Properties

Label 2160.4.h.c.431.5
Level $2160$
Weight $4$
Character 2160.431
Analytic conductor $127.444$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,4,Mod(431,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.431"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(127.444125612\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 8 x^{10} - 100 x^{9} + 160 x^{8} - 522 x^{7} + 3906 x^{6} - 4698 x^{5} + \cdots + 531441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.5
Root \(2.98614 - 0.288063i\) of defining polynomial
Character \(\chi\) \(=\) 2160.431
Dual form 2160.4.h.c.431.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000i q^{5} +7.56760i q^{7} -32.1145 q^{11} -70.8060 q^{13} +78.3224i q^{17} +58.7777i q^{19} -126.204 q^{23} -25.0000 q^{25} -131.149i q^{29} -294.845i q^{31} +37.8380 q^{35} -242.687 q^{37} -32.2895i q^{41} +178.139i q^{43} +202.357 q^{47} +285.731 q^{49} +754.105i q^{53} +160.572i q^{55} +674.076 q^{59} +228.588 q^{61} +354.030i q^{65} -150.745i q^{67} -902.379 q^{71} +1053.15 q^{73} -243.030i q^{77} -679.193i q^{79} +898.485 q^{83} +391.612 q^{85} -546.141i q^{89} -535.831i q^{91} +293.889 q^{95} -1021.12 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 192 q^{13} - 300 q^{25} + 936 q^{37} + 2820 q^{49} - 492 q^{61} + 4488 q^{73} + 900 q^{85} + 2544 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 5.00000i − 0.447214i
\(6\) 0 0
\(7\) 7.56760i 0.408612i 0.978907 + 0.204306i \(0.0654938\pi\)
−0.978907 + 0.204306i \(0.934506\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −32.1145 −0.880262 −0.440131 0.897934i \(-0.645068\pi\)
−0.440131 + 0.897934i \(0.645068\pi\)
\(12\) 0 0
\(13\) −70.8060 −1.51062 −0.755309 0.655369i \(-0.772513\pi\)
−0.755309 + 0.655369i \(0.772513\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 78.3224i 1.11741i 0.829366 + 0.558705i \(0.188702\pi\)
−0.829366 + 0.558705i \(0.811298\pi\)
\(18\) 0 0
\(19\) 58.7777i 0.709712i 0.934921 + 0.354856i \(0.115470\pi\)
−0.934921 + 0.354856i \(0.884530\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −126.204 −1.14414 −0.572071 0.820204i \(-0.693860\pi\)
−0.572071 + 0.820204i \(0.693860\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 131.149i − 0.839787i −0.907573 0.419893i \(-0.862067\pi\)
0.907573 0.419893i \(-0.137933\pi\)
\(30\) 0 0
\(31\) − 294.845i − 1.70825i −0.520068 0.854125i \(-0.674093\pi\)
0.520068 0.854125i \(-0.325907\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 37.8380 0.182737
\(36\) 0 0
\(37\) −242.687 −1.07831 −0.539155 0.842207i \(-0.681256\pi\)
−0.539155 + 0.842207i \(0.681256\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 32.2895i − 0.122994i −0.998107 0.0614972i \(-0.980412\pi\)
0.998107 0.0614972i \(-0.0195875\pi\)
\(42\) 0 0
\(43\) 178.139i 0.631767i 0.948798 + 0.315884i \(0.102301\pi\)
−0.948798 + 0.315884i \(0.897699\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 202.357 0.628017 0.314008 0.949420i \(-0.398328\pi\)
0.314008 + 0.949420i \(0.398328\pi\)
\(48\) 0 0
\(49\) 285.731 0.833036
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 754.105i 1.95442i 0.212276 + 0.977210i \(0.431912\pi\)
−0.212276 + 0.977210i \(0.568088\pi\)
\(54\) 0 0
\(55\) 160.572i 0.393665i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 674.076 1.48741 0.743706 0.668507i \(-0.233066\pi\)
0.743706 + 0.668507i \(0.233066\pi\)
\(60\) 0 0
\(61\) 228.588 0.479798 0.239899 0.970798i \(-0.422886\pi\)
0.239899 + 0.970798i \(0.422886\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 354.030i 0.675569i
\(66\) 0 0
\(67\) − 150.745i − 0.274873i −0.990511 0.137436i \(-0.956114\pi\)
0.990511 0.137436i \(-0.0438863\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −902.379 −1.50835 −0.754174 0.656674i \(-0.771963\pi\)
−0.754174 + 0.656674i \(0.771963\pi\)
\(72\) 0 0
\(73\) 1053.15 1.68851 0.844257 0.535939i \(-0.180042\pi\)
0.844257 + 0.535939i \(0.180042\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 243.030i − 0.359686i
\(78\) 0 0
\(79\) − 679.193i − 0.967281i −0.875267 0.483640i \(-0.839314\pi\)
0.875267 0.483640i \(-0.160686\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 898.485 1.18821 0.594105 0.804387i \(-0.297506\pi\)
0.594105 + 0.804387i \(0.297506\pi\)
\(84\) 0 0
\(85\) 391.612 0.499721
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 546.141i − 0.650458i −0.945635 0.325229i \(-0.894559\pi\)
0.945635 0.325229i \(-0.105441\pi\)
\(90\) 0 0
\(91\) − 535.831i − 0.617257i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 293.889 0.317393
\(96\) 0 0
\(97\) −1021.12 −1.06885 −0.534426 0.845215i \(-0.679472\pi\)
−0.534426 + 0.845215i \(0.679472\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 637.176i − 0.627737i −0.949467 0.313868i \(-0.898375\pi\)
0.949467 0.313868i \(-0.101625\pi\)
\(102\) 0 0
\(103\) − 1653.02i − 1.58133i −0.612249 0.790665i \(-0.709735\pi\)
0.612249 0.790665i \(-0.290265\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −796.897 −0.719990 −0.359995 0.932954i \(-0.617222\pi\)
−0.359995 + 0.932954i \(0.617222\pi\)
\(108\) 0 0
\(109\) 1634.83 1.43659 0.718295 0.695738i \(-0.244923\pi\)
0.718295 + 0.695738i \(0.244923\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 341.304i 0.284134i 0.989857 + 0.142067i \(0.0453749\pi\)
−0.989857 + 0.142067i \(0.954625\pi\)
\(114\) 0 0
\(115\) 631.018i 0.511676i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −592.713 −0.456587
\(120\) 0 0
\(121\) −299.660 −0.225139
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 879.158i 0.614273i 0.951665 + 0.307137i \(0.0993708\pi\)
−0.951665 + 0.307137i \(0.900629\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 564.363 0.376402 0.188201 0.982131i \(-0.439734\pi\)
0.188201 + 0.982131i \(0.439734\pi\)
\(132\) 0 0
\(133\) −444.806 −0.289997
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2214.77i − 1.38117i −0.723251 0.690585i \(-0.757353\pi\)
0.723251 0.690585i \(-0.242647\pi\)
\(138\) 0 0
\(139\) 2824.39i 1.72346i 0.507364 + 0.861732i \(0.330620\pi\)
−0.507364 + 0.861732i \(0.669380\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2273.90 1.32974
\(144\) 0 0
\(145\) −655.746 −0.375564
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1392.40i 0.765569i 0.923838 + 0.382784i \(0.125035\pi\)
−0.923838 + 0.382784i \(0.874965\pi\)
\(150\) 0 0
\(151\) − 320.060i − 0.172491i −0.996274 0.0862455i \(-0.972513\pi\)
0.996274 0.0862455i \(-0.0274870\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1474.23 −0.763953
\(156\) 0 0
\(157\) 3486.84 1.77249 0.886243 0.463220i \(-0.153306\pi\)
0.886243 + 0.463220i \(0.153306\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 955.059i − 0.467511i
\(162\) 0 0
\(163\) − 529.223i − 0.254306i −0.991883 0.127153i \(-0.959416\pi\)
0.991883 0.127153i \(-0.0405840\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1338.03 −0.620000 −0.310000 0.950737i \(-0.600329\pi\)
−0.310000 + 0.950737i \(0.600329\pi\)
\(168\) 0 0
\(169\) 2816.48 1.28197
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2724.46i 1.19732i 0.801002 + 0.598661i \(0.204300\pi\)
−0.801002 + 0.598661i \(0.795700\pi\)
\(174\) 0 0
\(175\) − 189.190i − 0.0817224i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1754.95 −0.732801 −0.366400 0.930457i \(-0.619410\pi\)
−0.366400 + 0.930457i \(0.619410\pi\)
\(180\) 0 0
\(181\) 1400.27 0.575034 0.287517 0.957776i \(-0.407170\pi\)
0.287517 + 0.957776i \(0.407170\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1213.43i 0.482235i
\(186\) 0 0
\(187\) − 2515.28i − 0.983614i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2354.25 −0.891870 −0.445935 0.895065i \(-0.647129\pi\)
−0.445935 + 0.895065i \(0.647129\pi\)
\(192\) 0 0
\(193\) −538.288 −0.200761 −0.100380 0.994949i \(-0.532006\pi\)
−0.100380 + 0.994949i \(0.532006\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3671.59i 1.32787i 0.747791 + 0.663935i \(0.231115\pi\)
−0.747791 + 0.663935i \(0.768885\pi\)
\(198\) 0 0
\(199\) − 2586.96i − 0.921531i −0.887522 0.460765i \(-0.847575\pi\)
0.887522 0.460765i \(-0.152425\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 992.486 0.343147
\(204\) 0 0
\(205\) −161.448 −0.0550048
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 1887.62i − 0.624733i
\(210\) 0 0
\(211\) − 1978.53i − 0.645533i −0.946479 0.322767i \(-0.895387\pi\)
0.946479 0.322767i \(-0.104613\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 890.696 0.282535
\(216\) 0 0
\(217\) 2231.27 0.698012
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 5545.69i − 1.68798i
\(222\) 0 0
\(223\) − 3714.15i − 1.11533i −0.830067 0.557664i \(-0.811698\pi\)
0.830067 0.557664i \(-0.188302\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1493.47 −0.436676 −0.218338 0.975873i \(-0.570063\pi\)
−0.218338 + 0.975873i \(0.570063\pi\)
\(228\) 0 0
\(229\) 2051.91 0.592115 0.296058 0.955170i \(-0.404328\pi\)
0.296058 + 0.955170i \(0.404328\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 1935.06i − 0.544078i −0.962286 0.272039i \(-0.912302\pi\)
0.962286 0.272039i \(-0.0876980\pi\)
\(234\) 0 0
\(235\) − 1011.78i − 0.280858i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 478.344 0.129462 0.0647312 0.997903i \(-0.479381\pi\)
0.0647312 + 0.997903i \(0.479381\pi\)
\(240\) 0 0
\(241\) 6911.10 1.84723 0.923616 0.383318i \(-0.125219\pi\)
0.923616 + 0.383318i \(0.125219\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 1428.66i − 0.372545i
\(246\) 0 0
\(247\) − 4161.81i − 1.07210i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4173.23 1.04945 0.524725 0.851272i \(-0.324168\pi\)
0.524725 + 0.851272i \(0.324168\pi\)
\(252\) 0 0
\(253\) 4052.97 1.00715
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 925.220i 0.224567i 0.993676 + 0.112283i \(0.0358164\pi\)
−0.993676 + 0.112283i \(0.964184\pi\)
\(258\) 0 0
\(259\) − 1836.56i − 0.440610i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4377.50 −1.02634 −0.513171 0.858286i \(-0.671529\pi\)
−0.513171 + 0.858286i \(0.671529\pi\)
\(264\) 0 0
\(265\) 3770.52 0.874043
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 7418.00i − 1.68135i −0.541538 0.840676i \(-0.682158\pi\)
0.541538 0.840676i \(-0.317842\pi\)
\(270\) 0 0
\(271\) 4543.85i 1.01852i 0.860612 + 0.509261i \(0.170081\pi\)
−0.860612 + 0.509261i \(0.829919\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 802.862 0.176052
\(276\) 0 0
\(277\) 7997.72 1.73479 0.867394 0.497622i \(-0.165793\pi\)
0.867394 + 0.497622i \(0.165793\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7823.65i 1.66092i 0.557075 + 0.830462i \(0.311923\pi\)
−0.557075 + 0.830462i \(0.688077\pi\)
\(282\) 0 0
\(283\) − 6934.81i − 1.45665i −0.685232 0.728325i \(-0.740299\pi\)
0.685232 0.728325i \(-0.259701\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 244.354 0.0502570
\(288\) 0 0
\(289\) −1221.40 −0.248606
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 3629.61i − 0.723700i −0.932236 0.361850i \(-0.882145\pi\)
0.932236 0.361850i \(-0.117855\pi\)
\(294\) 0 0
\(295\) − 3370.38i − 0.665191i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8935.97 1.72836
\(300\) 0 0
\(301\) −1348.09 −0.258148
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 1142.94i − 0.214572i
\(306\) 0 0
\(307\) − 1302.76i − 0.242190i −0.992641 0.121095i \(-0.961359\pi\)
0.992641 0.121095i \(-0.0386406\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8231.35 1.50083 0.750413 0.660969i \(-0.229855\pi\)
0.750413 + 0.660969i \(0.229855\pi\)
\(312\) 0 0
\(313\) 3316.19 0.598856 0.299428 0.954119i \(-0.403204\pi\)
0.299428 + 0.954119i \(0.403204\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1687.78i 0.299039i 0.988759 + 0.149519i \(0.0477727\pi\)
−0.988759 + 0.149519i \(0.952227\pi\)
\(318\) 0 0
\(319\) 4211.79i 0.739232i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4603.61 −0.793040
\(324\) 0 0
\(325\) 1770.15 0.302124
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1531.36i 0.256615i
\(330\) 0 0
\(331\) − 8155.71i − 1.35432i −0.735838 0.677158i \(-0.763211\pi\)
0.735838 0.677158i \(-0.236789\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −753.727 −0.122927
\(336\) 0 0
\(337\) −3784.89 −0.611798 −0.305899 0.952064i \(-0.598957\pi\)
−0.305899 + 0.952064i \(0.598957\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9468.80i 1.50371i
\(342\) 0 0
\(343\) 4757.99i 0.749001i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3510.97 −0.543166 −0.271583 0.962415i \(-0.587547\pi\)
−0.271583 + 0.962415i \(0.587547\pi\)
\(348\) 0 0
\(349\) −5368.79 −0.823452 −0.411726 0.911308i \(-0.635074\pi\)
−0.411726 + 0.911308i \(0.635074\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 794.397i − 0.119778i −0.998205 0.0598888i \(-0.980925\pi\)
0.998205 0.0598888i \(-0.0190746\pi\)
\(354\) 0 0
\(355\) 4511.90i 0.674554i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9183.57 −1.35011 −0.675056 0.737767i \(-0.735880\pi\)
−0.675056 + 0.737767i \(0.735880\pi\)
\(360\) 0 0
\(361\) 3404.18 0.496309
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 5265.73i − 0.755126i
\(366\) 0 0
\(367\) 525.371i 0.0747251i 0.999302 + 0.0373626i \(0.0118956\pi\)
−0.999302 + 0.0373626i \(0.988104\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5706.76 −0.798599
\(372\) 0 0
\(373\) 4230.34 0.587235 0.293617 0.955923i \(-0.405141\pi\)
0.293617 + 0.955923i \(0.405141\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9286.15i 1.26860i
\(378\) 0 0
\(379\) − 11254.9i − 1.52539i −0.646758 0.762696i \(-0.723875\pi\)
0.646758 0.762696i \(-0.276125\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3249.64 0.433548 0.216774 0.976222i \(-0.430447\pi\)
0.216774 + 0.976222i \(0.430447\pi\)
\(384\) 0 0
\(385\) −1215.15 −0.160856
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1747.00i 0.227703i 0.993498 + 0.113852i \(0.0363189\pi\)
−0.993498 + 0.113852i \(0.963681\pi\)
\(390\) 0 0
\(391\) − 9884.58i − 1.27848i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3395.96 −0.432581
\(396\) 0 0
\(397\) 12783.9 1.61613 0.808067 0.589091i \(-0.200514\pi\)
0.808067 + 0.589091i \(0.200514\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5751.27i 0.716221i 0.933679 + 0.358111i \(0.116579\pi\)
−0.933679 + 0.358111i \(0.883421\pi\)
\(402\) 0 0
\(403\) 20876.8i 2.58051i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7793.76 0.949195
\(408\) 0 0
\(409\) 12328.2 1.49044 0.745221 0.666818i \(-0.232344\pi\)
0.745221 + 0.666818i \(0.232344\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5101.14i 0.607774i
\(414\) 0 0
\(415\) − 4492.42i − 0.531384i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8716.10 1.01625 0.508126 0.861283i \(-0.330339\pi\)
0.508126 + 0.861283i \(0.330339\pi\)
\(420\) 0 0
\(421\) 4896.49 0.566842 0.283421 0.958996i \(-0.408531\pi\)
0.283421 + 0.958996i \(0.408531\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 1958.06i − 0.223482i
\(426\) 0 0
\(427\) 1729.86i 0.196051i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4670.18 −0.521937 −0.260968 0.965347i \(-0.584042\pi\)
−0.260968 + 0.965347i \(0.584042\pi\)
\(432\) 0 0
\(433\) 8626.74 0.957448 0.478724 0.877966i \(-0.341100\pi\)
0.478724 + 0.877966i \(0.341100\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 7417.96i − 0.812012i
\(438\) 0 0
\(439\) − 10754.0i − 1.16916i −0.811336 0.584580i \(-0.801259\pi\)
0.811336 0.584580i \(-0.198741\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12700.2 1.36209 0.681045 0.732242i \(-0.261526\pi\)
0.681045 + 0.732242i \(0.261526\pi\)
\(444\) 0 0
\(445\) −2730.70 −0.290894
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3123.57i 0.328308i 0.986435 + 0.164154i \(0.0524895\pi\)
−0.986435 + 0.164154i \(0.947511\pi\)
\(450\) 0 0
\(451\) 1036.96i 0.108267i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2679.16 −0.276046
\(456\) 0 0
\(457\) 232.538 0.0238024 0.0119012 0.999929i \(-0.496212\pi\)
0.0119012 + 0.999929i \(0.496212\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3804.93i 0.384411i 0.981355 + 0.192205i \(0.0615640\pi\)
−0.981355 + 0.192205i \(0.938436\pi\)
\(462\) 0 0
\(463\) − 11122.2i − 1.11640i −0.829705 0.558202i \(-0.811492\pi\)
0.829705 0.558202i \(-0.188508\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5105.56 −0.505904 −0.252952 0.967479i \(-0.581401\pi\)
−0.252952 + 0.967479i \(0.581401\pi\)
\(468\) 0 0
\(469\) 1140.78 0.112316
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 5720.85i − 0.556121i
\(474\) 0 0
\(475\) − 1469.44i − 0.141942i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17479.7 −1.66736 −0.833682 0.552245i \(-0.813771\pi\)
−0.833682 + 0.552245i \(0.813771\pi\)
\(480\) 0 0
\(481\) 17183.7 1.62891
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5105.59i 0.478006i
\(486\) 0 0
\(487\) − 16203.2i − 1.50768i −0.657060 0.753838i \(-0.728200\pi\)
0.657060 0.753838i \(-0.271800\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11651.6 1.07094 0.535468 0.844556i \(-0.320135\pi\)
0.535468 + 0.844556i \(0.320135\pi\)
\(492\) 0 0
\(493\) 10271.9 0.938386
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 6828.85i − 0.616329i
\(498\) 0 0
\(499\) − 1814.85i − 0.162813i −0.996681 0.0814067i \(-0.974059\pi\)
0.996681 0.0814067i \(-0.0259413\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −16771.0 −1.48665 −0.743324 0.668932i \(-0.766752\pi\)
−0.743324 + 0.668932i \(0.766752\pi\)
\(504\) 0 0
\(505\) −3185.88 −0.280732
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 16526.3i − 1.43913i −0.694425 0.719565i \(-0.744341\pi\)
0.694425 0.719565i \(-0.255659\pi\)
\(510\) 0 0
\(511\) 7969.79i 0.689947i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8265.11 −0.707192
\(516\) 0 0
\(517\) −6498.59 −0.552819
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 12039.9i − 1.01243i −0.862406 0.506217i \(-0.831043\pi\)
0.862406 0.506217i \(-0.168957\pi\)
\(522\) 0 0
\(523\) 7346.21i 0.614202i 0.951677 + 0.307101i \(0.0993589\pi\)
−0.951677 + 0.307101i \(0.900641\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 23093.0 1.90882
\(528\) 0 0
\(529\) 3760.37 0.309063
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2286.29i 0.185798i
\(534\) 0 0
\(535\) 3984.48i 0.321989i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9176.12 −0.733290
\(540\) 0 0
\(541\) −11949.5 −0.949626 −0.474813 0.880087i \(-0.657484\pi\)
−0.474813 + 0.880087i \(0.657484\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 8174.15i − 0.642463i
\(546\) 0 0
\(547\) 4682.52i 0.366015i 0.983112 + 0.183007i \(0.0585832\pi\)
−0.983112 + 0.183007i \(0.941417\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7708.65 0.596007
\(552\) 0 0
\(553\) 5139.86 0.395243
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6922.90i 0.526629i 0.964710 + 0.263315i \(0.0848157\pi\)
−0.964710 + 0.263315i \(0.915184\pi\)
\(558\) 0 0
\(559\) − 12613.3i − 0.954359i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21091.2 1.57884 0.789422 0.613851i \(-0.210380\pi\)
0.789422 + 0.613851i \(0.210380\pi\)
\(564\) 0 0
\(565\) 1706.52 0.127069
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8030.35i 0.591652i 0.955242 + 0.295826i \(0.0955948\pi\)
−0.955242 + 0.295826i \(0.904405\pi\)
\(570\) 0 0
\(571\) 16492.1i 1.20871i 0.796716 + 0.604354i \(0.206569\pi\)
−0.796716 + 0.604354i \(0.793431\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3155.09 0.228829
\(576\) 0 0
\(577\) −1853.85 −0.133755 −0.0668776 0.997761i \(-0.521304\pi\)
−0.0668776 + 0.997761i \(0.521304\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6799.37i 0.485517i
\(582\) 0 0
\(583\) − 24217.7i − 1.72040i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14358.6 −1.00962 −0.504808 0.863232i \(-0.668437\pi\)
−0.504808 + 0.863232i \(0.668437\pi\)
\(588\) 0 0
\(589\) 17330.3 1.21237
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3228.40i 0.223566i 0.993733 + 0.111783i \(0.0356561\pi\)
−0.993733 + 0.111783i \(0.964344\pi\)
\(594\) 0 0
\(595\) 2963.56i 0.204192i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4904.57 −0.334550 −0.167275 0.985910i \(-0.553497\pi\)
−0.167275 + 0.985910i \(0.553497\pi\)
\(600\) 0 0
\(601\) −12459.3 −0.845634 −0.422817 0.906215i \(-0.638959\pi\)
−0.422817 + 0.906215i \(0.638959\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1498.30i 0.100685i
\(606\) 0 0
\(607\) 17076.7i 1.14188i 0.820991 + 0.570942i \(0.193422\pi\)
−0.820991 + 0.570942i \(0.806578\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −14328.1 −0.948694
\(612\) 0 0
\(613\) −5178.25 −0.341187 −0.170593 0.985341i \(-0.554568\pi\)
−0.170593 + 0.985341i \(0.554568\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 4037.33i − 0.263431i −0.991288 0.131715i \(-0.957951\pi\)
0.991288 0.131715i \(-0.0420485\pi\)
\(618\) 0 0
\(619\) 17079.7i 1.10903i 0.832174 + 0.554515i \(0.187096\pi\)
−0.832174 + 0.554515i \(0.812904\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4132.98 0.265785
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 19007.8i − 1.20491i
\(630\) 0 0
\(631\) − 7197.29i − 0.454072i −0.973886 0.227036i \(-0.927096\pi\)
0.973886 0.227036i \(-0.0729035\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4395.79 0.274711
\(636\) 0 0
\(637\) −20231.5 −1.25840
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3352.62i 0.206584i 0.994651 + 0.103292i \(0.0329376\pi\)
−0.994651 + 0.103292i \(0.967062\pi\)
\(642\) 0 0
\(643\) 2845.94i 0.174546i 0.996184 + 0.0872728i \(0.0278152\pi\)
−0.996184 + 0.0872728i \(0.972185\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20674.6 1.25626 0.628130 0.778108i \(-0.283820\pi\)
0.628130 + 0.778108i \(0.283820\pi\)
\(648\) 0 0
\(649\) −21647.6 −1.30931
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 32959.7i 1.97521i 0.156963 + 0.987605i \(0.449830\pi\)
−0.156963 + 0.987605i \(0.550170\pi\)
\(654\) 0 0
\(655\) − 2821.81i − 0.168332i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10854.1 −0.641604 −0.320802 0.947146i \(-0.603952\pi\)
−0.320802 + 0.947146i \(0.603952\pi\)
\(660\) 0 0
\(661\) −16856.0 −0.991864 −0.495932 0.868361i \(-0.665173\pi\)
−0.495932 + 0.868361i \(0.665173\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2224.03i 0.129691i
\(666\) 0 0
\(667\) 16551.5i 0.960836i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7340.98 −0.422348
\(672\) 0 0
\(673\) −11931.8 −0.683415 −0.341707 0.939806i \(-0.611005\pi\)
−0.341707 + 0.939806i \(0.611005\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 10320.9i − 0.585915i −0.956125 0.292957i \(-0.905361\pi\)
0.956125 0.292957i \(-0.0946394\pi\)
\(678\) 0 0
\(679\) − 7727.41i − 0.436746i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 601.636 0.0337056 0.0168528 0.999858i \(-0.494635\pi\)
0.0168528 + 0.999858i \(0.494635\pi\)
\(684\) 0 0
\(685\) −11073.8 −0.617678
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 53395.1i − 2.95238i
\(690\) 0 0
\(691\) 5702.87i 0.313961i 0.987602 + 0.156981i \(0.0501760\pi\)
−0.987602 + 0.156981i \(0.949824\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14121.9 0.770756
\(696\) 0 0
\(697\) 2528.99 0.137435
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3552.26i 0.191394i 0.995411 + 0.0956968i \(0.0305079\pi\)
−0.995411 + 0.0956968i \(0.969492\pi\)
\(702\) 0 0
\(703\) − 14264.6i − 0.765289i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4821.90 0.256501
\(708\) 0 0
\(709\) 1674.89 0.0887188 0.0443594 0.999016i \(-0.485875\pi\)
0.0443594 + 0.999016i \(0.485875\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 37210.5i 1.95448i
\(714\) 0 0
\(715\) − 11369.5i − 0.594678i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6862.29 −0.355939 −0.177970 0.984036i \(-0.556953\pi\)
−0.177970 + 0.984036i \(0.556953\pi\)
\(720\) 0 0
\(721\) 12509.4 0.646151
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3278.73i 0.167957i
\(726\) 0 0
\(727\) − 4516.84i − 0.230427i −0.993341 0.115213i \(-0.963245\pi\)
0.993341 0.115213i \(-0.0367552\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −13952.3 −0.705943
\(732\) 0 0
\(733\) −32489.6 −1.63715 −0.818574 0.574402i \(-0.805235\pi\)
−0.818574 + 0.574402i \(0.805235\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4841.11i 0.241960i
\(738\) 0 0
\(739\) 14068.1i 0.700273i 0.936699 + 0.350137i \(0.113865\pi\)
−0.936699 + 0.350137i \(0.886135\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24655.3 1.21738 0.608691 0.793408i \(-0.291695\pi\)
0.608691 + 0.793408i \(0.291695\pi\)
\(744\) 0 0
\(745\) 6961.99 0.342373
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 6030.60i − 0.294197i
\(750\) 0 0
\(751\) − 28039.5i − 1.36242i −0.732088 0.681210i \(-0.761454\pi\)
0.732088 0.681210i \(-0.238546\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1600.30 −0.0771403
\(756\) 0 0
\(757\) 3462.15 0.166227 0.0831137 0.996540i \(-0.473514\pi\)
0.0831137 + 0.996540i \(0.473514\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 27915.3i − 1.32974i −0.746961 0.664868i \(-0.768488\pi\)
0.746961 0.664868i \(-0.231512\pi\)
\(762\) 0 0
\(763\) 12371.7i 0.587008i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −47728.6 −2.24691
\(768\) 0 0
\(769\) −36403.1 −1.70706 −0.853529 0.521045i \(-0.825543\pi\)
−0.853529 + 0.521045i \(0.825543\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34789.2i 1.61873i 0.587305 + 0.809366i \(0.300189\pi\)
−0.587305 + 0.809366i \(0.699811\pi\)
\(774\) 0 0
\(775\) 7371.13i 0.341650i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1897.90 0.0872907
\(780\) 0 0
\(781\) 28979.5 1.32774
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 17434.2i − 0.792680i
\(786\) 0 0
\(787\) 1455.87i 0.0659416i 0.999456 + 0.0329708i \(0.0104968\pi\)
−0.999456 + 0.0329708i \(0.989503\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2582.85 −0.116101
\(792\) 0 0
\(793\) −16185.4 −0.724792
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 30305.4i − 1.34689i −0.739237 0.673446i \(-0.764814\pi\)
0.739237 0.673446i \(-0.235186\pi\)
\(798\) 0 0
\(799\) 15849.1i 0.701752i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −33821.3 −1.48633
\(804\) 0 0
\(805\) −4775.30 −0.209077
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12798.0i 0.556186i 0.960554 + 0.278093i \(0.0897024\pi\)
−0.960554 + 0.278093i \(0.910298\pi\)
\(810\) 0 0
\(811\) 20816.1i 0.901296i 0.892702 + 0.450648i \(0.148807\pi\)
−0.892702 + 0.450648i \(0.851193\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2646.11 −0.113729
\(816\) 0 0
\(817\) −10470.6 −0.448373
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 21674.7i − 0.921377i −0.887562 0.460689i \(-0.847602\pi\)
0.887562 0.460689i \(-0.152398\pi\)
\(822\) 0 0
\(823\) 18068.3i 0.765274i 0.923899 + 0.382637i \(0.124984\pi\)
−0.923899 + 0.382637i \(0.875016\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −26165.2 −1.10019 −0.550093 0.835104i \(-0.685408\pi\)
−0.550093 + 0.835104i \(0.685408\pi\)
\(828\) 0 0
\(829\) 32877.9 1.37744 0.688719 0.725028i \(-0.258173\pi\)
0.688719 + 0.725028i \(0.258173\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 22379.2i 0.930843i
\(834\) 0 0
\(835\) 6690.16i 0.277272i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −10340.9 −0.425515 −0.212758 0.977105i \(-0.568244\pi\)
−0.212758 + 0.977105i \(0.568244\pi\)
\(840\) 0 0
\(841\) 7188.87 0.294758
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 14082.4i − 0.573314i
\(846\) 0 0
\(847\) − 2267.71i − 0.0919944i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 30627.9 1.23374
\(852\) 0 0
\(853\) 5312.72 0.213252 0.106626 0.994299i \(-0.465995\pi\)
0.106626 + 0.994299i \(0.465995\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 38844.7i 1.54832i 0.632992 + 0.774159i \(0.281827\pi\)
−0.632992 + 0.774159i \(0.718173\pi\)
\(858\) 0 0
\(859\) 38513.1i 1.52974i 0.644183 + 0.764872i \(0.277198\pi\)
−0.644183 + 0.764872i \(0.722802\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24453.7 0.964557 0.482279 0.876018i \(-0.339809\pi\)
0.482279 + 0.876018i \(0.339809\pi\)
\(864\) 0 0
\(865\) 13622.3 0.535459
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 21811.9i 0.851460i
\(870\) 0 0
\(871\) 10673.7i 0.415228i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −945.950 −0.0365474
\(876\) 0 0
\(877\) 20329.8 0.782767 0.391384 0.920228i \(-0.371997\pi\)
0.391384 + 0.920228i \(0.371997\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 47887.5i 1.83129i 0.401984 + 0.915647i \(0.368321\pi\)
−0.401984 + 0.915647i \(0.631679\pi\)
\(882\) 0 0
\(883\) − 14012.7i − 0.534048i −0.963690 0.267024i \(-0.913960\pi\)
0.963690 0.267024i \(-0.0860403\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 50634.6 1.91674 0.958368 0.285537i \(-0.0921720\pi\)
0.958368 + 0.285537i \(0.0921720\pi\)
\(888\) 0 0
\(889\) −6653.12 −0.250999
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11894.1i 0.445711i
\(894\) 0 0
\(895\) 8774.76i 0.327718i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −38668.7 −1.43457
\(900\) 0 0
\(901\) −59063.3 −2.18389
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 7001.34i − 0.257163i
\(906\) 0 0
\(907\) − 16896.5i − 0.618567i −0.950970 0.309283i \(-0.899911\pi\)
0.950970 0.309283i \(-0.100089\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 28351.8 1.03111 0.515553 0.856858i \(-0.327587\pi\)
0.515553 + 0.856858i \(0.327587\pi\)
\(912\) 0 0
\(913\) −28854.4 −1.04594
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4270.87i 0.153802i
\(918\) 0 0
\(919\) 38075.6i 1.36670i 0.730091 + 0.683350i \(0.239478\pi\)
−0.730091 + 0.683350i \(0.760522\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 63893.8 2.27854
\(924\) 0 0
\(925\) 6067.17 0.215662
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 44190.6i − 1.56065i −0.625373 0.780326i \(-0.715053\pi\)
0.625373 0.780326i \(-0.284947\pi\)
\(930\) 0 0
\(931\) 16794.6i 0.591216i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12576.4 −0.439886
\(936\) 0 0
\(937\) −26332.2 −0.918074 −0.459037 0.888417i \(-0.651805\pi\)
−0.459037 + 0.888417i \(0.651805\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7342.98i 0.254383i 0.991878 + 0.127191i \(0.0405963\pi\)
−0.991878 + 0.127191i \(0.959404\pi\)
\(942\) 0 0
\(943\) 4075.05i 0.140723i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 54421.3 1.86743 0.933714 0.358019i \(-0.116548\pi\)
0.933714 + 0.358019i \(0.116548\pi\)
\(948\) 0 0
\(949\) −74569.0 −2.55070
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7391.32i 0.251237i 0.992079 + 0.125618i \(0.0400915\pi\)
−0.992079 + 0.125618i \(0.959909\pi\)
\(954\) 0 0
\(955\) 11771.2i 0.398856i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 16760.5 0.564363
\(960\) 0 0
\(961\) −57142.7 −1.91812
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2691.44i 0.0897829i
\(966\) 0 0
\(967\) − 31710.4i − 1.05454i −0.849699 0.527268i \(-0.823216\pi\)
0.849699 0.527268i \(-0.176784\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −16757.8 −0.553846 −0.276923 0.960892i \(-0.589315\pi\)
−0.276923 + 0.960892i \(0.589315\pi\)
\(972\) 0 0
\(973\) −21373.8 −0.704228
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 8207.77i − 0.268772i −0.990929 0.134386i \(-0.957094\pi\)
0.990929 0.134386i \(-0.0429062\pi\)
\(978\) 0 0
\(979\) 17539.0i 0.572574i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8219.39 0.266692 0.133346 0.991070i \(-0.457428\pi\)
0.133346 + 0.991070i \(0.457428\pi\)
\(984\) 0 0
\(985\) 18358.0 0.593841
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 22481.8i − 0.722832i
\(990\) 0 0
\(991\) − 25875.6i − 0.829430i −0.909951 0.414715i \(-0.863881\pi\)
0.909951 0.414715i \(-0.136119\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −12934.8 −0.412121
\(996\) 0 0
\(997\) −47593.2 −1.51183 −0.755914 0.654671i \(-0.772807\pi\)
−0.755914 + 0.654671i \(0.772807\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.4.h.c.431.5 yes 12
3.2 odd 2 inner 2160.4.h.c.431.11 yes 12
4.3 odd 2 inner 2160.4.h.c.431.2 12
12.11 even 2 inner 2160.4.h.c.431.8 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2160.4.h.c.431.2 12 4.3 odd 2 inner
2160.4.h.c.431.5 yes 12 1.1 even 1 trivial
2160.4.h.c.431.8 yes 12 12.11 even 2 inner
2160.4.h.c.431.11 yes 12 3.2 odd 2 inner