Properties

Label 198.3.j.c.145.1
Level $198$
Weight $3$
Character 198.145
Analytic conductor $5.395$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [198,3,Mod(19,198)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("198.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(198, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 198 = 2 \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 198.j (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39510923433\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 889x^{12} - 18240x^{10} + 235606x^{8} - 2565840x^{6} + 30314764x^{4} - 184688100x^{2} + 519885601 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 145.1
Root \(3.12252 + 1.01457i\) of defining polynomial
Character \(\chi\) \(=\) 198.145
Dual form 198.3.j.c.127.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34500 - 0.437016i) q^{2} +(1.61803 + 1.17557i) q^{4} +(-1.75757 - 5.40926i) q^{5} +(-6.36870 + 8.76576i) q^{7} +(-1.66251 - 2.28825i) q^{8} +8.04353i q^{10} +(7.37659 + 8.16002i) q^{11} +(-4.28248 - 1.39146i) q^{13} +(12.3967 - 9.00670i) q^{14} +(1.23607 + 3.80423i) q^{16} +(-16.5995 + 5.39350i) q^{17} +(19.7800 + 27.2249i) q^{19} +(3.51515 - 10.8185i) q^{20} +(-6.35542 - 14.1989i) q^{22} -7.03543 q^{23} +(-5.94559 + 4.31973i) q^{25} +(5.15183 + 3.74302i) q^{26} +(-20.6095 + 6.69644i) q^{28} +(-31.8760 + 43.8736i) q^{29} +(-11.8915 + 36.5982i) q^{31} -5.65685i q^{32} +24.6833 q^{34} +(58.6097 + 19.0435i) q^{35} +(16.2382 + 11.7977i) q^{37} +(-14.7064 - 45.2616i) q^{38} +(-9.45573 + 13.0147i) q^{40} +(8.83200 + 12.1562i) q^{41} -67.5682i q^{43} +(2.34288 + 21.8749i) q^{44} +(9.46263 + 3.07459i) q^{46} +(-24.1721 + 17.5620i) q^{47} +(-21.1364 - 65.0511i) q^{49} +(9.88460 - 3.21170i) q^{50} +(-5.29343 - 7.28578i) q^{52} +(4.79618 - 14.7611i) q^{53} +(31.1748 - 54.2437i) q^{55} +30.6462 q^{56} +(62.0466 - 45.0795i) q^{58} +(-31.3552 - 22.7809i) q^{59} +(-38.9028 + 12.6403i) q^{61} +(31.9880 - 44.0278i) q^{62} +(-2.47214 + 7.60845i) q^{64} +25.6106i q^{65} -33.1092 q^{67} +(-33.1990 - 10.7870i) q^{68} +(-70.5076 - 51.2268i) q^{70} +(-26.7010 - 82.1772i) q^{71} +(59.4667 - 81.8488i) q^{73} +(-16.6845 - 22.9643i) q^{74} +67.3036i q^{76} +(-118.508 + 12.6927i) q^{77} +(-47.6389 - 15.4788i) q^{79} +(18.4056 - 13.3724i) q^{80} +(-6.56656 - 20.2098i) q^{82} +(13.9686 - 4.53869i) q^{83} +(58.3497 + 80.3114i) q^{85} +(-29.5284 + 90.8791i) q^{86} +(6.40851 - 30.4455i) q^{88} +81.0524 q^{89} +(39.4710 - 28.6774i) q^{91} +(-11.3836 - 8.27064i) q^{92} +(40.1862 - 13.0573i) q^{94} +(112.502 - 154.845i) q^{95} +(7.64123 - 23.5173i) q^{97} +96.7305i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 60 q^{7} + 60 q^{13} - 16 q^{16} + 96 q^{25} + 40 q^{28} - 160 q^{31} - 64 q^{34} + 60 q^{37} - 80 q^{40} + 160 q^{46} + 96 q^{49} + 40 q^{52} + 224 q^{55} + 80 q^{58} - 500 q^{61} + 32 q^{64}+ \cdots - 1020 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/198\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(155\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34500 0.437016i −0.672499 0.218508i
\(3\) 0 0
\(4\) 1.61803 + 1.17557i 0.404508 + 0.293893i
\(5\) −1.75757 5.40926i −0.351515 1.08185i −0.958003 0.286759i \(-0.907422\pi\)
0.606488 0.795093i \(-0.292578\pi\)
\(6\) 0 0
\(7\) −6.36870 + 8.76576i −0.909814 + 1.25225i 0.0574167 + 0.998350i \(0.481714\pi\)
−0.967230 + 0.253901i \(0.918286\pi\)
\(8\) −1.66251 2.28825i −0.207813 0.286031i
\(9\) 0 0
\(10\) 8.04353i 0.804353i
\(11\) 7.37659 + 8.16002i 0.670599 + 0.741820i
\(12\) 0 0
\(13\) −4.28248 1.39146i −0.329421 0.107035i 0.139637 0.990203i \(-0.455406\pi\)
−0.469058 + 0.883167i \(0.655406\pi\)
\(14\) 12.3967 9.00670i 0.885475 0.643335i
\(15\) 0 0
\(16\) 1.23607 + 3.80423i 0.0772542 + 0.237764i
\(17\) −16.5995 + 5.39350i −0.976440 + 0.317265i −0.753413 0.657548i \(-0.771594\pi\)
−0.223027 + 0.974812i \(0.571594\pi\)
\(18\) 0 0
\(19\) 19.7800 + 27.2249i 1.04105 + 1.43289i 0.896315 + 0.443419i \(0.146235\pi\)
0.144740 + 0.989470i \(0.453765\pi\)
\(20\) 3.51515 10.8185i 0.175757 0.540926i
\(21\) 0 0
\(22\) −6.35542 14.1989i −0.288883 0.645404i
\(23\) −7.03543 −0.305888 −0.152944 0.988235i \(-0.548875\pi\)
−0.152944 + 0.988235i \(0.548875\pi\)
\(24\) 0 0
\(25\) −5.94559 + 4.31973i −0.237824 + 0.172789i
\(26\) 5.15183 + 3.74302i 0.198147 + 0.143962i
\(27\) 0 0
\(28\) −20.6095 + 6.69644i −0.736055 + 0.239159i
\(29\) −31.8760 + 43.8736i −1.09917 + 1.51288i −0.262698 + 0.964878i \(0.584612\pi\)
−0.836476 + 0.548004i \(0.815388\pi\)
\(30\) 0 0
\(31\) −11.8915 + 36.5982i −0.383596 + 1.18059i 0.553897 + 0.832585i \(0.313140\pi\)
−0.937493 + 0.348003i \(0.886860\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 24.6833 0.725979
\(35\) 58.6097 + 19.0435i 1.67456 + 0.544099i
\(36\) 0 0
\(37\) 16.2382 + 11.7977i 0.438870 + 0.318858i 0.785186 0.619260i \(-0.212567\pi\)
−0.346315 + 0.938118i \(0.612567\pi\)
\(38\) −14.7064 45.2616i −0.387010 1.19109i
\(39\) 0 0
\(40\) −9.45573 + 13.0147i −0.236393 + 0.325367i
\(41\) 8.83200 + 12.1562i 0.215415 + 0.296493i 0.903026 0.429586i \(-0.141341\pi\)
−0.687611 + 0.726079i \(0.741341\pi\)
\(42\) 0 0
\(43\) 67.5682i 1.57135i −0.618637 0.785677i \(-0.712315\pi\)
0.618637 0.785677i \(-0.287685\pi\)
\(44\) 2.34288 + 21.8749i 0.0532473 + 0.497157i
\(45\) 0 0
\(46\) 9.46263 + 3.07459i 0.205709 + 0.0668390i
\(47\) −24.1721 + 17.5620i −0.514299 + 0.373660i −0.814452 0.580231i \(-0.802962\pi\)
0.300153 + 0.953891i \(0.402962\pi\)
\(48\) 0 0
\(49\) −21.1364 65.0511i −0.431355 1.32757i
\(50\) 9.88460 3.21170i 0.197692 0.0642340i
\(51\) 0 0
\(52\) −5.29343 7.28578i −0.101797 0.140111i
\(53\) 4.79618 14.7611i 0.0904940 0.278512i −0.895559 0.444942i \(-0.853224\pi\)
0.986053 + 0.166430i \(0.0532241\pi\)
\(54\) 0 0
\(55\) 31.1748 54.2437i 0.566814 0.986249i
\(56\) 30.6462 0.547254
\(57\) 0 0
\(58\) 62.0466 45.0795i 1.06977 0.777233i
\(59\) −31.3552 22.7809i −0.531444 0.386117i 0.289454 0.957192i \(-0.406526\pi\)
−0.820898 + 0.571075i \(0.806526\pi\)
\(60\) 0 0
\(61\) −38.9028 + 12.6403i −0.637751 + 0.207218i −0.610005 0.792397i \(-0.708833\pi\)
−0.0277454 + 0.999615i \(0.508833\pi\)
\(62\) 31.9880 44.0278i 0.515936 0.710125i
\(63\) 0 0
\(64\) −2.47214 + 7.60845i −0.0386271 + 0.118882i
\(65\) 25.6106i 0.394010i
\(66\) 0 0
\(67\) −33.1092 −0.494167 −0.247083 0.968994i \(-0.579472\pi\)
−0.247083 + 0.968994i \(0.579472\pi\)
\(68\) −33.1990 10.7870i −0.488220 0.158632i
\(69\) 0 0
\(70\) −70.5076 51.2268i −1.00725 0.731811i
\(71\) −26.7010 82.1772i −0.376070 1.15743i −0.942754 0.333490i \(-0.891774\pi\)
0.566683 0.823936i \(-0.308226\pi\)
\(72\) 0 0
\(73\) 59.4667 81.8488i 0.814612 1.12122i −0.175984 0.984393i \(-0.556311\pi\)
0.990595 0.136824i \(-0.0436894\pi\)
\(74\) −16.6845 22.9643i −0.225467 0.310328i
\(75\) 0 0
\(76\) 67.3036i 0.885574i
\(77\) −118.508 + 12.6927i −1.53907 + 0.164840i
\(78\) 0 0
\(79\) −47.6389 15.4788i −0.603024 0.195934i −0.00843539 0.999964i \(-0.502685\pi\)
−0.594589 + 0.804030i \(0.702685\pi\)
\(80\) 18.4056 13.3724i 0.230070 0.167155i
\(81\) 0 0
\(82\) −6.56656 20.2098i −0.0800800 0.246461i
\(83\) 13.9686 4.53869i 0.168297 0.0546830i −0.223657 0.974668i \(-0.571799\pi\)
0.391954 + 0.919985i \(0.371799\pi\)
\(84\) 0 0
\(85\) 58.3497 + 80.3114i 0.686467 + 0.944840i
\(86\) −29.5284 + 90.8791i −0.343354 + 1.05673i
\(87\) 0 0
\(88\) 6.40851 30.4455i 0.0728239 0.345972i
\(89\) 81.0524 0.910701 0.455350 0.890312i \(-0.349514\pi\)
0.455350 + 0.890312i \(0.349514\pi\)
\(90\) 0 0
\(91\) 39.4710 28.6774i 0.433747 0.315136i
\(92\) −11.3836 8.27064i −0.123734 0.0898983i
\(93\) 0 0
\(94\) 40.1862 13.0573i 0.427513 0.138907i
\(95\) 112.502 154.845i 1.18423 1.62995i
\(96\) 0 0
\(97\) 7.64123 23.5173i 0.0787756 0.242446i −0.903911 0.427720i \(-0.859317\pi\)
0.982687 + 0.185273i \(0.0593171\pi\)
\(98\) 96.7305i 0.987046i
\(99\) 0 0
\(100\) −14.6983 −0.146983
\(101\) 107.535 + 34.9404i 1.06471 + 0.345944i 0.788424 0.615132i \(-0.210897\pi\)
0.276283 + 0.961076i \(0.410897\pi\)
\(102\) 0 0
\(103\) 29.7882 + 21.6424i 0.289206 + 0.210121i 0.722923 0.690929i \(-0.242798\pi\)
−0.433717 + 0.901049i \(0.642798\pi\)
\(104\) 3.93565 + 12.1127i 0.0378427 + 0.116468i
\(105\) 0 0
\(106\) −12.9017 + 17.7577i −0.121714 + 0.167525i
\(107\) 118.164 + 162.638i 1.10433 + 1.51998i 0.829513 + 0.558487i \(0.188618\pi\)
0.274819 + 0.961496i \(0.411382\pi\)
\(108\) 0 0
\(109\) 116.981i 1.07322i 0.843831 + 0.536608i \(0.180295\pi\)
−0.843831 + 0.536608i \(0.819705\pi\)
\(110\) −65.6354 + 59.3338i −0.596685 + 0.539398i
\(111\) 0 0
\(112\) −41.2191 13.3929i −0.368027 0.119579i
\(113\) −157.729 + 114.597i −1.39583 + 1.01413i −0.400635 + 0.916238i \(0.631211\pi\)
−0.995197 + 0.0978937i \(0.968789\pi\)
\(114\) 0 0
\(115\) 12.3653 + 38.0565i 0.107524 + 0.330926i
\(116\) −103.153 + 33.5164i −0.889250 + 0.288935i
\(117\) 0 0
\(118\) 32.2170 + 44.3429i 0.273026 + 0.375788i
\(119\) 58.4389 179.857i 0.491084 1.51140i
\(120\) 0 0
\(121\) −12.1720 + 120.386i −0.100595 + 0.994927i
\(122\) 57.8482 0.474165
\(123\) 0 0
\(124\) −62.2647 + 45.2379i −0.502134 + 0.364822i
\(125\) −81.2184 59.0086i −0.649747 0.472069i
\(126\) 0 0
\(127\) −76.8059 + 24.9558i −0.604771 + 0.196502i −0.595367 0.803454i \(-0.702993\pi\)
−0.00940389 + 0.999956i \(0.502993\pi\)
\(128\) 6.65003 9.15298i 0.0519534 0.0715077i
\(129\) 0 0
\(130\) 11.1923 34.4462i 0.0860942 0.264971i
\(131\) 14.5488i 0.111060i −0.998457 0.0555298i \(-0.982315\pi\)
0.998457 0.0555298i \(-0.0176848\pi\)
\(132\) 0 0
\(133\) −364.620 −2.74150
\(134\) 44.5318 + 14.4692i 0.332327 + 0.107979i
\(135\) 0 0
\(136\) 39.9384 + 29.0170i 0.293665 + 0.213360i
\(137\) −34.8631 107.298i −0.254475 0.783194i −0.993933 0.109991i \(-0.964918\pi\)
0.739457 0.673203i \(-0.235082\pi\)
\(138\) 0 0
\(139\) 21.4006 29.4553i 0.153961 0.211909i −0.725068 0.688677i \(-0.758192\pi\)
0.879029 + 0.476768i \(0.158192\pi\)
\(140\) 72.4456 + 99.7128i 0.517469 + 0.712234i
\(141\) 0 0
\(142\) 122.197i 0.860541i
\(143\) −20.2357 45.2093i −0.141508 0.316149i
\(144\) 0 0
\(145\) 293.348 + 95.3146i 2.02309 + 0.657342i
\(146\) −115.752 + 84.0985i −0.792820 + 0.576017i
\(147\) 0 0
\(148\) 12.4049 + 38.1783i 0.0838168 + 0.257962i
\(149\) −259.594 + 84.3473i −1.74224 + 0.566090i −0.995127 0.0986025i \(-0.968563\pi\)
−0.747118 + 0.664692i \(0.768563\pi\)
\(150\) 0 0
\(151\) 23.8667 + 32.8497i 0.158058 + 0.217548i 0.880700 0.473674i \(-0.157073\pi\)
−0.722642 + 0.691222i \(0.757073\pi\)
\(152\) 29.4128 90.5232i 0.193505 0.595547i
\(153\) 0 0
\(154\) 164.940 + 34.7183i 1.07104 + 0.225444i
\(155\) 218.870 1.41206
\(156\) 0 0
\(157\) 133.661 97.1107i 0.851347 0.618539i −0.0741704 0.997246i \(-0.523631\pi\)
0.925517 + 0.378706i \(0.123631\pi\)
\(158\) 57.3097 + 41.6379i 0.362720 + 0.263531i
\(159\) 0 0
\(160\) −30.5994 + 9.94235i −0.191246 + 0.0621397i
\(161\) 44.8065 61.6709i 0.278301 0.383049i
\(162\) 0 0
\(163\) −68.2702 + 210.114i −0.418836 + 1.28904i 0.489939 + 0.871757i \(0.337019\pi\)
−0.908775 + 0.417287i \(0.862981\pi\)
\(164\) 30.0518i 0.183243i
\(165\) 0 0
\(166\) −20.7713 −0.125128
\(167\) 193.953 + 63.0190i 1.16139 + 0.377360i 0.825424 0.564513i \(-0.190936\pi\)
0.335969 + 0.941873i \(0.390936\pi\)
\(168\) 0 0
\(169\) −120.320 87.4179i −0.711955 0.517266i
\(170\) −43.3827 133.518i −0.255193 0.785402i
\(171\) 0 0
\(172\) 79.4312 109.328i 0.461809 0.635626i
\(173\) −165.214 227.397i −0.954992 1.31443i −0.949274 0.314450i \(-0.898180\pi\)
−0.00571804 0.999984i \(-0.501820\pi\)
\(174\) 0 0
\(175\) 79.6287i 0.455021i
\(176\) −21.9246 + 38.1485i −0.124572 + 0.216753i
\(177\) 0 0
\(178\) −109.015 35.4212i −0.612445 0.198995i
\(179\) 117.682 85.5013i 0.657444 0.477661i −0.208355 0.978053i \(-0.566811\pi\)
0.865799 + 0.500393i \(0.166811\pi\)
\(180\) 0 0
\(181\) 69.5569 + 214.074i 0.384292 + 1.18273i 0.936992 + 0.349350i \(0.113597\pi\)
−0.552700 + 0.833380i \(0.686403\pi\)
\(182\) −65.6208 + 21.3215i −0.360554 + 0.117151i
\(183\) 0 0
\(184\) 11.6965 + 16.0988i 0.0635677 + 0.0874934i
\(185\) 35.2772 108.572i 0.190688 0.586876i
\(186\) 0 0
\(187\) −166.459 95.6666i −0.890153 0.511586i
\(188\) −59.7566 −0.317854
\(189\) 0 0
\(190\) −218.984 + 159.101i −1.15255 + 0.837375i
\(191\) 202.127 + 146.854i 1.05826 + 0.768869i 0.973765 0.227555i \(-0.0730730\pi\)
0.0844927 + 0.996424i \(0.473073\pi\)
\(192\) 0 0
\(193\) −6.36296 + 2.06745i −0.0329687 + 0.0107122i −0.325455 0.945558i \(-0.605517\pi\)
0.292486 + 0.956270i \(0.405517\pi\)
\(194\) −20.5549 + 28.2913i −0.105953 + 0.145832i
\(195\) 0 0
\(196\) 42.2728 130.102i 0.215677 0.663787i
\(197\) 258.538i 1.31237i 0.754598 + 0.656187i \(0.227832\pi\)
−0.754598 + 0.656187i \(0.772168\pi\)
\(198\) 0 0
\(199\) 235.298 1.18240 0.591200 0.806525i \(-0.298654\pi\)
0.591200 + 0.806525i \(0.298654\pi\)
\(200\) 19.7692 + 6.42340i 0.0988460 + 0.0321170i
\(201\) 0 0
\(202\) −129.365 93.9894i −0.640422 0.465294i
\(203\) −181.577 558.835i −0.894466 2.75288i
\(204\) 0 0
\(205\) 50.2332 69.1400i 0.245040 0.337268i
\(206\) −30.6070 42.1269i −0.148578 0.204500i
\(207\) 0 0
\(208\) 18.0114i 0.0865935i
\(209\) −76.2466 + 362.232i −0.364816 + 1.73317i
\(210\) 0 0
\(211\) 30.5915 + 9.93979i 0.144984 + 0.0471080i 0.380610 0.924736i \(-0.375714\pi\)
−0.235626 + 0.971844i \(0.575714\pi\)
\(212\) 25.1131 18.2458i 0.118458 0.0860649i
\(213\) 0 0
\(214\) −87.8542 270.387i −0.410533 1.26349i
\(215\) −365.494 + 118.756i −1.69997 + 0.552355i
\(216\) 0 0
\(217\) −245.078 337.321i −1.12939 1.55447i
\(218\) 51.1224 157.339i 0.234506 0.721737i
\(219\) 0 0
\(220\) 114.209 51.1200i 0.519133 0.232364i
\(221\) 78.5917 0.355619
\(222\) 0 0
\(223\) 140.206 101.866i 0.628726 0.456796i −0.227233 0.973840i \(-0.572968\pi\)
0.855959 + 0.517044i \(0.172968\pi\)
\(224\) 49.5866 + 36.0268i 0.221369 + 0.160834i
\(225\) 0 0
\(226\) 262.226 85.2023i 1.16029 0.377001i
\(227\) 1.30881 1.80142i 0.00576569 0.00793579i −0.806124 0.591746i \(-0.798439\pi\)
0.811890 + 0.583810i \(0.198439\pi\)
\(228\) 0 0
\(229\) 97.1079 298.867i 0.424052 1.30510i −0.479847 0.877352i \(-0.659308\pi\)
0.903899 0.427745i \(-0.140692\pi\)
\(230\) 56.5896i 0.246042i
\(231\) 0 0
\(232\) 153.388 0.661154
\(233\) 120.967 + 39.3045i 0.519171 + 0.168689i 0.556869 0.830600i \(-0.312003\pi\)
−0.0376982 + 0.999289i \(0.512003\pi\)
\(234\) 0 0
\(235\) 137.482 + 99.8864i 0.585029 + 0.425048i
\(236\) −23.9532 73.7205i −0.101497 0.312375i
\(237\) 0 0
\(238\) −157.200 + 216.368i −0.660506 + 0.909108i
\(239\) 93.6343 + 128.876i 0.391775 + 0.539232i 0.958656 0.284568i \(-0.0918500\pi\)
−0.566881 + 0.823800i \(0.691850\pi\)
\(240\) 0 0
\(241\) 265.125i 1.10010i −0.835131 0.550051i \(-0.814608\pi\)
0.835131 0.550051i \(-0.185392\pi\)
\(242\) 68.9820 156.600i 0.285049 0.647106i
\(243\) 0 0
\(244\) −77.8056 25.2806i −0.318875 0.103609i
\(245\) −314.730 + 228.664i −1.28461 + 0.933324i
\(246\) 0 0
\(247\) −46.8252 144.113i −0.189576 0.583454i
\(248\) 103.515 33.6342i 0.417401 0.135622i
\(249\) 0 0
\(250\) 83.4508 + 114.860i 0.333803 + 0.459441i
\(251\) −58.1919 + 179.096i −0.231840 + 0.713531i 0.765685 + 0.643216i \(0.222400\pi\)
−0.997525 + 0.0703145i \(0.977600\pi\)
\(252\) 0 0
\(253\) −51.8974 57.4093i −0.205128 0.226914i
\(254\) 114.210 0.449645
\(255\) 0 0
\(256\) −12.9443 + 9.40456i −0.0505636 + 0.0367366i
\(257\) 243.853 + 177.170i 0.948844 + 0.689376i 0.950533 0.310623i \(-0.100538\pi\)
−0.00168883 + 0.999999i \(0.500538\pi\)
\(258\) 0 0
\(259\) −206.832 + 67.2039i −0.798581 + 0.259475i
\(260\) −30.1071 + 41.4389i −0.115796 + 0.159380i
\(261\) 0 0
\(262\) −6.35806 + 19.5681i −0.0242674 + 0.0746874i
\(263\) 409.440i 1.55681i 0.627764 + 0.778404i \(0.283970\pi\)
−0.627764 + 0.778404i \(0.716030\pi\)
\(264\) 0 0
\(265\) −88.2765 −0.333119
\(266\) 490.412 + 159.345i 1.84366 + 0.599040i
\(267\) 0 0
\(268\) −53.5718 38.9222i −0.199895 0.145232i
\(269\) −60.5446 186.337i −0.225073 0.692704i −0.998284 0.0585549i \(-0.981351\pi\)
0.773211 0.634149i \(-0.218649\pi\)
\(270\) 0 0
\(271\) −64.3416 + 88.5586i −0.237423 + 0.326784i −0.911057 0.412281i \(-0.864732\pi\)
0.673634 + 0.739065i \(0.264732\pi\)
\(272\) −41.0362 56.4814i −0.150868 0.207652i
\(273\) 0 0
\(274\) 159.551i 0.582302i
\(275\) −79.1073 16.6514i −0.287663 0.0605504i
\(276\) 0 0
\(277\) −192.491 62.5442i −0.694915 0.225791i −0.0598011 0.998210i \(-0.519047\pi\)
−0.635113 + 0.772419i \(0.719047\pi\)
\(278\) −41.6562 + 30.2650i −0.149842 + 0.108867i
\(279\) 0 0
\(280\) −53.8630 165.773i −0.192368 0.592048i
\(281\) 206.422 67.0706i 0.734598 0.238685i 0.0822574 0.996611i \(-0.473787\pi\)
0.652341 + 0.757926i \(0.273787\pi\)
\(282\) 0 0
\(283\) 106.843 + 147.056i 0.377536 + 0.519633i 0.954930 0.296832i \(-0.0959303\pi\)
−0.577394 + 0.816466i \(0.695930\pi\)
\(284\) 53.4020 164.354i 0.188035 0.578713i
\(285\) 0 0
\(286\) 7.45975 + 69.6497i 0.0260830 + 0.243531i
\(287\) −162.807 −0.567271
\(288\) 0 0
\(289\) 12.6470 9.18860i 0.0437613 0.0317945i
\(290\) −352.898 256.396i −1.21689 0.884123i
\(291\) 0 0
\(292\) 192.438 62.5269i 0.659035 0.214133i
\(293\) −38.9360 + 53.5908i −0.132887 + 0.182904i −0.870275 0.492566i \(-0.836059\pi\)
0.737388 + 0.675470i \(0.236059\pi\)
\(294\) 0 0
\(295\) −68.1186 + 209.647i −0.230910 + 0.710669i
\(296\) 56.7709i 0.191793i
\(297\) 0 0
\(298\) 386.015 1.29535
\(299\) 30.1290 + 9.78952i 0.100766 + 0.0327409i
\(300\) 0 0
\(301\) 592.287 + 430.322i 1.96773 + 1.42964i
\(302\) −17.7448 54.6129i −0.0587576 0.180837i
\(303\) 0 0
\(304\) −79.1201 + 108.900i −0.260264 + 0.358222i
\(305\) 136.749 + 188.219i 0.448358 + 0.617112i
\(306\) 0 0
\(307\) 596.201i 1.94202i −0.239034 0.971011i \(-0.576831\pi\)
0.239034 0.971011i \(-0.423169\pi\)
\(308\) −206.671 118.777i −0.671010 0.385641i
\(309\) 0 0
\(310\) −294.379 95.6495i −0.949610 0.308547i
\(311\) 134.219 97.5159i 0.431573 0.313556i −0.350705 0.936486i \(-0.614058\pi\)
0.782277 + 0.622930i \(0.214058\pi\)
\(312\) 0 0
\(313\) 108.157 + 332.872i 0.345549 + 1.06349i 0.961289 + 0.275541i \(0.0888570\pi\)
−0.615741 + 0.787949i \(0.711143\pi\)
\(314\) −222.213 + 72.2014i −0.707685 + 0.229941i
\(315\) 0 0
\(316\) −58.8849 81.0481i −0.186345 0.256481i
\(317\) 23.5247 72.4017i 0.0742106 0.228397i −0.907070 0.420980i \(-0.861686\pi\)
0.981281 + 0.192583i \(0.0616864\pi\)
\(318\) 0 0
\(319\) −593.146 + 63.5281i −1.85939 + 0.199148i
\(320\) 45.5011 0.142191
\(321\) 0 0
\(322\) −87.2158 + 63.3660i −0.270856 + 0.196789i
\(323\) −475.176 345.235i −1.47113 1.06884i
\(324\) 0 0
\(325\) 31.4726 10.2261i 0.0968388 0.0314648i
\(326\) 183.647 252.768i 0.563333 0.775361i
\(327\) 0 0
\(328\) 13.1331 40.4196i 0.0400400 0.123230i
\(329\) 323.734i 0.983993i
\(330\) 0 0
\(331\) 498.082 1.50478 0.752390 0.658718i \(-0.228901\pi\)
0.752390 + 0.658718i \(0.228901\pi\)
\(332\) 27.9373 + 9.07738i 0.0841485 + 0.0273415i
\(333\) 0 0
\(334\) −233.325 169.521i −0.698579 0.507547i
\(335\) 58.1919 + 179.096i 0.173707 + 0.534615i
\(336\) 0 0
\(337\) −165.917 + 228.365i −0.492335 + 0.677641i −0.980817 0.194933i \(-0.937551\pi\)
0.488481 + 0.872574i \(0.337551\pi\)
\(338\) 123.628 + 170.159i 0.365762 + 0.503428i
\(339\) 0 0
\(340\) 198.541i 0.583943i
\(341\) −386.361 + 172.935i −1.13302 + 0.507141i
\(342\) 0 0
\(343\) 199.900 + 64.9514i 0.582798 + 0.189363i
\(344\) −154.613 + 112.333i −0.449456 + 0.326549i
\(345\) 0 0
\(346\) 122.836 + 378.049i 0.355016 + 1.09263i
\(347\) −187.789 + 61.0163i −0.541179 + 0.175840i −0.566835 0.823831i \(-0.691832\pi\)
0.0256566 + 0.999671i \(0.491832\pi\)
\(348\) 0 0
\(349\) −125.873 173.249i −0.360667 0.496416i 0.589667 0.807646i \(-0.299259\pi\)
−0.950335 + 0.311230i \(0.899259\pi\)
\(350\) −34.7990 + 107.100i −0.0994257 + 0.306001i
\(351\) 0 0
\(352\) 46.1601 41.7283i 0.131137 0.118546i
\(353\) 610.069 1.72824 0.864120 0.503285i \(-0.167876\pi\)
0.864120 + 0.503285i \(0.167876\pi\)
\(354\) 0 0
\(355\) −397.589 + 288.865i −1.11997 + 0.813705i
\(356\) 131.145 + 95.2828i 0.368386 + 0.267648i
\(357\) 0 0
\(358\) −195.648 + 63.5699i −0.546503 + 0.177569i
\(359\) 344.015 473.496i 0.958260 1.31893i 0.0105005 0.999945i \(-0.496658\pi\)
0.947759 0.318987i \(-0.103342\pi\)
\(360\) 0 0
\(361\) −238.389 + 733.687i −0.660358 + 2.03237i
\(362\) 318.327i 0.879355i
\(363\) 0 0
\(364\) 97.5776 0.268070
\(365\) −547.259 177.815i −1.49934 0.487165i
\(366\) 0 0
\(367\) 198.028 + 143.876i 0.539585 + 0.392032i 0.823931 0.566690i \(-0.191776\pi\)
−0.284346 + 0.958722i \(0.591776\pi\)
\(368\) −8.69627 26.7644i −0.0236312 0.0727292i
\(369\) 0 0
\(370\) −94.8955 + 130.612i −0.256474 + 0.353007i
\(371\) 98.8471 + 136.051i 0.266434 + 0.366715i
\(372\) 0 0
\(373\) 141.374i 0.379017i −0.981879 0.189509i \(-0.939310\pi\)
0.981879 0.189509i \(-0.0606895\pi\)
\(374\) 182.078 + 201.416i 0.486841 + 0.538546i
\(375\) 0 0
\(376\) 80.3725 + 26.1146i 0.213757 + 0.0694537i
\(377\) 197.557 143.533i 0.524023 0.380725i
\(378\) 0 0
\(379\) −1.92262 5.91721i −0.00507287 0.0156127i 0.948488 0.316813i \(-0.102613\pi\)
−0.953561 + 0.301200i \(0.902613\pi\)
\(380\) 364.063 118.291i 0.958060 0.311292i
\(381\) 0 0
\(382\) −207.683 285.851i −0.543673 0.748301i
\(383\) −103.664 + 319.045i −0.270663 + 0.833014i 0.719672 + 0.694315i \(0.244292\pi\)
−0.990334 + 0.138700i \(0.955708\pi\)
\(384\) 0 0
\(385\) 276.945 + 618.732i 0.719337 + 1.60710i
\(386\) 9.46166 0.0245121
\(387\) 0 0
\(388\) 40.0100 29.0690i 0.103119 0.0749200i
\(389\) −104.105 75.6364i −0.267621 0.194438i 0.445879 0.895093i \(-0.352891\pi\)
−0.713500 + 0.700655i \(0.752891\pi\)
\(390\) 0 0
\(391\) 116.784 37.9456i 0.298681 0.0970475i
\(392\) −113.713 + 156.513i −0.290085 + 0.399268i
\(393\) 0 0
\(394\) 112.985 347.732i 0.286764 0.882570i
\(395\) 284.896i 0.721257i
\(396\) 0 0
\(397\) −386.412 −0.973331 −0.486666 0.873588i \(-0.661787\pi\)
−0.486666 + 0.873588i \(0.661787\pi\)
\(398\) −316.474 102.829i −0.795162 0.258364i
\(399\) 0 0
\(400\) −23.7824 17.2789i −0.0594559 0.0431973i
\(401\) 22.4682 + 69.1499i 0.0560303 + 0.172444i 0.975155 0.221523i \(-0.0711027\pi\)
−0.919125 + 0.393966i \(0.871103\pi\)
\(402\) 0 0
\(403\) 101.850 140.185i 0.252730 0.347852i
\(404\) 132.921 + 182.950i 0.329013 + 0.452847i
\(405\) 0 0
\(406\) 830.983i 2.04676i
\(407\) 23.5126 + 219.531i 0.0577706 + 0.539389i
\(408\) 0 0
\(409\) 376.017 + 122.175i 0.919358 + 0.298718i 0.730203 0.683230i \(-0.239425\pi\)
0.189155 + 0.981947i \(0.439425\pi\)
\(410\) −97.7788 + 71.0404i −0.238485 + 0.173269i
\(411\) 0 0
\(412\) 22.7562 + 70.0363i 0.0552335 + 0.169991i
\(413\) 399.383 129.768i 0.967030 0.314207i
\(414\) 0 0
\(415\) −49.1019 67.5829i −0.118318 0.162850i
\(416\) −7.87129 + 24.2253i −0.0189214 + 0.0582340i
\(417\) 0 0
\(418\) 260.853 453.880i 0.624049 1.08584i
\(419\) −33.9782 −0.0810936 −0.0405468 0.999178i \(-0.512910\pi\)
−0.0405468 + 0.999178i \(0.512910\pi\)
\(420\) 0 0
\(421\) −13.4240 + 9.75312i −0.0318860 + 0.0231665i −0.603614 0.797277i \(-0.706273\pi\)
0.571728 + 0.820443i \(0.306273\pi\)
\(422\) −36.8017 26.7380i −0.0872078 0.0633602i
\(423\) 0 0
\(424\) −41.7508 + 13.5657i −0.0984689 + 0.0319945i
\(425\) 75.3953 103.773i 0.177401 0.244171i
\(426\) 0 0
\(427\) 136.958 421.515i 0.320746 0.987154i
\(428\) 402.064i 0.939401i
\(429\) 0 0
\(430\) 543.487 1.26392
\(431\) 117.596 + 38.2092i 0.272844 + 0.0886524i 0.442243 0.896895i \(-0.354183\pi\)
−0.169399 + 0.985548i \(0.554183\pi\)
\(432\) 0 0
\(433\) −276.496 200.886i −0.638559 0.463941i 0.220796 0.975320i \(-0.429135\pi\)
−0.859355 + 0.511380i \(0.829135\pi\)
\(434\) 182.215 + 560.799i 0.419849 + 1.29216i
\(435\) 0 0
\(436\) −137.519 + 189.279i −0.315410 + 0.434125i
\(437\) −139.161 191.539i −0.318446 0.438304i
\(438\) 0 0
\(439\) 552.255i 1.25798i −0.777412 0.628992i \(-0.783468\pi\)
0.777412 0.628992i \(-0.216532\pi\)
\(440\) −175.951 + 18.8450i −0.399889 + 0.0428296i
\(441\) 0 0
\(442\) −105.706 34.3458i −0.239153 0.0777055i
\(443\) 4.12842 2.99947i 0.00931923 0.00677082i −0.583116 0.812389i \(-0.698167\pi\)
0.592435 + 0.805618i \(0.298167\pi\)
\(444\) 0 0
\(445\) −142.456 438.433i −0.320125 0.985243i
\(446\) −233.093 + 75.7366i −0.522631 + 0.169813i
\(447\) 0 0
\(448\) −50.9496 70.1261i −0.113727 0.156531i
\(449\) 82.7028 254.533i 0.184193 0.566888i −0.815740 0.578418i \(-0.803670\pi\)
0.999934 + 0.0115299i \(0.00367015\pi\)
\(450\) 0 0
\(451\) −34.0449 + 161.741i −0.0754876 + 0.358627i
\(452\) −389.928 −0.862672
\(453\) 0 0
\(454\) −2.54760 + 1.85094i −0.00561145 + 0.00407696i
\(455\) −224.496 163.106i −0.493399 0.358475i
\(456\) 0 0
\(457\) 199.543 64.8354i 0.436636 0.141872i −0.0824468 0.996595i \(-0.526273\pi\)
0.519083 + 0.854724i \(0.326273\pi\)
\(458\) −261.220 + 359.538i −0.570348 + 0.785017i
\(459\) 0 0
\(460\) −24.7306 + 76.1129i −0.0537621 + 0.165463i
\(461\) 710.734i 1.54172i −0.637003 0.770862i \(-0.719826\pi\)
0.637003 0.770862i \(-0.280174\pi\)
\(462\) 0 0
\(463\) −546.690 −1.18076 −0.590378 0.807127i \(-0.701021\pi\)
−0.590378 + 0.807127i \(0.701021\pi\)
\(464\) −206.306 67.0329i −0.444625 0.144467i
\(465\) 0 0
\(466\) −145.523 105.729i −0.312282 0.226886i
\(467\) 98.2195 + 302.289i 0.210320 + 0.647299i 0.999453 + 0.0330761i \(0.0105304\pi\)
−0.789133 + 0.614223i \(0.789470\pi\)
\(468\) 0 0
\(469\) 210.862 290.227i 0.449600 0.618821i
\(470\) −141.261 194.429i −0.300555 0.413678i
\(471\) 0 0
\(472\) 109.622i 0.232250i
\(473\) 551.358 498.423i 1.16566 1.05375i
\(474\) 0 0
\(475\) −235.208 76.4238i −0.495175 0.160892i
\(476\) 305.990 222.315i 0.642837 0.467048i
\(477\) 0 0
\(478\) −69.6167 214.258i −0.145642 0.448239i
\(479\) 7.48699 2.43267i 0.0156305 0.00507865i −0.301191 0.953564i \(-0.597384\pi\)
0.316822 + 0.948485i \(0.397384\pi\)
\(480\) 0 0
\(481\) −53.1236 73.1184i −0.110444 0.152013i
\(482\) −115.864 + 356.592i −0.240381 + 0.739818i
\(483\) 0 0
\(484\) −161.217 + 180.480i −0.333093 + 0.372893i
\(485\) −140.641 −0.289982
\(486\) 0 0
\(487\) −227.941 + 165.609i −0.468052 + 0.340060i −0.796682 0.604399i \(-0.793413\pi\)
0.328630 + 0.944459i \(0.393413\pi\)
\(488\) 93.6003 + 68.0046i 0.191804 + 0.139354i
\(489\) 0 0
\(490\) 523.240 170.011i 1.06784 0.346961i
\(491\) −481.751 + 663.073i −0.981162 + 1.35045i −0.0449615 + 0.998989i \(0.514317\pi\)
−0.936201 + 0.351465i \(0.885683\pi\)
\(492\) 0 0
\(493\) 292.493 900.202i 0.593293 1.82597i
\(494\) 214.295i 0.433795i
\(495\) 0 0
\(496\) −153.927 −0.310336
\(497\) 890.396 + 289.307i 1.79154 + 0.582107i
\(498\) 0 0
\(499\) −8.08796 5.87625i −0.0162083 0.0117761i 0.579652 0.814864i \(-0.303189\pi\)
−0.595860 + 0.803088i \(0.703189\pi\)
\(500\) −62.0454 190.956i −0.124091 0.381912i
\(501\) 0 0
\(502\) 156.536 215.453i 0.311824 0.429189i
\(503\) −147.116 202.488i −0.292477 0.402560i 0.637340 0.770583i \(-0.280035\pi\)
−0.929817 + 0.368023i \(0.880035\pi\)
\(504\) 0 0
\(505\) 643.097i 1.27346i
\(506\) 44.7131 + 99.8953i 0.0883659 + 0.197422i
\(507\) 0 0
\(508\) −153.612 49.9115i −0.302386 0.0982510i
\(509\) −18.9127 + 13.7409i −0.0371566 + 0.0269958i −0.606209 0.795306i \(-0.707310\pi\)
0.569052 + 0.822302i \(0.307310\pi\)
\(510\) 0 0
\(511\) 338.742 + 1042.54i 0.662900 + 2.04020i
\(512\) 21.5200 6.99226i 0.0420312 0.0136568i
\(513\) 0 0
\(514\) −250.556 344.860i −0.487462 0.670934i
\(515\) 64.7144 199.170i 0.125659 0.386739i
\(516\) 0 0
\(517\) −321.614 67.6968i −0.622077 0.130942i
\(518\) 307.558 0.593742
\(519\) 0 0
\(520\) 58.6034 42.5779i 0.112699 0.0818805i
\(521\) 424.959 + 308.751i 0.815661 + 0.592612i 0.915466 0.402395i \(-0.131822\pi\)
−0.0998053 + 0.995007i \(0.531822\pi\)
\(522\) 0 0
\(523\) 405.485 131.750i 0.775305 0.251912i 0.105471 0.994422i \(-0.466365\pi\)
0.669835 + 0.742510i \(0.266365\pi\)
\(524\) 17.1031 23.5405i 0.0326396 0.0449245i
\(525\) 0 0
\(526\) 178.932 550.696i 0.340175 1.04695i
\(527\) 671.649i 1.27448i
\(528\) 0 0
\(529\) −479.503 −0.906432
\(530\) 118.732 + 38.5782i 0.224022 + 0.0727891i
\(531\) 0 0
\(532\) −589.967 428.636i −1.10896 0.805707i
\(533\) −20.9079 64.3480i −0.0392269 0.120728i
\(534\) 0 0
\(535\) 672.071 925.026i 1.25621 1.72902i
\(536\) 55.0443 + 75.7619i 0.102695 + 0.141347i
\(537\) 0 0
\(538\) 277.082i 0.515022i
\(539\) 374.904 652.328i 0.695555 1.21026i
\(540\) 0 0
\(541\) 544.329 + 176.863i 1.00615 + 0.326919i 0.765322 0.643648i \(-0.222580\pi\)
0.240831 + 0.970567i \(0.422580\pi\)
\(542\) 125.241 90.9927i 0.231071 0.167883i
\(543\) 0 0
\(544\) 30.5102 + 93.9008i 0.0560850 + 0.172612i
\(545\) 632.779 205.602i 1.16106 0.377252i
\(546\) 0 0
\(547\) 104.694 + 144.098i 0.191396 + 0.263434i 0.893921 0.448225i \(-0.147944\pi\)
−0.702524 + 0.711660i \(0.747944\pi\)
\(548\) 69.7262 214.595i 0.127238 0.391597i
\(549\) 0 0
\(550\) 99.1221 + 56.9672i 0.180222 + 0.103577i
\(551\) −1824.96 −3.31209
\(552\) 0 0
\(553\) 439.081 319.011i 0.793999 0.576874i
\(554\) 231.567 + 168.244i 0.417992 + 0.303689i
\(555\) 0 0
\(556\) 69.2537 22.5019i 0.124557 0.0404710i
\(557\) −237.768 + 327.260i −0.426873 + 0.587540i −0.967232 0.253895i \(-0.918288\pi\)
0.540359 + 0.841434i \(0.318288\pi\)
\(558\) 0 0
\(559\) −94.0186 + 289.359i −0.168191 + 0.517637i
\(560\) 246.504i 0.440185i
\(561\) 0 0
\(562\) −306.948 −0.546171
\(563\) −968.783 314.777i −1.72075 0.559106i −0.728687 0.684846i \(-0.759869\pi\)
−0.992063 + 0.125741i \(0.959869\pi\)
\(564\) 0 0
\(565\) 897.105 + 651.785i 1.58780 + 1.15360i
\(566\) −79.4371 244.482i −0.140348 0.431947i
\(567\) 0 0
\(568\) −143.651 + 197.719i −0.252907 + 0.348096i
\(569\) −433.829 597.114i −0.762441 1.04941i −0.997007 0.0773095i \(-0.975367\pi\)
0.234566 0.972100i \(-0.424633\pi\)
\(570\) 0 0
\(571\) 650.748i 1.13966i 0.821762 + 0.569832i \(0.192992\pi\)
−0.821762 + 0.569832i \(0.807008\pi\)
\(572\) 20.4047 96.9387i 0.0356726 0.169473i
\(573\) 0 0
\(574\) 218.974 + 71.1491i 0.381489 + 0.123953i
\(575\) 41.8298 30.3911i 0.0727475 0.0528541i
\(576\) 0 0
\(577\) −256.196 788.492i −0.444015 1.36654i −0.883561 0.468317i \(-0.844861\pi\)
0.439546 0.898220i \(-0.355139\pi\)
\(578\) −21.0258 + 6.83169i −0.0363768 + 0.0118195i
\(579\) 0 0
\(580\) 362.598 + 499.074i 0.625169 + 0.860472i
\(581\) −49.1770 + 151.351i −0.0846420 + 0.260501i
\(582\) 0 0
\(583\) 155.831 69.7498i 0.267291 0.119639i
\(584\) −286.154 −0.489990
\(585\) 0 0
\(586\) 75.7888 55.0638i 0.129332 0.0939655i
\(587\) 600.701 + 436.435i 1.02334 + 0.743501i 0.966965 0.254908i \(-0.0820453\pi\)
0.0563763 + 0.998410i \(0.482045\pi\)
\(588\) 0 0
\(589\) −1231.60 + 400.170i −2.09100 + 0.679406i
\(590\) 183.239 252.206i 0.310574 0.427468i
\(591\) 0 0
\(592\) −24.8098 + 76.3566i −0.0419084 + 0.128981i
\(593\) 360.480i 0.607891i 0.952689 + 0.303946i \(0.0983041\pi\)
−0.952689 + 0.303946i \(0.901696\pi\)
\(594\) 0 0
\(595\) −1075.60 −1.80773
\(596\) −519.189 168.695i −0.871122 0.283045i
\(597\) 0 0
\(598\) −36.2453 26.3338i −0.0606109 0.0440364i
\(599\) 90.2125 + 277.646i 0.150605 + 0.463515i 0.997689 0.0679440i \(-0.0216439\pi\)
−0.847084 + 0.531459i \(0.821644\pi\)
\(600\) 0 0
\(601\) −473.815 + 652.151i −0.788378 + 1.08511i 0.205930 + 0.978567i \(0.433978\pi\)
−0.994308 + 0.106543i \(0.966022\pi\)
\(602\) −608.567 837.620i −1.01091 1.39140i
\(603\) 0 0
\(604\) 81.2089i 0.134452i
\(605\) 672.593 145.746i 1.11172 0.240903i
\(606\) 0 0
\(607\) −136.092 44.2190i −0.224204 0.0728484i 0.194761 0.980851i \(-0.437607\pi\)
−0.418965 + 0.908002i \(0.637607\pi\)
\(608\) 154.007 111.893i 0.253301 0.184034i
\(609\) 0 0
\(610\) −101.672 312.916i −0.166676 0.512977i
\(611\) 127.953 41.5745i 0.209416 0.0680434i
\(612\) 0 0
\(613\) −235.002 323.452i −0.383363 0.527654i 0.573108 0.819480i \(-0.305737\pi\)
−0.956472 + 0.291825i \(0.905737\pi\)
\(614\) −260.549 + 801.888i −0.424347 + 1.30601i
\(615\) 0 0
\(616\) 226.064 + 250.074i 0.366988 + 0.405964i
\(617\) 366.869 0.594602 0.297301 0.954784i \(-0.403914\pi\)
0.297301 + 0.954784i \(0.403914\pi\)
\(618\) 0 0
\(619\) 677.581 492.291i 1.09464 0.795301i 0.114461 0.993428i \(-0.463486\pi\)
0.980176 + 0.198127i \(0.0634858\pi\)
\(620\) 354.138 + 257.297i 0.571191 + 0.414995i
\(621\) 0 0
\(622\) −223.140 + 72.5027i −0.358746 + 0.116564i
\(623\) −516.198 + 710.485i −0.828568 + 1.14043i
\(624\) 0 0
\(625\) −233.221 + 717.780i −0.373154 + 1.14845i
\(626\) 494.979i 0.790701i
\(627\) 0 0
\(628\) 330.429 0.526161
\(629\) −333.177 108.256i −0.529693 0.172108i
\(630\) 0 0
\(631\) −359.387 261.110i −0.569551 0.413803i 0.265391 0.964141i \(-0.414499\pi\)
−0.834942 + 0.550338i \(0.814499\pi\)
\(632\) 43.7807 + 134.743i 0.0692733 + 0.213201i
\(633\) 0 0
\(634\) −63.2814 + 87.0994i −0.0998130 + 0.137381i
\(635\) 269.984 + 371.602i 0.425172 + 0.585199i
\(636\) 0 0
\(637\) 307.990i 0.483501i
\(638\) 825.542 + 173.769i 1.29395 + 0.272365i
\(639\) 0 0
\(640\) −61.1988 19.8847i −0.0956231 0.0310698i
\(641\) 908.387 659.982i 1.41714 1.02961i 0.424906 0.905238i \(-0.360307\pi\)
0.992235 0.124376i \(-0.0396928\pi\)
\(642\) 0 0
\(643\) 238.694 + 734.624i 0.371219 + 1.14249i 0.945994 + 0.324183i \(0.105089\pi\)
−0.574776 + 0.818311i \(0.694911\pi\)
\(644\) 144.997 47.1123i 0.225150 0.0731558i
\(645\) 0 0
\(646\) 488.236 + 672.000i 0.755784 + 1.04025i
\(647\) −115.544 + 355.609i −0.178585 + 0.549627i −0.999779 0.0210213i \(-0.993308\pi\)
0.821194 + 0.570649i \(0.193308\pi\)
\(648\) 0 0
\(649\) −45.4017 423.904i −0.0699565 0.653165i
\(650\) −46.7995 −0.0719992
\(651\) 0 0
\(652\) −357.468 + 259.715i −0.548263 + 0.398336i
\(653\) −199.717 145.103i −0.305845 0.222209i 0.424267 0.905537i \(-0.360532\pi\)
−0.730112 + 0.683328i \(0.760532\pi\)
\(654\) 0 0
\(655\) −78.6982 + 25.5706i −0.120150 + 0.0390391i
\(656\) −35.3280 + 48.6248i −0.0538537 + 0.0741232i
\(657\) 0 0
\(658\) −141.477 + 435.421i −0.215010 + 0.661734i
\(659\) 609.418i 0.924762i 0.886681 + 0.462381i \(0.153005\pi\)
−0.886681 + 0.462381i \(0.846995\pi\)
\(660\) 0 0
\(661\) 1129.61 1.70893 0.854467 0.519506i \(-0.173884\pi\)
0.854467 + 0.519506i \(0.173884\pi\)
\(662\) −669.919 217.670i −1.01196 0.328806i
\(663\) 0 0
\(664\) −33.6086 24.4181i −0.0506154 0.0367742i
\(665\) 640.846 + 1972.32i 0.963679 + 2.96590i
\(666\) 0 0
\(667\) 224.261 308.669i 0.336224 0.462773i
\(668\) 239.739 + 329.972i 0.358890 + 0.493970i
\(669\) 0 0
\(670\) 266.315i 0.397484i
\(671\) −390.115 224.206i −0.581393 0.334137i
\(672\) 0 0
\(673\) 415.483 + 134.999i 0.617359 + 0.200592i 0.600967 0.799274i \(-0.294782\pi\)
0.0163917 + 0.999866i \(0.494782\pi\)
\(674\) 322.957 234.642i 0.479165 0.348134i
\(675\) 0 0
\(676\) −91.9166 282.890i −0.135971 0.418477i
\(677\) −455.564 + 148.022i −0.672915 + 0.218643i −0.625491 0.780231i \(-0.715101\pi\)
−0.0474244 + 0.998875i \(0.515101\pi\)
\(678\) 0 0
\(679\) 157.482 + 216.756i 0.231933 + 0.319228i
\(680\) 86.7655 267.037i 0.127596 0.392701i
\(681\) 0 0
\(682\) 595.230 63.7514i 0.872771 0.0934771i
\(683\) 614.419 0.899588 0.449794 0.893132i \(-0.351497\pi\)
0.449794 + 0.893132i \(0.351497\pi\)
\(684\) 0 0
\(685\) −519.126 + 377.167i −0.757848 + 0.550609i
\(686\) −240.480 174.719i −0.350554 0.254692i
\(687\) 0 0
\(688\) 257.045 83.5189i 0.373612 0.121394i
\(689\) −41.0791 + 56.5405i −0.0596213 + 0.0820617i
\(690\) 0 0
\(691\) −296.082 + 911.247i −0.428484 + 1.31874i 0.471135 + 0.882061i \(0.343844\pi\)
−0.899619 + 0.436676i \(0.856156\pi\)
\(692\) 562.156i 0.812365i
\(693\) 0 0
\(694\) 279.241 0.402364
\(695\) −196.945 63.9912i −0.283374 0.0920737i
\(696\) 0 0
\(697\) −212.171 154.151i −0.304406 0.221164i
\(698\) 93.5860 + 288.028i 0.134077 + 0.412648i
\(699\) 0 0
\(700\) 93.6091 128.842i 0.133727 0.184060i
\(701\) −113.833 156.678i −0.162387 0.223507i 0.720068 0.693904i \(-0.244111\pi\)
−0.882455 + 0.470397i \(0.844111\pi\)
\(702\) 0 0
\(703\) 675.443i 0.960801i
\(704\) −80.3211 + 35.9517i −0.114092 + 0.0510678i
\(705\) 0 0
\(706\) −820.541 266.610i −1.16224 0.377634i
\(707\) −991.139 + 720.105i −1.40189 + 1.01854i
\(708\) 0 0
\(709\) 9.14132 + 28.1341i 0.0128933 + 0.0396814i 0.957296 0.289109i \(-0.0933590\pi\)
−0.944403 + 0.328790i \(0.893359\pi\)
\(710\) 660.995 214.770i 0.930978 0.302493i
\(711\) 0 0
\(712\) −134.750 185.468i −0.189256 0.260488i
\(713\) 83.6617 257.484i 0.117338 0.361128i
\(714\) 0 0
\(715\) −208.983 + 188.919i −0.292284 + 0.264222i
\(716\) 290.927 0.406323
\(717\) 0 0
\(718\) −669.625 + 486.511i −0.932625 + 0.677592i
\(719\) 24.8732 + 18.0715i 0.0345942 + 0.0251341i 0.604948 0.796265i \(-0.293194\pi\)
−0.570354 + 0.821399i \(0.693194\pi\)
\(720\) 0 0
\(721\) −379.424 + 123.282i −0.526247 + 0.170988i
\(722\) 641.266 882.627i 0.888180 1.22247i
\(723\) 0 0
\(724\) −139.114 + 428.148i −0.192146 + 0.591365i
\(725\) 398.550i 0.549725i
\(726\) 0 0
\(727\) 252.046 0.346694 0.173347 0.984861i \(-0.444542\pi\)
0.173347 + 0.984861i \(0.444542\pi\)
\(728\) −131.242 42.6430i −0.180277 0.0585755i
\(729\) 0 0
\(730\) 658.353 + 478.322i 0.901854 + 0.655235i
\(731\) 364.429 + 1121.60i 0.498535 + 1.53433i
\(732\) 0 0
\(733\) −532.114 + 732.392i −0.725940 + 0.999171i 0.273366 + 0.961910i \(0.411863\pi\)
−0.999306 + 0.0372605i \(0.988137\pi\)
\(734\) −203.471 280.054i −0.277208 0.381544i
\(735\) 0 0
\(736\) 39.7984i 0.0540739i
\(737\) −244.233 270.172i −0.331388 0.366583i
\(738\) 0 0
\(739\) −239.639 77.8633i −0.324274 0.105363i 0.142356 0.989815i \(-0.454532\pi\)
−0.466630 + 0.884452i \(0.654532\pi\)
\(740\) 184.714 134.203i 0.249613 0.181355i
\(741\) 0 0
\(742\) −73.4924 226.186i −0.0990464 0.304833i
\(743\) 531.450 172.678i 0.715275 0.232407i 0.0713018 0.997455i \(-0.477285\pi\)
0.643974 + 0.765048i \(0.277285\pi\)
\(744\) 0 0
\(745\) 912.513 + 1255.97i 1.22485 + 1.68586i
\(746\) −61.7825 + 190.147i −0.0828184 + 0.254889i
\(747\) 0 0
\(748\) −156.873 350.476i −0.209723 0.468550i
\(749\) −2178.19 −2.90814
\(750\) 0 0
\(751\) 739.744 537.456i 0.985012 0.715653i 0.0261890 0.999657i \(-0.491663\pi\)
0.958823 + 0.284004i \(0.0916628\pi\)
\(752\) −96.6883 70.2481i −0.128575 0.0934151i
\(753\) 0 0
\(754\) −328.440 + 106.716i −0.435596 + 0.141534i
\(755\) 135.745 186.837i 0.179795 0.247466i
\(756\) 0 0
\(757\) −77.6831 + 239.084i −0.102620 + 0.315831i −0.989164 0.146812i \(-0.953099\pi\)
0.886545 + 0.462643i \(0.153099\pi\)
\(758\) 8.79885i 0.0116080i
\(759\) 0 0
\(760\) −541.358 −0.712314
\(761\) −589.527 191.549i −0.774675 0.251707i −0.105110 0.994461i \(-0.533519\pi\)
−0.669565 + 0.742754i \(0.733519\pi\)
\(762\) 0 0
\(763\) −1025.42 745.014i −1.34394 0.976427i
\(764\) 154.411 + 475.230i 0.202109 + 0.622028i
\(765\) 0 0
\(766\) 278.855 383.811i 0.364041 0.501059i
\(767\) 102.579 + 141.188i 0.133741 + 0.184078i
\(768\) 0 0
\(769\) 298.190i 0.387763i −0.981025 0.193882i \(-0.937892\pi\)
0.981025 0.193882i \(-0.0621078\pi\)
\(770\) −102.094 953.222i −0.132589 1.23795i
\(771\) 0 0
\(772\) −12.7259 4.13490i −0.0164843 0.00535609i
\(773\) −490.878 + 356.643i −0.635029 + 0.461376i −0.858139 0.513418i \(-0.828379\pi\)
0.223110 + 0.974793i \(0.428379\pi\)
\(774\) 0 0
\(775\) −87.3925 268.966i −0.112764 0.347053i
\(776\) −66.5169 + 21.6127i −0.0857177 + 0.0278514i
\(777\) 0 0
\(778\) 106.966 + 147.226i 0.137488 + 0.189237i
\(779\) −156.254 + 480.900i −0.200583 + 0.617330i
\(780\) 0 0
\(781\) 473.606 824.068i 0.606410 1.05514i
\(782\) −173.658 −0.222068
\(783\) 0 0
\(784\) 221.343 160.815i 0.282325 0.205121i
\(785\) −760.217 552.330i −0.968429 0.703605i
\(786\) 0 0
\(787\) 56.8552 18.4734i 0.0722430 0.0234732i −0.272673 0.962107i \(-0.587908\pi\)
0.344916 + 0.938634i \(0.387908\pi\)
\(788\) −303.929 + 418.323i −0.385697 + 0.530867i
\(789\) 0 0
\(790\) 124.504 383.185i 0.157600 0.485044i
\(791\) 2112.45i 2.67060i
\(792\) 0 0
\(793\) 184.189 0.232268
\(794\) 519.724 + 168.868i 0.654564 + 0.212681i
\(795\) 0 0
\(796\) 380.719 + 276.609i 0.478291 + 0.347499i
\(797\) 281.843 + 867.424i 0.353630 + 1.08836i 0.956800 + 0.290748i \(0.0939041\pi\)
−0.603170 + 0.797613i \(0.706096\pi\)
\(798\) 0 0
\(799\) 306.523 421.893i 0.383633 0.528026i
\(800\) 24.4361 + 33.6334i 0.0305451 + 0.0420417i
\(801\) 0 0
\(802\) 102.825i 0.128211i
\(803\) 1106.55 118.516i 1.37802 0.147591i
\(804\) 0 0
\(805\) −412.344 133.979i −0.512229 0.166433i
\(806\) −198.251 + 144.038i −0.245969 + 0.178707i
\(807\) 0 0
\(808\) −98.8263 304.156i −0.122310 0.376431i
\(809\) 892.191 289.890i 1.10283 0.358332i 0.299640 0.954052i \(-0.403133\pi\)
0.803192 + 0.595721i \(0.203133\pi\)
\(810\) 0 0
\(811\) 224.757 + 309.351i 0.277136 + 0.381444i 0.924782 0.380496i \(-0.124247\pi\)
−0.647647 + 0.761941i \(0.724247\pi\)
\(812\) 363.153 1117.67i 0.447233 1.37644i
\(813\) 0 0
\(814\) 64.3143 305.544i 0.0790102 0.375362i
\(815\) 1256.55 1.54178
\(816\) 0 0
\(817\) 1839.54 1336.50i 2.25158 1.63587i
\(818\) −452.350 328.651i −0.552995 0.401774i
\(819\) 0 0
\(820\) 162.558 52.8183i 0.198241 0.0644125i
\(821\) 367.969 506.465i 0.448196 0.616888i −0.523813 0.851833i \(-0.675491\pi\)
0.972009 + 0.234945i \(0.0754909\pi\)
\(822\) 0 0
\(823\) 13.2495 40.7778i 0.0160990 0.0495478i −0.942684 0.333686i \(-0.891707\pi\)
0.958783 + 0.284138i \(0.0917075\pi\)
\(824\) 104.143i 0.126388i
\(825\) 0 0
\(826\) −593.880 −0.718983
\(827\) −1030.89 334.955i −1.24654 0.405025i −0.389859 0.920875i \(-0.627476\pi\)
−0.856679 + 0.515850i \(0.827476\pi\)
\(828\) 0 0
\(829\) 1140.35 + 828.512i 1.37557 + 0.999412i 0.997279 + 0.0737262i \(0.0234891\pi\)
0.378294 + 0.925686i \(0.376511\pi\)
\(830\) 36.5071 + 112.357i 0.0439844 + 0.135370i
\(831\) 0 0
\(832\) 21.1737 29.1431i 0.0254492 0.0350278i
\(833\) 701.706 + 965.815i 0.842384 + 1.15944i
\(834\) 0 0
\(835\) 1159.90i 1.38910i
\(836\) −549.199 + 496.471i −0.656937 + 0.593865i
\(837\) 0 0
\(838\) 45.7006 + 14.8490i 0.0545353 + 0.0177196i
\(839\) 719.538 522.775i 0.857614 0.623093i −0.0696206 0.997574i \(-0.522179\pi\)
0.927235 + 0.374480i \(0.122179\pi\)
\(840\) 0 0
\(841\) −648.927 1997.19i −0.771614 2.37478i
\(842\) 22.3175 7.25140i 0.0265054 0.00861212i
\(843\) 0 0
\(844\) 37.8132 + 52.0454i 0.0448024 + 0.0616652i
\(845\) −261.394 + 804.488i −0.309342 + 0.952057i
\(846\) 0 0
\(847\) −977.757 873.400i −1.15438 1.03117i
\(848\) 62.0831 0.0732112
\(849\) 0 0
\(850\) −146.757 + 106.625i −0.172655 + 0.125441i
\(851\) −114.243 83.0022i −0.134245 0.0975349i
\(852\) 0 0
\(853\) −1386.20 + 450.405i −1.62509 + 0.528025i −0.973136 0.230232i \(-0.926052\pi\)
−0.651957 + 0.758256i \(0.726052\pi\)
\(854\) −368.417 + 507.083i −0.431402 + 0.593774i
\(855\) 0 0
\(856\) 175.708 540.775i 0.205267 0.631746i
\(857\) 731.392i 0.853433i 0.904385 + 0.426716i \(0.140330\pi\)
−0.904385 + 0.426716i \(0.859670\pi\)
\(858\) 0 0
\(859\) 85.1091 0.0990792 0.0495396 0.998772i \(-0.484225\pi\)
0.0495396 + 0.998772i \(0.484225\pi\)
\(860\) −730.988 237.513i −0.849986 0.276177i
\(861\) 0 0
\(862\) −141.468 102.783i −0.164116 0.119237i
\(863\) 183.125 + 563.602i 0.212196 + 0.653073i 0.999341 + 0.0363044i \(0.0115586\pi\)
−0.787144 + 0.616769i \(0.788441\pi\)
\(864\) 0 0
\(865\) −939.674 + 1293.35i −1.08633 + 1.49520i
\(866\) 284.096 + 391.025i 0.328056 + 0.451530i
\(867\) 0 0
\(868\) 833.903i 0.960718i
\(869\) −225.105 502.915i −0.259039 0.578729i
\(870\) 0 0
\(871\) 141.789 + 46.0701i 0.162789 + 0.0528934i
\(872\) 267.680 194.481i 0.306973 0.223029i
\(873\) 0 0
\(874\) 103.466 + 318.435i 0.118382 + 0.364342i
\(875\) 1034.51 336.133i 1.18230 0.384152i
\(876\) 0 0
\(877\) −476.604 655.989i −0.543448 0.747992i 0.445657 0.895204i \(-0.352970\pi\)
−0.989105 + 0.147212i \(0.952970\pi\)
\(878\) −241.344 + 742.781i −0.274880 + 0.845992i
\(879\) 0 0
\(880\) 244.890 + 51.5470i 0.278284 + 0.0585761i
\(881\) −162.880 −0.184881 −0.0924404 0.995718i \(-0.529467\pi\)
−0.0924404 + 0.995718i \(0.529467\pi\)
\(882\) 0 0
\(883\) −697.072 + 506.452i −0.789436 + 0.573559i −0.907796 0.419412i \(-0.862236\pi\)
0.118360 + 0.992971i \(0.462236\pi\)
\(884\) 127.164 + 92.3901i 0.143851 + 0.104514i
\(885\) 0 0
\(886\) −6.86353 + 2.23010i −0.00774665 + 0.00251704i
\(887\) −14.7932 + 20.3611i −0.0166778 + 0.0229551i −0.817274 0.576249i \(-0.804516\pi\)
0.800597 + 0.599204i \(0.204516\pi\)
\(888\) 0 0
\(889\) 270.397 832.198i 0.304159 0.936105i
\(890\) 651.947i 0.732524i
\(891\) 0 0
\(892\) 346.608 0.388574
\(893\) −956.249 310.704i −1.07083 0.347933i
\(894\) 0 0
\(895\) −669.334 486.300i −0.747859 0.543352i
\(896\) 37.8808 + 116.585i 0.0422777 + 0.130117i
\(897\) 0 0
\(898\) −222.470 + 306.204i −0.247739 + 0.340984i
\(899\) −1226.64 1688.33i −1.36445 1.87801i
\(900\) 0 0
\(901\) 270.895i 0.300661i
\(902\) 116.474 202.662i 0.129128 0.224681i
\(903\) 0 0
\(904\) 524.451 + 170.405i 0.580145 + 0.188501i
\(905\) 1035.73 752.503i 1.14445 0.831495i
\(906\) 0 0
\(907\) 224.068 + 689.610i 0.247043 + 0.760319i 0.995294 + 0.0969036i \(0.0308938\pi\)
−0.748251 + 0.663416i \(0.769106\pi\)
\(908\) 4.23540 1.37617i 0.00466454 0.00151560i
\(909\) 0 0
\(910\) 230.667 + 317.486i 0.253480 + 0.348886i
\(911\) −264.290 + 813.400i −0.290109 + 0.892865i 0.694711 + 0.719289i \(0.255532\pi\)
−0.984820 + 0.173576i \(0.944468\pi\)
\(912\) 0 0
\(913\) 140.077 + 80.5045i 0.153425 + 0.0881757i
\(914\) −296.719 −0.324637
\(915\) 0 0
\(916\) 508.463 369.420i 0.555091 0.403297i
\(917\) 127.531 + 92.6569i 0.139074 + 0.101043i
\(918\) 0 0
\(919\) 1362.32 442.644i 1.48239 0.481658i 0.547564 0.836764i \(-0.315555\pi\)
0.934826 + 0.355106i \(0.115555\pi\)
\(920\) 66.5251 91.5640i 0.0723099 0.0995261i
\(921\) 0 0
\(922\) −310.602 + 955.936i −0.336879 + 1.03681i
\(923\) 389.075i 0.421533i
\(924\) 0 0
\(925\) −147.509 −0.159469
\(926\) 735.296 + 238.912i 0.794057 + 0.258005i
\(927\) 0 0
\(928\) 248.186 + 180.318i 0.267442 + 0.194308i
\(929\) −468.925 1443.20i −0.504763 1.55350i −0.801168 0.598440i \(-0.795788\pi\)
0.296404 0.955063i \(-0.404212\pi\)
\(930\) 0 0
\(931\) 1352.93 1862.15i 1.45320 2.00016i
\(932\) 149.523 + 205.801i 0.160433 + 0.220817i
\(933\) 0 0
\(934\) 449.501i 0.481264i
\(935\) −224.922 + 1068.56i −0.240558 + 1.14284i
\(936\) 0 0
\(937\) −178.500 57.9983i −0.190502 0.0618978i 0.212212 0.977224i \(-0.431933\pi\)
−0.402714 + 0.915326i \(0.631933\pi\)
\(938\) −410.443 + 298.204i −0.437573 + 0.317915i
\(939\) 0 0
\(940\) 105.027 + 323.239i 0.111731 + 0.343871i
\(941\) −419.370 + 136.262i −0.445664 + 0.144805i −0.523248 0.852181i \(-0.675280\pi\)
0.0775831 + 0.996986i \(0.475280\pi\)
\(942\) 0 0
\(943\) −62.1369 85.5241i −0.0658928 0.0906936i
\(944\) 47.9065 147.441i 0.0507484 0.156187i
\(945\) 0 0
\(946\) −959.394 + 429.425i −1.01416 + 0.453938i
\(947\) −744.379 −0.786039 −0.393019 0.919530i \(-0.628569\pi\)
−0.393019 + 0.919530i \(0.628569\pi\)
\(948\) 0 0
\(949\) −368.554 + 267.770i −0.388360 + 0.282160i
\(950\) 282.956 + 205.579i 0.297848 + 0.216399i
\(951\) 0 0
\(952\) −508.711 + 165.290i −0.534360 + 0.173624i
\(953\) −235.027 + 323.487i −0.246618 + 0.339440i −0.914323 0.404985i \(-0.867277\pi\)
0.667705 + 0.744426i \(0.267277\pi\)
\(954\) 0 0
\(955\) 439.118 1351.47i 0.459809 1.41515i
\(956\) 318.600i 0.333264i
\(957\) 0 0
\(958\) −11.1331 −0.0116212
\(959\) 1162.58 + 377.744i 1.21228 + 0.393894i
\(960\) 0 0
\(961\) −420.559 305.554i −0.437626 0.317954i
\(962\) 39.4972 + 121.560i 0.0410574 + 0.126362i
\(963\) 0 0
\(964\) 311.673 428.981i 0.323312 0.445001i
\(965\) 22.3667 + 30.7852i 0.0231780 + 0.0319017i
\(966\) 0 0
\(967\) 1646.99i 1.70320i 0.524196 + 0.851598i \(0.324366\pi\)
−0.524196 + 0.851598i \(0.675634\pi\)
\(968\) 295.709 172.291i 0.305485 0.177986i
\(969\) 0 0
\(970\) 189.162 + 61.4624i 0.195012 + 0.0633633i
\(971\) 535.994 389.423i 0.552003 0.401053i −0.276521 0.961008i \(-0.589181\pi\)
0.828523 + 0.559955i \(0.189181\pi\)
\(972\) 0 0
\(973\) 121.905 + 375.184i 0.125288 + 0.385595i
\(974\) 378.954 123.130i 0.389070 0.126417i
\(975\) 0 0
\(976\) −96.1730 132.371i −0.0985379 0.135626i
\(977\) −459.564 + 1414.39i −0.470382 + 1.44769i 0.381703 + 0.924285i \(0.375338\pi\)
−0.852085 + 0.523403i \(0.824662\pi\)
\(978\) 0 0
\(979\) 597.890 + 661.389i 0.610715 + 0.675576i
\(980\) −778.054 −0.793933
\(981\) 0 0
\(982\) 937.727 681.298i 0.954915 0.693787i
\(983\) 303.127 + 220.235i 0.308369 + 0.224043i 0.731196 0.682167i \(-0.238962\pi\)
−0.422827 + 0.906210i \(0.638962\pi\)
\(984\) 0 0
\(985\) 1398.50 454.399i 1.41979 0.461319i
\(986\) −786.805 + 1082.94i −0.797977 + 1.09832i
\(987\) 0 0
\(988\) 93.6503 288.226i 0.0947878 0.291727i
\(989\) 475.371i 0.480659i
\(990\) 0 0
\(991\) −455.590 −0.459727 −0.229864 0.973223i \(-0.573828\pi\)
−0.229864 + 0.973223i \(0.573828\pi\)
\(992\) 207.031 + 67.2684i 0.208701 + 0.0678109i
\(993\) 0 0
\(994\) −1071.15 778.235i −1.07761 0.782932i
\(995\) −413.553 1272.79i −0.415631 1.27918i
\(996\) 0 0
\(997\) −265.340 + 365.209i −0.266138 + 0.366307i −0.921081 0.389371i \(-0.872693\pi\)
0.654943 + 0.755678i \(0.272693\pi\)
\(998\) 8.31027 + 11.4381i 0.00832693 + 0.0114610i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 198.3.j.c.145.1 yes 16
3.2 odd 2 inner 198.3.j.c.145.4 yes 16
11.4 even 5 2178.3.d.n.1693.2 16
11.6 odd 10 inner 198.3.j.c.127.1 16
11.7 odd 10 2178.3.d.n.1693.10 16
33.17 even 10 inner 198.3.j.c.127.4 yes 16
33.26 odd 10 2178.3.d.n.1693.15 16
33.29 even 10 2178.3.d.n.1693.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
198.3.j.c.127.1 16 11.6 odd 10 inner
198.3.j.c.127.4 yes 16 33.17 even 10 inner
198.3.j.c.145.1 yes 16 1.1 even 1 trivial
198.3.j.c.145.4 yes 16 3.2 odd 2 inner
2178.3.d.n.1693.2 16 11.4 even 5
2178.3.d.n.1693.7 16 33.29 even 10
2178.3.d.n.1693.10 16 11.7 odd 10
2178.3.d.n.1693.15 16 33.26 odd 10