Properties

Label 8-2178e4-1.1-c2e4-0-2
Degree $8$
Conductor $2.250\times 10^{13}$
Sign $1$
Analytic cond. $1.24042\times 10^{7}$
Root an. cond. $7.70364$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 24·7-s + 12·13-s + 12·16-s + 48·19-s + 16·25-s + 96·28-s − 176·31-s − 44·37-s − 72·43-s + 188·49-s − 48·52-s − 192·61-s − 32·64-s + 40·67-s + 312·73-s − 192·76-s + 240·79-s − 288·91-s + 128·97-s − 64·100-s − 88·103-s − 108·109-s − 288·112-s + 704·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 4-s − 3.42·7-s + 0.923·13-s + 3/4·16-s + 2.52·19-s + 0.639·25-s + 24/7·28-s − 5.67·31-s − 1.18·37-s − 1.67·43-s + 3.83·49-s − 0.923·52-s − 3.14·61-s − 1/2·64-s + 0.597·67-s + 4.27·73-s − 2.52·76-s + 3.03·79-s − 3.16·91-s + 1.31·97-s − 0.639·100-s − 0.854·103-s − 0.990·109-s − 2.57·112-s + 5.67·124-s + 0.00787·127-s + 0.00763·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(1.24042\times 10^{7}\)
Root analytic conductor: \(7.70364\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 11^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.3026370163\)
\(L(\frac12)\) \(\approx\) \(0.3026370163\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T^{2} )^{2} \)
3 \( 1 \)
11 \( 1 \)
good5$D_4\times C_2$ \( 1 - 16 T^{2} + 639 T^{4} - 16 p^{4} T^{6} + p^{8} T^{8} \)
7$D_{4}$ \( ( 1 + 12 T + 122 T^{2} + 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 3 T + p^{2} T^{2} )^{4} \)
17$D_4\times C_2$ \( 1 - 400 T^{2} + 152367 T^{4} - 400 p^{4} T^{6} + p^{8} T^{8} \)
19$D_{4}$ \( ( 1 - 24 T + 674 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 236 T^{2} + 463014 T^{4} + 236 p^{4} T^{6} + p^{8} T^{8} \)
29$D_4\times C_2$ \( 1 - 2896 T^{2} + 3499359 T^{4} - 2896 p^{4} T^{6} + p^{8} T^{8} \)
31$C_2$ \( ( 1 + 44 T + p^{2} T^{2} )^{4} \)
37$D_{4}$ \( ( 1 + 22 T + 1131 T^{2} + 22 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 2800 T^{2} + 5418447 T^{4} - 2800 p^{4} T^{6} + p^{8} T^{8} \)
43$D_{4}$ \( ( 1 + 36 T + 3914 T^{2} + 36 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 1348 T^{2} + 7165446 T^{4} - 1348 p^{4} T^{6} + p^{8} T^{8} \)
53$D_4\times C_2$ \( 1 - 1264 T^{2} + 4737759 T^{4} - 1264 p^{4} T^{6} + p^{8} T^{8} \)
59$D_4\times C_2$ \( 1 - 340 T^{2} + 8338374 T^{4} - 340 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 + 96 T + 4946 T^{2} + 96 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 - 20 T + 8106 T^{2} - 20 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 1418 T^{2} + p^{4} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 - 156 T + 16550 T^{2} - 156 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 - 120 T + 13010 T^{2} - 120 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 25252 T^{2} + 253337190 T^{4} - 25252 p^{4} T^{6} + p^{8} T^{8} \)
89$D_4\times C_2$ \( 1 - 17776 T^{2} + 184927599 T^{4} - 17776 p^{4} T^{6} + p^{8} T^{8} \)
97$D_{4}$ \( ( 1 - 64 T + 10095 T^{2} - 64 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.33739785608368894079740858176, −5.83918851513588369918835830154, −5.80024530882516888119100718936, −5.75886772349010288142227210715, −5.45775882861767247434659501926, −5.23495325592525958992505164279, −5.04097486426203849921667858321, −4.88004885749470360762375039438, −4.58830086377978879529570831174, −4.29940368565659487276035079714, −3.74562302154522316931599093395, −3.67476696576976232772487751847, −3.63709204645483839547447323377, −3.36463439229246753556376248705, −3.22304473063388056689154253362, −3.13380249965255664744249137364, −3.12570788933997107972460935749, −2.36593146018583025824301397360, −1.99980621547069154477875539513, −1.86437383348509478878579433304, −1.63436583449688292024468224835, −1.02640863277663094907866887234, −0.825065159622911320431366221808, −0.37145762863690983610996238881, −0.13718705575798201582053835575, 0.13718705575798201582053835575, 0.37145762863690983610996238881, 0.825065159622911320431366221808, 1.02640863277663094907866887234, 1.63436583449688292024468224835, 1.86437383348509478878579433304, 1.99980621547069154477875539513, 2.36593146018583025824301397360, 3.12570788933997107972460935749, 3.13380249965255664744249137364, 3.22304473063388056689154253362, 3.36463439229246753556376248705, 3.63709204645483839547447323377, 3.67476696576976232772487751847, 3.74562302154522316931599093395, 4.29940368565659487276035079714, 4.58830086377978879529570831174, 4.88004885749470360762375039438, 5.04097486426203849921667858321, 5.23495325592525958992505164279, 5.45775882861767247434659501926, 5.75886772349010288142227210715, 5.80024530882516888119100718936, 5.83918851513588369918835830154, 6.33739785608368894079740858176

Graph of the $Z$-function along the critical line