Properties

Label 2178.3.c.f
Level $2178$
Weight $3$
Character orbit 2178.c
Analytic conductor $59.346$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2178,3,Mod(485,2178)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2178, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2178.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2178.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-8,0,0,-24,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.3462015777\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - \beta_1) q^{2} - 2 q^{4} + ( - \beta_{3} - 4 \beta_1) q^{5} + ( - 2 \beta_{2} - 6) q^{7} + ( - 2 \beta_{3} + 2 \beta_1) q^{8} + (5 \beta_{2} - 3) q^{10} + 3 q^{13} + ( - 8 \beta_{3} + 4 \beta_1) q^{14}+ \cdots + (23 \beta_{3} + 25 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} - 24 q^{7} - 12 q^{10} + 12 q^{13} + 16 q^{16} + 48 q^{19} - 68 q^{25} + 48 q^{28} - 176 q^{31} + 36 q^{34} - 44 q^{37} + 24 q^{40} - 72 q^{43} - 192 q^{46} - 4 q^{49} - 24 q^{52} - 84 q^{58}+ \cdots + 128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 4x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 4\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2178\mathbb{Z}\right)^\times\).

\(n\) \(1333\) \(1937\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
485.1
1.93185i
0.517638i
0.517638i
1.93185i
1.41421i 0 −2.00000 8.24504i 0 −2.53590 2.82843i 0 −11.6603
485.2 1.41421i 0 −2.00000 4.00240i 0 −9.46410 2.82843i 0 5.66025
485.3 1.41421i 0 −2.00000 4.00240i 0 −9.46410 2.82843i 0 5.66025
485.4 1.41421i 0 −2.00000 8.24504i 0 −2.53590 2.82843i 0 −11.6603
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2178.3.c.f 4
3.b odd 2 1 inner 2178.3.c.f 4
11.b odd 2 1 2178.3.c.j yes 4
33.d even 2 1 2178.3.c.j yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2178.3.c.f 4 1.a even 1 1 trivial
2178.3.c.f 4 3.b odd 2 1 inner
2178.3.c.j yes 4 11.b odd 2 1
2178.3.c.j yes 4 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2178, [\chi])\):

\( T_{5}^{4} + 84T_{5}^{2} + 1089 \) Copy content Toggle raw display
\( T_{7}^{2} + 12T_{7} + 24 \) Copy content Toggle raw display
\( T_{13} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 84T^{2} + 1089 \) Copy content Toggle raw display
$7$ \( (T^{2} + 12 T + 24)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T - 3)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 756 T^{2} + 88209 \) Copy content Toggle raw display
$19$ \( (T^{2} - 24 T - 48)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 2352 T^{2} + 1272384 \) Copy content Toggle raw display
$29$ \( T^{4} + 468 T^{2} + 42849 \) Copy content Toggle raw display
$31$ \( (T + 44)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 22 T - 1607)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 3924 T^{2} + 1656369 \) Copy content Toggle raw display
$43$ \( (T^{2} + 36 T + 216)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 7488 T^{2} + 10969344 \) Copy content Toggle raw display
$53$ \( T^{4} + 9972 T^{2} + 13417569 \) Copy content Toggle raw display
$59$ \( T^{4} + 13584 T^{2} + 30206016 \) Copy content Toggle raw display
$61$ \( (T^{2} + 96 T - 2496)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 20 T - 872)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 8664)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 156 T + 5892)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 120 T + 528)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 2304 T^{2} + 331776 \) Copy content Toggle raw display
$89$ \( T^{4} + 13908 T^{2} + 28804689 \) Copy content Toggle raw display
$97$ \( (T^{2} - 64 T - 8723)^{2} \) Copy content Toggle raw display
show more
show less