Properties

Label 2160.4.h.c
Level $2160$
Weight $4$
Character orbit 2160.h
Analytic conductor $127.444$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,4,Mod(431,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.431"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(127.444125612\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 8 x^{10} - 100 x^{9} + 160 x^{8} - 522 x^{7} + 3906 x^{6} - 4698 x^{5} + \cdots + 531441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 5 \beta_1 q^{5} + (\beta_{8} - 3 \beta_{3}) q^{7} + ( - 3 \beta_{6} + \beta_{5} - 8 \beta_{2}) q^{11} + ( - \beta_{7} + \beta_{4} - 16) q^{13} + (3 \beta_{11} - 15 \beta_1) q^{17} + (\beta_{9} + \beta_{8} + 15 \beta_{3}) q^{19}+ \cdots + (6 \beta_{7} + 68 \beta_{4} + 212) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 192 q^{13} - 300 q^{25} + 936 q^{37} + 2820 q^{49} - 492 q^{61} + 4488 q^{73} + 900 q^{85} + 2544 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 2 x^{11} + 8 x^{10} - 100 x^{9} + 160 x^{8} - 522 x^{7} + 3906 x^{6} - 4698 x^{5} + \cdots + 531441 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 233 \nu^{11} + 1717 \nu^{10} - 1288 \nu^{9} + 23507 \nu^{8} - 119531 \nu^{7} + 81054 \nu^{6} + \cdots + 826686 ) / 10865016 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 23 \nu^{11} + 127 \nu^{10} - 508 \nu^{9} + 2543 \nu^{8} - 9431 \nu^{7} + 30960 \nu^{6} + \cdots + 6141096 ) / 472392 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 530 \nu^{11} - 1753 \nu^{10} - 368 \nu^{9} - 34163 \nu^{8} + 94484 \nu^{7} + 94491 \nu^{6} + \cdots + 65367243 ) / 5432508 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 5 \nu^{11} + 100 \nu^{10} - 301 \nu^{9} + 896 \nu^{8} - 7289 \nu^{7} + 16848 \nu^{6} + \cdots + 2781864 ) / 26244 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 91 \nu^{11} + 2653 \nu^{10} - 9964 \nu^{9} + 9773 \nu^{8} - 204869 \nu^{7} + 644400 \nu^{6} + \cdots + 153527400 ) / 472392 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 101 \nu^{11} + 67 \nu^{10} - 214 \nu^{9} + 7643 \nu^{8} - 797 \nu^{7} - 2736 \nu^{6} + \cdots - 8030664 ) / 472392 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{11} + 16 \nu^{10} - 109 \nu^{9} + 44 \nu^{8} - 1235 \nu^{7} + 7704 \nu^{6} - 2979 \nu^{5} + \cdots + 2213244 ) / 4374 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 716 \nu^{11} + 1234 \nu^{10} - 7843 \nu^{9} + 54626 \nu^{8} - 113390 \nu^{7} + 475803 \nu^{6} + \cdots + 113551227 ) / 2716254 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 2090 \nu^{11} - 4171 \nu^{10} - 39836 \nu^{9} - 99497 \nu^{8} - 150880 \nu^{7} + 3071997 \nu^{6} + \cdots + 1001766285 ) / 5432508 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 1238 \nu^{11} + 1567 \nu^{10} - 5980 \nu^{9} + 78053 \nu^{8} - 69920 \nu^{7} + 407565 \nu^{6} + \cdots + 303570909 ) / 2716254 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 7147 \nu^{11} + 13448 \nu^{10} - 20654 \nu^{9} + 477892 \nu^{8} - 732895 \nu^{7} + \cdots - 342543249 ) / 5432508 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2 \beta_{11} + \beta_{10} + 3 \beta_{9} - 12 \beta_{8} - \beta_{7} + 6 \beta_{6} + 3 \beta_{5} + \cdots + 12 ) / 72 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 12 \beta_{11} - 3 \beta_{10} - 3 \beta_{9} + 30 \beta_{8} - \beta_{7} + 36 \beta_{6} + 9 \beta_{5} + \cdots - 72 ) / 72 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{11} - 5\beta_{10} + \beta_{7} - 2\beta_{4} + 12\beta _1 + 390 ) / 18 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 4 \beta_{11} + 13 \beta_{10} + 81 \beta_{9} - 306 \beta_{8} - 27 \beta_{7} - 12 \beta_{6} + \cdots + 1056 ) / 72 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 422 \beta_{11} - 31 \beta_{10} + 111 \beta_{9} + 420 \beta_{8} + 37 \beta_{7} + 1266 \beta_{6} + \cdots - 3828 ) / 72 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 36\beta_{11} - 96\beta_{10} + 41\beta_{7} - 94\beta_{4} + 1104\beta _1 + 2133 ) / 9 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 1274 \beta_{11} - 73 \beta_{10} + 489 \beta_{9} - 6420 \beta_{8} - 163 \beta_{7} - 3822 \beta_{6} + \cdots + 33612 ) / 72 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 11564 \beta_{11} + 1043 \beta_{10} + 5247 \beta_{9} - 3582 \beta_{8} + 1749 \beta_{7} + 34692 \beta_{6} + \cdots - 91200 ) / 72 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 686\beta_{11} - 3923\beta_{10} + 2921\beta_{7} - 8962\beta_{4} + 152052\beta _1 - 57930 ) / 18 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 46212 \beta_{11} - 6093 \beta_{10} - 52989 \beta_{9} - 108174 \beta_{8} + 17663 \beta_{7} + \cdots + 761688 ) / 72 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 252418 \beta_{11} + 57655 \beta_{10} + 88437 \beta_{9} - 517188 \beta_{8} + 29479 \beta_{7} + \cdots - 601908 ) / 72 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
431.1
−0.948886 + 2.84598i
−1.24360 + 2.73010i
−0.671227 2.92394i
2.86782 + 0.880673i
2.98614 0.288063i
−1.99025 2.24475i
−1.99025 + 2.24475i
2.98614 + 0.288063i
2.86782 0.880673i
−0.671227 + 2.92394i
−1.24360 2.73010i
−0.948886 2.84598i
0 0 0 5.00000i 0 15.0269i 0 0 0
431.2 0 0 0 5.00000i 0 7.56760i 0 0 0
431.3 0 0 0 5.00000i 0 6.39707i 0 0 0
431.4 0 0 0 5.00000i 0 6.39707i 0 0 0
431.5 0 0 0 5.00000i 0 7.56760i 0 0 0
431.6 0 0 0 5.00000i 0 15.0269i 0 0 0
431.7 0 0 0 5.00000i 0 15.0269i 0 0 0
431.8 0 0 0 5.00000i 0 7.56760i 0 0 0
431.9 0 0 0 5.00000i 0 6.39707i 0 0 0
431.10 0 0 0 5.00000i 0 6.39707i 0 0 0
431.11 0 0 0 5.00000i 0 7.56760i 0 0 0
431.12 0 0 0 5.00000i 0 15.0269i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 431.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.4.h.c 12
3.b odd 2 1 inner 2160.4.h.c 12
4.b odd 2 1 inner 2160.4.h.c 12
12.b even 2 1 inner 2160.4.h.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2160.4.h.c 12 1.a even 1 1 trivial
2160.4.h.c 12 3.b odd 2 1 inner
2160.4.h.c 12 4.b odd 2 1 inner
2160.4.h.c 12 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{6} + 324T_{7}^{4} + 24516T_{7}^{2} + 529200 \) acting on \(S_{4}^{\mathrm{new}}(2160, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( (T^{2} + 25)^{6} \) Copy content Toggle raw display
$7$ \( (T^{6} + 324 T^{4} + \cdots + 529200)^{2} \) Copy content Toggle raw display
$11$ \( (T^{6} - 5928 T^{4} + \cdots - 5767941312)^{2} \) Copy content Toggle raw display
$13$ \( (T^{3} + 48 T^{2} + \cdots - 205564)^{4} \) Copy content Toggle raw display
$17$ \( (T^{6} + 7695 T^{4} + \cdots + 310852161)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} + 5733 T^{4} + \cdots + 2694063267)^{2} \) Copy content Toggle raw display
$23$ \( (T^{6} - 39561 T^{4} + \cdots - 210225270267)^{2} \) Copy content Toggle raw display
$29$ \( (T^{6} + \cdots + 16962701216400)^{2} \) Copy content Toggle raw display
$31$ \( (T^{6} + \cdots + 18668982706947)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} - 234 T^{2} + \cdots + 13482088)^{4} \) Copy content Toggle raw display
$41$ \( (T^{6} + 38952 T^{4} + \cdots + 273462060096)^{2} \) Copy content Toggle raw display
$43$ \( (T^{6} + \cdots + 2359370420928)^{2} \) Copy content Toggle raw display
$47$ \( (T^{6} + \cdots - 35435772525312)^{2} \) Copy content Toggle raw display
$53$ \( (T^{6} + \cdots + 889777652797881)^{2} \) Copy content Toggle raw display
$59$ \( (T^{6} + \cdots - 19737120963888)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 123 T^{2} + \cdots + 50171449)^{4} \) Copy content Toggle raw display
$67$ \( (T^{6} + \cdots + 83800270809792)^{2} \) Copy content Toggle raw display
$71$ \( (T^{6} + \cdots - 15\!\cdots\!48)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} - 1122 T^{2} + \cdots + 81845240)^{4} \) Copy content Toggle raw display
$79$ \( (T^{6} + \cdots + 34\!\cdots\!63)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} + \cdots - 876281924499147)^{2} \) Copy content Toggle raw display
$89$ \( (T^{6} + \cdots + 36\!\cdots\!44)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} - 636 T^{2} + \cdots - 96051712)^{4} \) Copy content Toggle raw display
show more
show less