 0
\(31\) −38.4817 −1.24134 −0.620672 0.784070i \(-0.713140\pi\)
−0.620672 + 0.784070i \(0.713140\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 24.6833 0.725979
\(35\) − 61.6259i − 1.76074i
\(36\) 0 0
\(37\) −20.0715 −0.542474 −0.271237 0.962513i \(-0.587433\pi\)
−0.271237 + 0.962513i \(0.587433\pi\)
\(38\) 47.5908 1.25239
\(39\) 0 0
\(40\) − 16.0871i − 0.402176i
\(41\) 15.0259i 0.366485i 0.983068 + 0.183243i \(0.0586594\pi\)
−0.983068 + 0.183243i \(0.941341\pi\)
\(42\) 0 0
\(43\) − 67.5682i − 1.57135i −0.618637 0.785677i \(-0.712315\pi\)
0.618637 0.785677i \(-0.287685\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 9.94960i 0.216296i
\(47\) −29.8783 −0.635709 −0.317854 0.948140i \(-0.602962\pi\)
−0.317854 + 0.948140i \(0.602962\pi\)
\(48\) 0 0
\(49\) −68.3988 −1.39589
\(50\) 10.3933i 0.207866i
\(51\) 0 0
\(52\) 9.00572i 0.173187i
\(53\) −15.5208 −0.292845 −0.146422 0.989222i \(-0.546776\pi\)
−0.146422 + 0.989222i \(0.546776\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −30.6462 −0.547254
\(57\) 0 0
\(58\) −76.6938 −1.32231
\(59\) −38.7571 −0.656901 −0.328450 0.944521i \(-0.606526\pi\)
−0.328450 + 0.944521i \(0.606526\pi\)
\(60\) 0 0
\(61\) 40.9048i 0.670571i 0.942117 + 0.335286i \(0.108833\pi\)
−0.942117 + 0.335286i \(0.891167\pi\)
\(62\) − 54.4213i − 0.877763i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) − 25.6106i − 0.394010i
\(66\) 0 0
\(67\) −33.1092 −0.494167 −0.247083 0.968994i \(-0.579472\pi\)
−0.247083 + 0.968994i \(0.579472\pi\)
\(68\) 34.9075i 0.513345i
\(69\) 0 0
\(70\) 87.1522 1.24503
\(71\) 86.4062 1.21699 0.608495 0.793558i \(-0.291774\pi\)
0.608495 + 0.793558i \(0.291774\pi\)
\(72\) 0 0
\(73\) 101.171i 1.38590i 0.720986 + 0.692950i \(0.243689\pi\)
−0.720986 + 0.692950i \(0.756311\pi\)
\(74\) − 28.3854i − 0.383587i
\(75\) 0 0
\(76\) 67.3036i 0.885574i
\(77\) 0 0
\(78\) 0 0
\(79\) − 50.0905i − 0.634057i −0.948416 0.317029i \(-0.897315\pi\)
0.948416 0.317029i \(-0.102685\pi\)
\(80\) 22.7505 0.284382
\(81\) 0 0
\(82\) −21.2498 −0.259144
\(83\) 14.6875i 0.176958i 0.996078 + 0.0884789i \(0.0282006\pi\)
−0.996078 + 0.0884789i \(0.971799\pi\)
\(84\) 0 0
\(85\) − 99.2704i − 1.16789i
\(86\) 95.5559 1.11112
\(87\) 0 0
\(88\) 0 0
\(89\) −81.0524 −0.910701 −0.455350 0.890312i \(-0.650486\pi\)
−0.455350 + 0.890312i \(0.650486\pi\)
\(90\) 0 0
\(91\) −48.7888 −0.536141
\(92\) −14.0709 −0.152944
\(93\) 0 0
\(94\) − 42.2543i − 0.449514i
\(95\) − 191.399i − 2.01473i
\(96\) 0 0
\(97\) 24.7275 0.254923 0.127462 0.991844i \(-0.459317\pi\)
0.127462 + 0.991844i \(0.459317\pi\)
\(98\) − 96.7305i − 0.987046i
\(99\) 0 0
\(100\) −14.6983 −0.146983
\(101\) − 113.069i − 1.11950i −0.828662 0.559750i \(-0.810897\pi\)
0.828662 0.559750i \(-0.189103\pi\)
\(102\) 0 0
\(103\) −36.8203 −0.357478 −0.178739 0.983896i \(-0.557202\pi\)
−0.178739 + 0.983896i \(0.557202\pi\)
\(104\) −12.7360 −0.122462
\(105\) 0 0
\(106\) − 21.9497i − 0.207073i
\(107\) 201.032i 1.87880i 0.342819 + 0.939401i \(0.388618\pi\)
−0.342819 + 0.939401i \(0.611382\pi\)
\(108\) 0 0
\(109\) 116.981i 1.07322i 0.843831 + 0.536608i \(0.180295\pi\)
−0.843831 + 0.536608i \(0.819705\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 43.3403i − 0.386967i
\(113\) −194.964 −1.72534 −0.862672 0.505764i \(-0.831211\pi\)
−0.862672 + 0.505764i \(0.831211\pi\)
\(114\) 0 0
\(115\) 40.0149 0.347956
\(116\) − 108.461i − 0.935013i
\(117\) 0 0
\(118\) − 54.8109i − 0.464499i
\(119\) −189.112 −1.58918
\(120\) 0 0
\(121\) 0 0
\(122\) −57.8482 −0.474165
\(123\) 0 0
\(124\) 76.9633 0.620672
\(125\) −100.391 −0.803132
\(126\) 0 0
\(127\) 80.7585i 0.635894i 0.948109 + 0.317947i \(0.102993\pi\)
−0.948109 + 0.317947i \(0.897007\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) 0 0
\(130\) 36.2189 0.278607
\(131\) 14.5488i 0.111060i 0.998457 + 0.0555298i \(0.0176848\pi\)
−0.998457 + 0.0555298i \(0.982315\pi\)
\(132\) 0 0
\(133\) −364.620 −2.74150
\(134\) − 46.8235i − 0.349429i
\(135\) 0 0
\(136\) −49.3666 −0.362990
\(137\) 112.819 0.823499 0.411750 0.911297i \(-0.364918\pi\)
0.411750 + 0.911297i \(0.364918\pi\)
\(138\) 0 0
\(139\) 36.4088i 0.261934i 0.991387 + 0.130967i \(0.0418082\pi\)
−0.991387 + 0.130967i \(0.958192\pi\)
\(140\) 123.252i 0.880370i
\(141\) 0 0
\(142\) 122.197i 0.860541i
\(143\) 0 0
\(144\) 0 0
\(145\) 308.444i 2.12720i
\(146\) −143.077 −0.979979
\(147\) 0 0
\(148\) 40.1431 0.271237
\(149\) − 272.954i − 1.83190i −0.401288 0.915952i \(-0.631437\pi\)
0.401288 0.915952i \(-0.368563\pi\)
\(150\) 0 0
\(151\) − 40.6044i − 0.268904i −0.990920 0.134452i \(-0.957073\pi\)
0.990920 0.134452i \(-0.0429273\pi\)
\(152\) −95.1817 −0.626195
\(153\) 0 0
\(154\) 0 0
\(155\) −218.870 −1.41206
\(156\) 0 0
\(157\) −165.215 −1.05232 −0.526161 0.850385i \(-0.676369\pi\)
−0.526161 + 0.850385i \(0.676369\pi\)
\(158\) 70.8387 0.448346
\(159\) 0 0
\(160\) 32.1741i 0.201088i
\(161\) − 76.2294i − 0.473474i
\(162\) 0 0
\(163\) −220.927 −1.35538 −0.677691 0.735347i \(-0.737019\pi\)
−0.677691 + 0.735347i \(0.737019\pi\)
\(164\) − 30.0518i − 0.183243i
\(165\) 0 0
\(166\) −20.7713 −0.125128
\(167\) − 203.934i − 1.22116i −0.791954 0.610581i \(-0.790936\pi\)
0.791954 0.610581i \(-0.209064\pi\)
\(168\) 0 0
\(169\) 148.724 0.880025
\(170\) 140.390 0.825821
\(171\) 0 0
\(172\) 135.136i 0.785677i
\(173\) − 281.078i − 1.62473i −0.583150 0.812365i \(-0.698180\pi\)
0.583150 0.812365i \(-0.301820\pi\)
\(174\) 0 0
\(175\) − 79.6287i − 0.455021i
\(176\) 0 0
\(177\) 0 0
\(178\) − 114.625i − 0.643963i
\(179\) 145.463 0.812645 0.406323 0.913730i \(-0.366811\pi\)
0.406323 + 0.913730i \(0.366811\pi\)
\(180\) 0 0
\(181\) 225.091 1.24360 0.621798 0.783178i \(-0.286403\pi\)
0.621798 + 0.783178i \(0.286403\pi\)
\(182\) − 68.9978i − 0.379109i
\(183\) 0 0
\(184\) − 19.8992i − 0.108148i
\(185\) −114.159 −0.617078
\(186\) 0 0
\(187\) 0 0
\(188\) 59.7566 0.317854
\(189\) 0 0
\(190\) 270.679 1.42463
\(191\) 249.843 1.30808 0.654039 0.756460i \(-0.273073\pi\)
0.654039 + 0.756460i \(0.273073\pi\)
\(192\) 0 0
\(193\) 6.69041i 0.0346653i 0.999850 + 0.0173327i \(0.00551743\pi\)
−0.999850 + 0.0173327i \(0.994483\pi\)
\(194\) 34.9700i 0.180258i
\(195\) 0 0
\(196\) 136.798 0.697947
\(197\) − 258.538i − 1.31237i −0.754598 0.656187i \(-0.772168\pi\)
0.754598 0.656187i \(-0.227832\pi\)
\(198\) 0 0
\(199\) 235.298 1.18240 0.591200 0.806525i \(-0.298654\pi\)
0.591200 + 0.806525i \(0.298654\pi\)
\(200\) − 20.7866i − 0.103933i
\(201\) 0 0
\(202\) 159.904 0.791606
\(203\) 587.594 2.89455
\(204\) 0 0
\(205\) 85.4618i 0.416887i
\(206\) − 52.0717i − 0.252775i
\(207\) 0 0
\(208\) − 18.0114i − 0.0865935i
\(209\) 0 0
\(210\) 0 0
\(211\) 32.1659i 0.152445i 0.997091 + 0.0762224i \(0.0242859\pi\)
−0.997091 + 0.0762224i \(0.975714\pi\)
\(212\) 31.0416 0.146422
\(213\) 0 0
\(214\) −284.302 −1.32851
\(215\) − 384.303i − 1.78746i
\(216\) 0 0
\(217\) 416.952i 1.92144i
\(218\) −165.436 −0.758879
\(219\) 0 0
\(220\) 0 0
\(221\) −78.5917 −0.355619
\(222\) 0 0
\(223\) −173.304 −0.777148 −0.388574 0.921418i \(-0.627032\pi\)
−0.388574 + 0.921418i \(0.627032\pi\)
\(224\) 61.2924 0.273627
\(225\) 0 0
\(226\) − 275.720i − 1.22000i
\(227\) − 2.22668i − 0.00980918i −0.999988 0.00490459i \(-0.998439\pi\)
0.999988 0.00490459i \(-0.00156119\pi\)
\(228\) 0 0
\(229\) 314.248 1.37226 0.686130 0.727479i \(-0.259308\pi\)
0.686130 + 0.727479i \(0.259308\pi\)
\(230\) 56.5896i 0.246042i
\(231\) 0 0
\(232\) 153.388 0.661154
\(233\) − 127.192i − 0.545888i −0.962030 0.272944i \(-0.912003\pi\)
0.962030 0.272944i \(-0.0879975\pi\)
\(234\) 0 0
\(235\) −169.937 −0.723136
\(236\) 77.5143 0.328450
\(237\) 0 0
\(238\) − 267.445i − 1.12372i
\(239\) 159.300i 0.666528i 0.942834 + 0.333264i \(0.108150\pi\)
−0.942834 + 0.333264i \(0.891850\pi\)
\(240\) 0 0
\(241\) − 265.125i − 1.10010i −0.835131 0.550051i \(-0.814608\pi\)
0.835131 0.550051i \(-0.185392\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) − 81.8097i − 0.335286i
\(245\) −389.027 −1.58787
\(246\) 0 0
\(247\) −151.529 −0.613479
\(248\) 108.843i 0.438881i
\(249\) 0 0
\(250\) − 141.975i − 0.567900i
\(251\) 188.313 0.750250 0.375125 0.926974i \(-0.377600\pi\)
0.375125 + 0.926974i \(0.377600\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −114.210 −0.449645
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 301.419 1.17284 0.586418 0.810009i \(-0.300538\pi\)
0.586418 + 0.810009i \(0.300538\pi\)
\(258\) 0 0
\(259\) 217.476i 0.839677i
\(260\) 51.2212i 0.197005i
\(261\) 0 0
\(262\) −20.5751 −0.0785310
\(263\) − 409.440i − 1.55681i −0.627764 0.778404i \(-0.716030\pi\)
0.627764 0.778404i \(-0.283970\pi\)
\(264\) 0 0
\(265\) −88.2765 −0.333119
\(266\) − 515.650i − 1.93853i
\(267\) 0 0
\(268\) 66.2184 0.247083
\(269\) 195.927 0.728352 0.364176 0.931330i \(-0.381351\pi\)
0.364176 + 0.931330i \(0.381351\pi\)
\(270\) 0 0
\(271\) − 109.464i − 0.403928i −0.979393 0.201964i \(-0.935268\pi\)
0.979393 0.201964i \(-0.0647324\pi\)
\(272\) − 69.8149i − 0.256672i
\(273\) 0 0
\(274\) 159.551i 0.582302i
\(275\) 0 0
\(276\) 0 0
\(277\) − 202.397i − 0.730676i −0.930875 0.365338i \(-0.880953\pi\)
0.930875 0.365338i \(-0.119047\pi\)
\(278\) −51.4898 −0.185215
\(279\) 0 0
\(280\) −174.304 −0.622516
\(281\) 217.045i 0.772402i 0.922415 + 0.386201i \(0.126213\pi\)
−0.922415 + 0.386201i \(0.873787\pi\)
\(282\) 0 0
\(283\) − 181.771i − 0.642302i −0.947028 0.321151i \(-0.895930\pi\)
0.947028 0.321151i \(-0.104070\pi\)
\(284\) −172.812 −0.608495
\(285\) 0 0
\(286\) 0 0
\(287\) 162.807 0.567271
\(288\) 0 0
\(289\) −15.6326 −0.0540920
\(290\) −436.206 −1.50416
\(291\) 0 0
\(292\) − 202.341i − 0.692950i
\(293\) 66.2418i 0.226081i 0.993590 + 0.113041i \(0.0360590\pi\)
−0.993590 + 0.113041i \(0.963941\pi\)
\(294\) 0 0
\(295\) −220.436 −0.747242
\(296\) 56.7709i 0.191793i
\(297\) 0 0
\(298\) 386.015 1.29535
\(299\) − 31.6796i − 0.105952i
\(300\) 0 0
\(301\) −732.107 −2.43225
\(302\) 57.4234 0.190144
\(303\) 0 0
\(304\) − 134.607i − 0.442787i
\(305\) 232.652i 0.762792i
\(306\) 0 0
\(307\) − 596.201i − 1.94202i −0.239034 0.971011i \(-0.576831\pi\)
0.239034 0.971011i \(-0.423169\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) − 309.528i − 0.998479i
\(311\) 165.904 0.533453 0.266726 0.963772i \(-0.414058\pi\)
0.266726 + 0.963772i \(0.414058\pi\)
\(312\) 0 0
\(313\) 350.003 1.11822 0.559110 0.829094i \(-0.311143\pi\)
0.559110 + 0.829094i \(0.311143\pi\)
\(314\) − 233.649i − 0.744104i
\(315\) 0 0
\(316\) 100.181i 0.317029i
\(317\) −76.1277 −0.240150 −0.120075 0.992765i \(-0.538314\pi\)
−0.120075 + 0.992765i \(0.538314\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −45.5011 −0.142191
\(321\) 0 0
\(322\) 107.805 0.334797
\(323\) −587.349 −1.81842
\(324\) 0 0
\(325\) − 33.0922i − 0.101822i
\(326\) − 312.438i − 0.958399i
\(327\) 0 0
\(328\) 42.4997 0.129572
\(329\) 323.734i 0.983993i
\(330\) 0 0
\(331\) 498.082 1.50478 0.752390 0.658718i \(-0.228901\pi\)
0.752390 + 0.658718i \(0.228901\pi\)
\(332\) − 29.3750i − 0.0884789i
\(333\) 0 0
\(334\) 288.406 0.863491
\(335\) −188.313 −0.562128
\(336\) 0 0
\(337\) − 282.275i − 0.837611i −0.908076 0.418805i \(-0.862449\pi\)
0.908076 0.418805i \(-0.137551\pi\)
\(338\) 210.328i 0.622272i
\(339\) 0 0
\(340\) 198.541i 0.583943i
\(341\) 0 0
\(342\) 0 0
\(343\) 210.187i 0.612791i
\(344\) −191.112 −0.555558
\(345\) 0 0
\(346\) 397.505 1.14886
\(347\) − 197.453i − 0.569029i −0.958672 0.284514i \(-0.908168\pi\)
0.958672 0.284514i \(-0.0918324\pi\)
\(348\) 0 0
\(349\) 214.148i 0.613604i 0.951773 + 0.306802i \(0.0992589\pi\)
−0.951773 + 0.306802i \(0.900741\pi\)
\(350\) 112.612 0.321748
\(351\) 0 0
\(352\) 0 0
\(353\) −610.069 −1.72824 −0.864120 0.503285i \(-0.832124\pi\)
−0.864120 + 0.503285i \(0.832124\pi\)
\(354\) 0 0
\(355\) 491.447 1.38436
\(356\) 162.105 0.455350
\(357\) 0 0
\(358\) 205.716i 0.574627i
\(359\) − 585.274i − 1.63029i −0.579258 0.815144i \(-0.696658\pi\)
0.579258 0.815144i \(-0.303342\pi\)
\(360\) 0 0
\(361\) −771.444 −2.13696
\(362\) 318.327i 0.879355i
\(363\) 0 0
\(364\) 97.5776 0.268070
\(365\) 575.422i 1.57650i
\(366\) 0 0
\(367\) −244.776 −0.666964 −0.333482 0.942756i \(-0.608224\pi\)
−0.333482 + 0.942756i \(0.608224\pi\)
\(368\) 28.1417 0.0764720
\(369\) 0 0
\(370\) − 161.446i − 0.436340i
\(371\) 168.169i 0.453285i
\(372\) 0 0
\(373\) − 141.374i − 0.379017i −0.981879 0.189509i \(-0.939310\pi\)
0.981879 0.189509i \(-0.0606895\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 84.5086i 0.224757i
\(377\) 244.193 0.647728
\(378\) 0 0
\(379\) −6.22172 −0.0164162 −0.00820808 0.999966i \(-0.502613\pi\)
−0.00820808 + 0.999966i \(0.502613\pi\)
\(380\) 382.798i 1.00736i
\(381\) 0 0
\(382\) 353.331i 0.924951i
\(383\) 335.463 0.875883 0.437942 0.899003i \(-0.355708\pi\)
0.437942 + 0.899003i \(0.355708\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −9.46166 −0.0245121
\(387\) 0 0
\(388\) −49.4551 −0.127462
\(389\) −128.680 −0.330798 −0.165399 0.986227i \(-0.552891\pi\)
−0.165399 + 0.986227i \(0.552891\pi\)
\(390\) 0 0
\(391\) − 122.794i − 0.314052i
\(392\) 193.461i 0.493523i
\(393\) 0 0
\(394\) 365.628 0.927989
\(395\) − 284.896i − 0.721257i
\(396\) 0 0
\(397\) −386.412 −0.973331 −0.486666 0.873588i \(-0.661787\pi\)
−0.486666 + 0.873588i \(0.661787\pi\)
\(398\) 332.761i 0.836083i
\(399\) 0 0
\(400\) 29.3966 0.0734916
\(401\) −72.7085 −0.181318 −0.0906590 0.995882i \(-0.528897\pi\)
−0.0906590 + 0.995882i \(0.528897\pi\)
\(402\) 0 0
\(403\) 173.278i 0.429969i
\(404\) 226.139i 0.559750i
\(405\) 0 0
\(406\) 830.983i 2.04676i
\(407\) 0 0
\(408\) 0 0
\(409\) 395.368i 0.966670i 0.875435 + 0.483335i \(0.160575\pi\)
−0.875435 + 0.483335i \(0.839425\pi\)
\(410\) −120.861 −0.294783
\(411\) 0 0
\(412\) 73.6406 0.178739
\(413\) 419.936i 1.01680i
\(414\) 0 0
\(415\) 83.5371i 0.201294i
\(416\) 25.4720 0.0612308
\(417\) 0 0
\(418\) 0 0
\(419\) 33.9782 0.0810936 0.0405468 0.999178i \(-0.487090\pi\)
0.0405468 + 0.999178i \(0.487090\pi\)
\(420\) 0 0
\(421\) 16.5930 0.0394133 0.0197066 0.999806i \(-0.493727\pi\)
0.0197066 + 0.999806i \(0.493727\pi\)
\(422\) −45.4894 −0.107795
\(423\) 0 0
\(424\) 43.8994i 0.103536i
\(425\) − 128.270i − 0.301812i
\(426\) 0 0
\(427\) 443.207 1.03796
\(428\) − 402.064i − 0.939401i
\(429\) 0 0
\(430\) 543.487 1.26392
\(431\) − 123.648i − 0.286885i −0.989659 0.143443i \(-0.954183\pi\)
0.989659 0.143443i \(-0.0458173\pi\)
\(432\) 0 0
\(433\) 341.768 0.789303 0.394651 0.918831i \(-0.370865\pi\)
0.394651 + 0.918831i \(0.370865\pi\)
\(434\) −589.659 −1.35866
\(435\) 0 0
\(436\) − 233.961i − 0.536608i
\(437\) − 236.755i − 0.541773i
\(438\) 0 0
\(439\) − 552.255i − 1.25798i −0.777412 0.628992i \(-0.783468\pi\)
0.777412 0.628992i \(-0.216532\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 111.145i − 0.251460i
\(443\) 5.10301 0.0115192 0.00575960 0.999983i \(-0.498167\pi\)
0.00575960 + 0.999983i \(0.498167\pi\)
\(444\) 0 0
\(445\) −460.996 −1.03595
\(446\) − 245.089i − 0.549527i
\(447\) 0 0
\(448\) 86.6806i 0.193483i
\(449\) −267.632 −0.596062 −0.298031 0.954556i \(-0.596330\pi\)
−0.298031 + 0.954556i \(0.596330\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 389.928 0.862672
\(453\) 0 0
\(454\) 3.14901 0.00693614
\(455\) −277.493 −0.609874
\(456\) 0 0
\(457\) − 209.812i − 0.459107i −0.973296 0.229553i \(-0.926273\pi\)
0.973296 0.229553i \(-0.0737265\pi\)
\(458\) 444.413i 0.970335i
\(459\) 0 0
\(460\) −80.0298 −0.173978
\(461\) 710.734i 1.54172i 0.637003 + 0.770862i \(0.280174\pi\)
−0.637003 + 0.770862i \(0.719826\pi\)
\(462\) 0 0
\(463\) −546.690 −1.18076 −0.590378 0.807127i \(-0.701021\pi\)
−0.590378 + 0.807127i \(0.701021\pi\)
\(464\) 216.923i 0.467506i
\(465\) 0 0
\(466\) 179.877 0.386001
\(467\) −317.845 −0.680610 −0.340305 0.940315i \(-0.610530\pi\)
−0.340305 + 0.940315i \(0.610530\pi\)
\(468\) 0 0
\(469\) 358.740i 0.764905i
\(470\) − 240.327i − 0.511334i
\(471\) 0 0
\(472\) 109.622i 0.232250i
\(473\) 0 0
\(474\) 0 0
\(475\) − 247.312i − 0.520658i
\(476\) 378.225 0.794590
\(477\) 0 0
\(478\) −225.284 −0.471306
\(479\) 7.87229i 0.0164348i 0.999966 + 0.00821742i \(0.00261572\pi\)
−0.999966 + 0.00821742i \(0.997384\pi\)
\(480\) 0 0
\(481\) 90.3793i 0.187899i
\(482\) 374.943 0.777890
\(483\) 0 0
\(484\) 0 0
\(485\) 140.641 0.289982
\(486\) 0 0
\(487\) 281.751 0.578544 0.289272 0.957247i \(-0.406587\pi\)
0.289272 + 0.957247i \(0.406587\pi\)
\(488\) 115.696 0.237083
\(489\) 0 0
\(490\) − 550.167i − 1.12279i
\(491\) 819.603i 1.66925i 0.550816 + 0.834627i \(0.314317\pi\)
−0.550816 + 0.834627i \(0.685683\pi\)
\(492\) 0 0
\(493\) 946.528 1.91994
\(494\) − 214.295i − 0.433795i
\(495\) 0 0
\(496\) −153.927 −0.310336
\(497\) − 936.218i − 1.88374i
\(498\) 0 0
\(499\) 9.99727 0.0200346 0.0100173 0.999950i \(-0.496811\pi\)
0.0100173 + 0.999950i \(0.496811\pi\)
\(500\) 200.783 0.401566
\(501\) 0 0
\(502\) 266.315i 0.530507i
\(503\) − 250.288i − 0.497591i −0.968556 0.248796i \(-0.919965\pi\)
0.968556 0.248796i \(-0.0800348\pi\)
\(504\) 0 0
\(505\) − 643.097i − 1.27346i
\(506\) 0 0
\(507\) 0 0
\(508\) − 161.517i − 0.317947i
\(509\) −23.3774 −0.0459281 −0.0229640 0.999736i \(-0.507310\pi\)
−0.0229640 + 0.999736i \(0.507310\pi\)
\(510\) 0 0
\(511\) 1096.19 2.14519
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 426.271i 0.829320i
\(515\) −209.420 −0.406641
\(516\) 0 0
\(517\) 0 0
\(518\) −307.558 −0.593742
\(519\) 0 0
\(520\) −72.4378 −0.139303
\(521\) 525.279 1.00821 0.504106 0.863642i \(-0.331822\pi\)
0.504106 + 0.863642i \(0.331822\pi\)
\(522\) 0 0
\(523\) − 426.352i − 0.815204i −0.913160 0.407602i \(-0.866365\pi\)
0.913160 0.407602i \(-0.133635\pi\)
\(524\) − 29.0976i − 0.0555298i
\(525\) 0 0
\(526\) 579.036 1.10083
\(527\) 671.649i 1.27448i
\(528\) 0 0
\(529\) −479.503 −0.906432
\(530\) − 124.842i − 0.235551i
\(531\) 0 0
\(532\) 729.239 1.37075
\(533\) 67.6595 0.126941
\(534\) 0 0
\(535\) 1143.40i 2.13719i
\(536\) 93.6469i 0.174714i
\(537\) 0 0
\(538\) 277.082i 0.515022i
\(539\) 0 0
\(540\) 0 0
\(541\) 572.341i 1.05793i 0.848643 + 0.528966i \(0.177420\pi\)
−0.848643 + 0.528966i \(0.822580\pi\)
\(542\) 154.806 0.285620
\(543\) 0 0
\(544\) 98.7332 0.181495
\(545\) 665.343i 1.22081i
\(546\) 0 0
\(547\) − 178.116i − 0.325623i −0.986657 0.162811i \(-0.947944\pi\)
0.986657 0.162811i \(-0.0520562\pi\)
\(548\) −225.639 −0.411750
\(549\) 0 0
\(550\) 0 0
\(551\) 1824.96 3.31209
\(552\) 0 0
\(553\) −542.734 −0.981436
\(554\) 286.233 0.516666
\(555\) 0 0
\(556\) − 72.8176i − 0.130967i
\(557\) 404.515i 0.726239i 0.931743 + 0.363120i \(0.118288\pi\)
−0.931743 + 0.363120i \(0.881712\pi\)
\(558\) 0 0
\(559\) −304.250 −0.544276
\(560\) − 246.504i − 0.440185i
\(561\) 0 0
\(562\) −306.948 −0.546171
\(563\) 1018.64i 1.80930i 0.426151 + 0.904652i \(0.359869\pi\)
−0.426151 + 0.904652i \(0.640131\pi\)
\(564\) 0 0
\(565\) −1108.88 −1.96262
\(566\) 257.064 0.454176
\(567\) 0 0
\(568\) − 244.394i − 0.430271i
\(569\) − 738.074i − 1.29714i −0.761154 0.648571i \(-0.775367\pi\)
0.761154 0.648571i \(-0.224633\pi\)
\(570\) 0 0
\(571\) 650.748i 1.13966i 0.821762 + 0.569832i \(0.192992\pi\)
−0.821762 + 0.569832i \(0.807008\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 230.243i 0.401121i
\(575\) 51.7045 0.0899208
\(576\) 0 0
\(577\) −829.069 −1.43686 −0.718431 0.695598i \(-0.755139\pi\)
−0.718431 + 0.695598i \(0.755139\pi\)
\(578\) − 22.1078i − 0.0382488i
\(579\) 0 0
\(580\) − 616.889i − 1.06360i
\(581\) 159.140 0.273907
\(582\) 0 0
\(583\) 0 0
\(584\) 286.154 0.489990
\(585\) 0 0
\(586\) −93.6801 −0.159864
\(587\) 742.508 1.26492 0.632460 0.774593i \(-0.282045\pi\)
0.632460 + 0.774593i \(0.282045\pi\)
\(588\) 0 0
\(589\) 1294.98i 2.19860i
\(590\) − 311.744i − 0.528380i
\(591\) 0 0
\(592\) −80.2861 −0.135618
\(593\) − 360.480i − 0.607891i −0.952689 0.303946i \(-0.901696\pi\)
0.952689 0.303946i \(-0.0983041\pi\)
\(594\) 0 0
\(595\) −1075.60 −1.80773
\(596\) 545.907i 0.915952i
\(597\) 0 0
\(598\) 44.8017 0.0749192
\(599\) −291.934 −0.487369 −0.243684 0.969855i \(-0.578356\pi\)
−0.243684 + 0.969855i \(0.578356\pi\)
\(600\) 0 0
\(601\) − 806.103i − 1.34127i −0.741788 0.670635i \(-0.766022\pi\)
0.741788 0.670635i \(-0.233978\pi\)
\(602\) − 1035.36i − 1.71986i
\(603\) 0 0
\(604\) 81.2089i 0.134452i
\(605\) 0 0
\(606\) 0 0
\(607\) − 143.096i − 0.235742i −0.993029 0.117871i \(-0.962393\pi\)
0.993029 0.117871i \(-0.0376070\pi\)
\(608\) 190.363 0.313098
\(609\) 0 0
\(610\) −329.019 −0.539376
\(611\) 134.538i 0.220193i
\(612\) 0 0
\(613\) 399.809i 0.652217i 0.945332 + 0.326108i \(0.105737\pi\)
−0.945332 + 0.326108i \(0.894263\pi\)
\(614\) 843.155 1.37322
\(615\) 0 0
\(616\) 0 0
\(617\) −366.869 −0.594602 −0.297301 0.954784i \(-0.596086\pi\)
−0.297301 + 0.954784i \(0.596086\pi\)
\(618\) 0 0
\(619\) −837.536 −1.35305 −0.676523 0.736421i \(-0.736514\pi\)
−0.676523 + 0.736421i \(0.736514\pi\)
\(620\) 437.739 0.706031
\(621\) 0 0
\(622\) 234.624i 0.377208i
\(623\) 878.208i 1.40964i
\(624\) 0 0
\(625\) −754.719 −1.20755
\(626\) 494.979i 0.790701i
\(627\) 0 0
\(628\) 330.429 0.526161
\(629\) 350.323i 0.556952i
\(630\) 0 0
\(631\) 444.227 0.704004 0.352002 0.935999i \(-0.385501\pi\)
0.352002 + 0.935999i \(0.385501\pi\)
\(632\) −141.677 −0.224173
\(633\) 0 0
\(634\) − 107.661i − 0.169812i
\(635\) 459.325i 0.723346i
\(636\) 0 0
\(637\) 307.990i 0.483501i
\(638\) 0 0
\(639\) 0 0
\(640\) − 64.3482i − 0.100544i
\(641\) 1122.83 1.75168 0.875841 0.482599i \(-0.160307\pi\)
0.875841 + 0.482599i \(0.160307\pi\)
\(642\) 0 0
\(643\) 772.429 1.20129 0.600645 0.799516i \(-0.294911\pi\)
0.600645 + 0.799516i \(0.294911\pi\)
\(644\) 152.459i 0.236737i
\(645\) 0 0
\(646\) − 830.637i − 1.28582i
\(647\) 373.909 0.577912 0.288956 0.957342i \(-0.406692\pi\)
0.288956 + 0.957342i \(0.406692\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 46.7995 0.0719992
\(651\) 0 0
\(652\) 441.854 0.677691
\(653\) −246.864 −0.378045 −0.189023 0.981973i \(-0.560532\pi\)
−0.189023 + 0.981973i \(0.560532\pi\)
\(654\) 0 0
\(655\) 82.7482i 0.126333i
\(656\) 60.1036i 0.0916213i
\(657\) 0 0
\(658\) −457.829 −0.695788
\(659\) − 609.418i − 0.924762i −0.886681 0.462381i \(-0.846995\pi\)
0.886681 0.462381i \(-0.153005\pi\)
\(660\) 0 0
\(661\) 1129.61 1.70893 0.854467 0.519506i \(-0.173884\pi\)
0.854467 + 0.519506i \(0.173884\pi\)
\(662\) 704.394i 1.06404i
\(663\) 0 0
\(664\) 41.5425 0.0625641
\(665\) −2073.82 −3.11853
\(666\) 0 0
\(667\) 381.536i 0.572019i
\(668\) 407.868i 0.610581i
\(669\) 0 0
\(670\) − 266.315i − 0.397484i
\(671\) 0 0
\(672\) 0 0
\(673\) 436.864i 0.649130i 0.945863 + 0.324565i \(0.105218\pi\)
−0.945863 + 0.324565i \(0.894782\pi\)
\(674\) 399.197 0.592280
\(675\) 0 0
\(676\) −297.448 −0.440013
\(677\) − 479.008i − 0.707545i −0.935331 0.353773i \(-0.884899\pi\)
0.935331 0.353773i \(-0.115101\pi\)
\(678\) 0 0
\(679\) − 267.925i − 0.394587i
\(680\) −280.779 −0.412910
\(681\) 0 0
\(682\) 0 0
\(683\) −614.419 −0.899588 −0.449794 0.893132i \(-0.648503\pi\)
−0.449794 + 0.893132i \(0.648503\pi\)
\(684\) 0 0
\(685\) 641.675 0.936752
\(686\) −297.250 −0.433308
\(687\) 0 0
\(688\) − 270.273i − 0.392839i
\(689\) 69.8879i 0.101434i
\(690\) 0 0
\(691\) −958.142 −1.38660 −0.693301 0.720648i \(-0.743844\pi\)
−0.693301 + 0.720648i \(0.743844\pi\)
\(692\) 562.156i 0.812365i
\(693\) 0 0
\(694\) 279.241 0.402364
\(695\) 207.080i 0.297957i
\(696\) 0 0
\(697\) 262.258 0.376267
\(698\) −302.851 −0.433883
\(699\) 0 0
\(700\) 159.257i 0.227510i
\(701\) − 193.665i − 0.276270i −0.990413 0.138135i \(-0.955889\pi\)
0.990413 0.138135i \(-0.0441107\pi\)
\(702\) 0 0
\(703\) 675.443i 0.960801i
\(704\) 0 0
\(705\) 0 0
\(706\) − 862.768i − 1.22205i
\(707\) −1225.12 −1.73284
\(708\) 0 0
\(709\) 29.5819 0.0417235 0.0208617 0.999782i \(-0.493359\pi\)
0.0208617 + 0.999782i \(0.493359\pi\)
\(710\) 695.011i 0.978889i
\(711\) 0 0
\(712\) 229.251i 0.321981i
\(713\) −270.735 −0.379713
\(714\) 0 0
\(715\) 0 0
\(716\) −290.927 −0.406323
\(717\) 0 0
\(718\) 827.702 1.15279
\(719\) 30.7450 0.0427608 0.0213804 0.999771i \(-0.493194\pi\)
0.0213804 + 0.999771i \(0.493194\pi\)
\(720\) 0 0
\(721\) 398.950i 0.553329i
\(722\) − 1090.99i − 1.51106i
\(723\) 0 0
\(724\) −450.182 −0.621798
\(725\) 398.550i 0.549725i
\(726\) 0 0
\(727\) 252.046 0.346694 0.173347 0.984861i \(-0.444542\pi\)
0.173347 + 0.984861i \(0.444542\pi\)
\(728\) 137.996i 0.189554i
\(729\) 0 0
\(730\) −813.769 −1.11475
\(731\) −1179.32 −1.61329
\(732\) 0 0
\(733\) − 905.286i − 1.23504i −0.786554 0.617521i \(-0.788137\pi\)
0.786554 0.617521i \(-0.211863\pi\)
\(734\) − 346.165i − 0.471615i
\(735\) 0 0
\(736\) 39.7984i 0.0540739i
\(737\) 0 0
\(738\) 0 0
\(739\) − 251.971i − 0.340962i −0.985361 0.170481i \(-0.945468\pi\)
0.985361 0.170481i \(-0.0545321\pi\)
\(740\) 228.319 0.308539
\(741\) 0 0
\(742\) −237.827 −0.320521
\(743\) 558.799i 0.752085i 0.926602 + 0.376042i \(0.122715\pi\)
−0.926602 + 0.376042i \(0.877285\pi\)
\(744\) 0 0
\(745\) − 1552.46i − 2.08384i
\(746\) 199.932 0.268006
\(747\) 0 0
\(748\) 0 0
\(749\) 2178.19 2.90814
\(750\) 0 0
\(751\) −914.374 −1.21754 −0.608771 0.793346i \(-0.708337\pi\)
−0.608771 + 0.793346i \(0.708337\pi\)
\(752\) −119.513 −0.158927
\(753\) 0 0
\(754\) 345.342i 0.458013i
\(755\) − 230.943i − 0.305885i
\(756\) 0 0
\(757\) −251.388 −0.332084 −0.166042 0.986119i \(-0.553099\pi\)
−0.166042 + 0.986119i \(0.553099\pi\)
\(758\) − 8.79885i − 0.0116080i
\(759\) 0 0
\(760\) −541.358 −0.712314
\(761\) 619.866i 0.814541i 0.913308 + 0.407271i \(0.133519\pi\)
−0.913308 + 0.407271i \(0.866481\pi\)
\(762\) 0 0
\(763\) 1267.49 1.66120
\(764\) −499.686 −0.654039
\(765\) 0 0
\(766\) 474.417i 0.619343i
\(767\) 174.518i 0.227533i
\(768\) 0 0
\(769\) − 298.190i − 0.387763i −0.981025 0.193882i \(-0.937892\pi\)
0.981025 0.193882i \(-0.0621078\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 13.3808i − 0.0173327i
\(773\) −606.758 −0.784939 −0.392470 0.919765i \(-0.628379\pi\)
−0.392470 + 0.919765i \(0.628379\pi\)
\(774\) 0 0
\(775\) −282.808 −0.364913
\(776\) − 69.9400i − 0.0901289i
\(777\) 0 0
\(778\) − 181.981i − 0.233909i
\(779\) 505.649 0.649100
\(780\) 0 0
\(781\) 0 0
\(782\) 173.658 0.222068
\(783\) 0 0
\(784\) −273.595 −0.348973
\(785\) −939.680 −1.19704
\(786\) 0 0
\(787\) − 59.7811i − 0.0759608i −0.999278 0.0379804i \(-0.987908\pi\)
0.999278 0.0379804i \(-0.0120924\pi\)
\(788\) 517.075i 0.656187i
\(789\) 0 0
\(790\) 402.904 0.510005
\(791\) 2112.45i 2.67060i
\(792\) 0 0
\(793\) 184.189 0.232268
\(794\) − 546.470i − 0.688249i
\(795\) 0 0
\(796\) −470.595 −0.591200
\(797\) −912.063 −1.14437 −0.572185 0.820125i \(-0.693904\pi\)
−0.572185 + 0.820125i \(0.693904\pi\)
\(798\) 0 0
\(799\) 521.488i 0.652676i
\(800\) 41.5731i 0.0519664i
\(801\) 0 0
\(802\) − 102.825i − 0.128211i
\(803\) 0 0
\(804\) 0 0
\(805\) − 433.565i − 0.538590i
\(806\) −245.052 −0.304034
\(807\) 0 0
\(808\) −319.809 −0.395803
\(809\) 938.105i 1.15959i 0.814764 + 0.579793i \(0.196867\pi\)
−0.814764 + 0.579793i \(0.803133\pi\)
\(810\) 0 0
\(811\) − 382.379i − 0.471491i −0.971815 0.235746i \(-0.924247\pi\)
0.971815 0.235746i \(-0.0757532\pi\)
\(812\) −1175.19 −1.44728
\(813\) 0 0
\(814\) 0 0
\(815\) −1256.55 −1.54178
\(816\) 0 0
\(817\) −2273.79 −2.78310
\(818\) −559.135 −0.683539
\(819\) 0 0
\(820\) − 170.924i − 0.208443i
\(821\) − 626.026i − 0.762516i −0.924469 0.381258i \(-0.875491\pi\)
0.924469 0.381258i \(-0.124509\pi\)
\(822\) 0 0
\(823\) 42.8763 0.0520976 0.0260488 0.999661i \(-0.491707\pi\)
0.0260488 + 0.999661i \(0.491707\pi\)
\(824\) 104.143i 0.126388i
\(825\) 0 0
\(826\) −593.880 −0.718983
\(827\) 1083.94i 1.31069i 0.755331 + 0.655343i \(0.227476\pi\)
−0.755331 + 0.655343i \(0.772524\pi\)
\(828\) 0 0
\(829\) −1409.55 −1.70030 −0.850150 0.526540i \(-0.823489\pi\)
−0.850150 + 0.526540i \(0.823489\pi\)
\(830\) −118.139 −0.142337
\(831\) 0 0
\(832\) 36.0229i 0.0432967i
\(833\) 1193.81i 1.43315i
\(834\) 0 0
\(835\) − 1159.90i − 1.38910i
\(836\) 0 0
\(837\) 0 0
\(838\) 48.0525i 0.0573418i
\(839\) 889.398 1.06007 0.530035 0.847976i \(-0.322179\pi\)
0.530035 + 0.847976i \(0.322179\pi\)
\(840\) 0 0
\(841\) −2099.97 −2.49699
\(842\) 23.4660i 0.0278694i
\(843\) 0 0
\(844\) − 64.3317i − 0.0762224i
\(845\) 845.889 1.00105
\(846\) 0 0
\(847\) 0 0
\(848\) −62.0831 −0.0732112
\(849\) 0 0
\(850\) 181.401 0.213414
\(851\) −141.212 −0.165936
\(852\) 0 0
\(853\) 1457.54i 1.70872i 0.519679 + 0.854362i \(0.326052\pi\)
−0.519679 + 0.854362i \(0.673948\pi\)
\(854\) 626.789i 0.733945i
\(855\) 0 0
\(856\) 568.604 0.664257
\(857\) − 731.392i − 0.853433i −0.904385 0.426716i \(-0.859670\pi\)
0.904385 0.426716i \(-0.140330\pi\)
\(858\) 0 0
\(859\) 85.1091 0.0990792 0.0495396 0.998772i \(-0.484225\pi\)
0.0495396 + 0.998772i \(0.484225\pi\)
\(860\) 768.607i 0.893729i
\(861\) 0 0
\(862\) 174.864 0.202859
\(863\) −592.606 −0.686682 −0.343341 0.939211i \(-0.611559\pi\)
−0.343341 + 0.939211i \(0.611559\pi\)
\(864\) 0 0
\(865\) − 1598.67i − 1.84817i
\(866\) 483.333i 0.558121i
\(867\) 0 0
\(868\) − 833.903i − 0.960718i
\(869\) 0 0
\(870\) 0 0
\(871\) 149.086i 0.171167i
\(872\) 330.871 0.379439
\(873\) 0 0
\(874\) 334.822 0.383091
\(875\) 1087.75i 1.24314i
\(876\) 0 0
\(877\) 810.847i 0.924569i 0.886732 + 0.462284i \(0.152970\pi\)
−0.886732 + 0.462284i \(0.847030\pi\)
\(878\) 781.007 0.889529
\(879\) 0 0
\(880\) 0 0
\(881\) 162.880 0.184881 0.0924404 0.995718i \(-0.470533\pi\)
0.0924404 + 0.995718i \(0.470533\pi\)
\(882\) 0 0
\(883\) 861.628 0.975797 0.487898 0.872900i \(-0.337764\pi\)
0.487898 + 0.872900i \(0.337764\pi\)
\(884\) 157.183 0.177809
\(885\) 0 0
\(886\) 7.21674i 0.00814531i
\(887\) 25.1678i 0.0283740i 0.999899 + 0.0141870i \(0.00451602\pi\)
−0.999899 + 0.0141870i \(0.995484\pi\)
\(888\) 0 0
\(889\) 875.024 0.984279
\(890\) − 651.947i − 0.732524i
\(891\) 0 0
\(892\) 346.608 0.388574
\(893\) 1005.46i 1.12593i
\(894\) 0 0
\(895\) 827.343 0.924405
\(896\) −122.585 −0.136813
\(897\) 0 0
\(898\) − 378.488i − 0.421479i
\(899\) − 2086.89i − 2.32135i
\(900\) 0 0
\(901\) 270.895i 0.300661i
\(902\) 0 0
\(903\) 0 0
\(904\) 551.441i 0.610001i
\(905\) 1280.23 1.41462
\(906\) 0 0
\(907\) 725.098 0.799447 0.399723 0.916636i \(-0.369106\pi\)
0.399723 + 0.916636i \(0.369106\pi\)
\(908\) 4.45337i 0.00490459i
\(909\) 0 0
\(910\) − 392.434i − 0.431246i
\(911\) 855.259 0.938814 0.469407 0.882982i \(-0.344468\pi\)
0.469407 + 0.882982i \(0.344468\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 296.719 0.324637
\(915\) 0 0
\(916\) −628.495 −0.686130
\(917\) 157.637 0.171905
\(918\) 0 0
\(919\) − 1432.42i − 1.55868i −0.626603 0.779339i \(-0.715555\pi\)
0.626603 0.779339i \(-0.284445\pi\)
\(920\) − 113.179i − 0.123021i
\(921\) 0 0
\(922\) −1005.13 −1.09016
\(923\) − 389.075i − 0.421533i
\(924\) 0 0
\(925\) −147.509 −0.159469
\(926\) − 773.136i − 0.834921i
\(927\) 0 0
\(928\) −306.775 −0.330577
\(929\) 1517.47 1.63345 0.816724 0.577028i \(-0.195788\pi\)
0.816724 + 0.577028i \(0.195788\pi\)
\(930\) 0 0
\(931\) 2301.74i 2.47233i
\(932\) 254.384i 0.272944i
\(933\) 0 0
\(934\) − 449.501i − 0.481264i
\(935\) 0 0
\(936\) 0 0
\(937\) − 187.686i − 0.200306i −0.994972 0.100153i \(-0.968067\pi\)
0.994972 0.100153i \(-0.0319332\pi\)
\(938\) −507.336 −0.540869
\(939\) 0 0
\(940\) 339.874 0.361568
\(941\) − 440.952i − 0.468599i −0.972164 0.234300i \(-0.924720\pi\)
0.972164 0.234300i \(-0.0752797\pi\)
\(942\) 0 0
\(943\) 105.714i 0.112104i
\(944\) −155.029 −0.164225
\(945\) 0 0
\(946\) 0 0
\(947\) 744.379 0.786039 0.393019 0.919530i \(-0.371431\pi\)
0.393019 + 0.919530i \(0.371431\pi\)
\(948\) 0 0
\(949\) 455.558 0.480040
\(950\) 349.753 0.368161
\(951\) 0 0
\(952\) 534.891i 0.561860i
\(953\) 399.851i 0.419571i 0.977747 + 0.209786i \(0.0672766\pi\)
−0.977747 + 0.209786i \(0.932723\pi\)
\(954\) 0 0
\(955\) 1421.02 1.48797
\(956\) − 318.600i − 0.333264i
\(957\) 0 0
\(958\) −11.1331 −0.0116212
\(959\) − 1222.41i − 1.27467i
\(960\) 0 0
\(961\) 519.839 0.540936
\(962\) −127.816 −0.132864
\(963\) 0 0
\(964\) 530.250i 0.550051i
\(965\) 38.0526i 0.0394327i
\(966\) 0 0
\(967\) 1646.99i 1.70320i 0.524196 + 0.851598i \(0.324366\pi\)
−0.524196 + 0.851598i \(0.675634\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 198.897i 0.205048i
\(971\) 662.526 0.682313 0.341156 0.940007i \(-0.389181\pi\)
0.341156 + 0.940007i \(0.389181\pi\)
\(972\) 0 0
\(973\) 394.492 0.405439
\(974\) 398.456i 0.409093i
\(975\) 0 0
\(976\) 163.619i 0.167643i
\(977\) 1487.18 1.52219 0.761095 0.648641i \(-0.224662\pi\)
0.761095 + 0.648641i \(0.224662\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 778.054 0.793933
\(981\) 0 0
\(982\) −1159.09 −1.18034
\(983\) 374.686 0.381165 0.190583 0.981671i \(-0.438962\pi\)
0.190583 + 0.981671i \(0.438962\pi\)
\(984\) 0 0
\(985\) − 1470.47i − 1.49286i
\(986\) 1338.59i 1.35760i
\(987\) 0 0
\(988\) 303.059 0.306740
\(989\) − 475.371i − 0.480659i
\(990\) 0 0
\(991\) −455.590 −0.459727 −0.229864 0.973223i \(-0.573828\pi\)
−0.229864 + 0.973223i \(0.573828\pi\)
\(992\) − 217.685i − 0.219441i
\(993\) 0 0
\(994\) 1324.01 1.33200
\(995\) 1338.29 1.34501
\(996\) 0 0
\(997\) − 451.423i − 0.452781i −0.974037 0.226390i \(-0.927307\pi\)
0.974037 0.226390i \(-0.0726925\pi\)
\(998\) 14.1383i 0.0141666i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2178.3.d.n.1693.15 16
3.2 odd 2 inner 2178.3.d.n.1693.2 16
11.3 even 5 198.3.j.c.145.4 yes 16
11.7 odd 10 198.3.j.c.127.4 yes 16
11.10 odd 2 inner 2178.3.d.n.1693.7 16
33.14 odd 10 198.3.j.c.145.1 yes 16
33.29 even 10 198.3.j.c.127.1 16
33.32 even 2 inner 2178.3.d.n.1693.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
198.3.j.c.127.1 16 33.29 even 10
198.3.j.c.127.4 yes 16 11.7 odd 10
198.3.j.c.145.1 yes 16 33.14 odd 10
198.3.j.c.145.4 yes 16 11.3 even 5
2178.3.d.n.1693.2 16 3.2 odd 2 inner
2178.3.d.n.1693.7 16 11.10 odd 2 inner
2178.3.d.n.1693.10 16 33.32 even 2 inner
2178.3.d.n.1693.15 16 1.1 even 1 trivial