Properties

Label 2160.4.h.c.431.3
Level $2160$
Weight $4$
Character 2160.431
Analytic conductor $127.444$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,4,Mod(431,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.431"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2160.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(127.444125612\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 8 x^{10} - 100 x^{9} + 160 x^{8} - 522 x^{7} + 3906 x^{6} - 4698 x^{5} + \cdots + 531441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.3
Root \(-0.671227 - 2.92394i\) of defining polynomial
Character \(\chi\) \(=\) 2160.431
Dual form 2160.4.h.c.431.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000i q^{5} -6.39707i q^{7} -55.5166 q^{11} +66.4777 q^{13} +5.75985i q^{17} -20.4831i q^{19} -23.9237 q^{23} -25.0000 q^{25} +264.356i q^{29} +54.2716i q^{31} -31.9853 q^{35} +273.756 q^{37} +169.715i q^{41} -180.798i q^{43} -124.124 q^{47} +302.077 q^{49} -174.189i q^{53} +277.583i q^{55} -19.6299 q^{59} -676.182 q^{61} -332.389i q^{65} -374.946i q^{67} +976.477 q^{71} -246.465 q^{73} +355.143i q^{77} +1153.63i q^{79} +59.4554 q^{83} +28.7992 q^{85} -474.905i q^{89} -425.263i q^{91} -102.415 q^{95} -54.9428 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 192 q^{13} - 300 q^{25} + 936 q^{37} + 2820 q^{49} - 492 q^{61} + 4488 q^{73} + 900 q^{85} + 2544 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 5.00000i − 0.447214i
\(6\) 0 0
\(7\) − 6.39707i − 0.345409i −0.984974 0.172705i \(-0.944749\pi\)
0.984974 0.172705i \(-0.0552506\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −55.5166 −1.52172 −0.760858 0.648918i \(-0.775222\pi\)
−0.760858 + 0.648918i \(0.775222\pi\)
\(12\) 0 0
\(13\) 66.4777 1.41828 0.709139 0.705069i \(-0.249084\pi\)
0.709139 + 0.705069i \(0.249084\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.75985i 0.0821746i 0.999156 + 0.0410873i \(0.0130822\pi\)
−0.999156 + 0.0410873i \(0.986918\pi\)
\(18\) 0 0
\(19\) − 20.4831i − 0.247323i −0.992324 0.123662i \(-0.960536\pi\)
0.992324 0.123662i \(-0.0394637\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −23.9237 −0.216889 −0.108444 0.994103i \(-0.534587\pi\)
−0.108444 + 0.994103i \(0.534587\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 264.356i 1.69275i 0.532591 + 0.846373i \(0.321219\pi\)
−0.532591 + 0.846373i \(0.678781\pi\)
\(30\) 0 0
\(31\) 54.2716i 0.314435i 0.987564 + 0.157217i \(0.0502523\pi\)
−0.987564 + 0.157217i \(0.949748\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −31.9853 −0.154472
\(36\) 0 0
\(37\) 273.756 1.21636 0.608178 0.793800i \(-0.291900\pi\)
0.608178 + 0.793800i \(0.291900\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 169.715i 0.646465i 0.946320 + 0.323233i \(0.104770\pi\)
−0.946320 + 0.323233i \(0.895230\pi\)
\(42\) 0 0
\(43\) − 180.798i − 0.641196i −0.947215 0.320598i \(-0.896116\pi\)
0.947215 0.320598i \(-0.103884\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −124.124 −0.385219 −0.192610 0.981275i \(-0.561695\pi\)
−0.192610 + 0.981275i \(0.561695\pi\)
\(48\) 0 0
\(49\) 302.077 0.880692
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 174.189i − 0.451448i −0.974191 0.225724i \(-0.927525\pi\)
0.974191 0.225724i \(-0.0724747\pi\)
\(54\) 0 0
\(55\) 277.583i 0.680532i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −19.6299 −0.0433151 −0.0216576 0.999765i \(-0.506894\pi\)
−0.0216576 + 0.999765i \(0.506894\pi\)
\(60\) 0 0
\(61\) −676.182 −1.41928 −0.709641 0.704564i \(-0.751143\pi\)
−0.709641 + 0.704564i \(0.751143\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 332.389i − 0.634273i
\(66\) 0 0
\(67\) − 374.946i − 0.683686i −0.939757 0.341843i \(-0.888949\pi\)
0.939757 0.341843i \(-0.111051\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 976.477 1.63220 0.816102 0.577907i \(-0.196130\pi\)
0.816102 + 0.577907i \(0.196130\pi\)
\(72\) 0 0
\(73\) −246.465 −0.395158 −0.197579 0.980287i \(-0.563308\pi\)
−0.197579 + 0.980287i \(0.563308\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 355.143i 0.525615i
\(78\) 0 0
\(79\) 1153.63i 1.64295i 0.570245 + 0.821475i \(0.306848\pi\)
−0.570245 + 0.821475i \(0.693152\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 59.4554 0.0786275 0.0393137 0.999227i \(-0.487483\pi\)
0.0393137 + 0.999227i \(0.487483\pi\)
\(84\) 0 0
\(85\) 28.7992 0.0367496
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 474.905i − 0.565616i −0.959177 0.282808i \(-0.908734\pi\)
0.959177 0.282808i \(-0.0912659\pi\)
\(90\) 0 0
\(91\) − 425.263i − 0.489886i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −102.415 −0.110606
\(96\) 0 0
\(97\) −54.9428 −0.0575113 −0.0287556 0.999586i \(-0.509154\pi\)
−0.0287556 + 0.999586i \(0.509154\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1348.85i 1.32887i 0.747346 + 0.664435i \(0.231328\pi\)
−0.747346 + 0.664435i \(0.768672\pi\)
\(102\) 0 0
\(103\) − 1197.10i − 1.14518i −0.819842 0.572590i \(-0.805939\pi\)
0.819842 0.572590i \(-0.194061\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1589.60 1.43619 0.718095 0.695945i \(-0.245014\pi\)
0.718095 + 0.695945i \(0.245014\pi\)
\(108\) 0 0
\(109\) 1686.52 1.48201 0.741007 0.671497i \(-0.234349\pi\)
0.741007 + 0.671497i \(0.234349\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1501.59i − 1.25007i −0.780597 0.625034i \(-0.785085\pi\)
0.780597 0.625034i \(-0.214915\pi\)
\(114\) 0 0
\(115\) 119.619i 0.0969956i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 36.8462 0.0283839
\(120\) 0 0
\(121\) 1751.09 1.31562
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) − 415.412i − 0.290251i −0.989413 0.145125i \(-0.953641\pi\)
0.989413 0.145125i \(-0.0463586\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 165.063 0.110089 0.0550445 0.998484i \(-0.482470\pi\)
0.0550445 + 0.998484i \(0.482470\pi\)
\(132\) 0 0
\(133\) −131.032 −0.0854278
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 213.152i 0.132926i 0.997789 + 0.0664629i \(0.0211714\pi\)
−0.997789 + 0.0664629i \(0.978829\pi\)
\(138\) 0 0
\(139\) − 817.013i − 0.498548i −0.968433 0.249274i \(-0.919808\pi\)
0.968433 0.249274i \(-0.0801919\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3690.62 −2.15822
\(144\) 0 0
\(145\) 1321.78 0.757019
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 371.997i 0.204532i 0.994757 + 0.102266i \(0.0326092\pi\)
−0.994757 + 0.102266i \(0.967391\pi\)
\(150\) 0 0
\(151\) − 3302.89i − 1.78004i −0.455925 0.890018i \(-0.650691\pi\)
0.455925 0.890018i \(-0.349309\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 271.358 0.140619
\(156\) 0 0
\(157\) 464.066 0.235901 0.117951 0.993019i \(-0.462368\pi\)
0.117951 + 0.993019i \(0.462368\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 153.042i 0.0749154i
\(162\) 0 0
\(163\) − 2398.33i − 1.15246i −0.817286 0.576232i \(-0.804523\pi\)
0.817286 0.576232i \(-0.195477\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −605.878 −0.280744 −0.140372 0.990099i \(-0.544830\pi\)
−0.140372 + 0.990099i \(0.544830\pi\)
\(168\) 0 0
\(169\) 2222.29 1.01151
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 1271.79i − 0.558914i −0.960158 0.279457i \(-0.909845\pi\)
0.960158 0.279457i \(-0.0901545\pi\)
\(174\) 0 0
\(175\) 159.927i 0.0690819i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2858.61 −1.19365 −0.596823 0.802373i \(-0.703571\pi\)
−0.596823 + 0.802373i \(0.703571\pi\)
\(180\) 0 0
\(181\) 1736.90 0.713276 0.356638 0.934243i \(-0.383923\pi\)
0.356638 + 0.934243i \(0.383923\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 1368.78i − 0.543971i
\(186\) 0 0
\(187\) − 319.767i − 0.125046i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1097.42 −0.415743 −0.207871 0.978156i \(-0.566654\pi\)
−0.207871 + 0.978156i \(0.566654\pi\)
\(192\) 0 0
\(193\) 1273.79 0.475073 0.237537 0.971379i \(-0.423660\pi\)
0.237537 + 0.971379i \(0.423660\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2170.76i 0.785077i 0.919736 + 0.392538i \(0.128403\pi\)
−0.919736 + 0.392538i \(0.871597\pi\)
\(198\) 0 0
\(199\) 5210.83i 1.85621i 0.372320 + 0.928104i \(0.378562\pi\)
−0.372320 + 0.928104i \(0.621438\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1691.10 0.584690
\(204\) 0 0
\(205\) 848.577 0.289108
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1137.15i 0.376356i
\(210\) 0 0
\(211\) − 183.077i − 0.0597326i −0.999554 0.0298663i \(-0.990492\pi\)
0.999554 0.0298663i \(-0.00950815\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −903.989 −0.286751
\(216\) 0 0
\(217\) 347.180 0.108609
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 382.902i 0.116546i
\(222\) 0 0
\(223\) − 6323.84i − 1.89899i −0.313778 0.949496i \(-0.601595\pi\)
0.313778 0.949496i \(-0.398405\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 566.540 0.165650 0.0828251 0.996564i \(-0.473606\pi\)
0.0828251 + 0.996564i \(0.473606\pi\)
\(228\) 0 0
\(229\) 463.926 0.133874 0.0669368 0.997757i \(-0.478677\pi\)
0.0669368 + 0.997757i \(0.478677\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2099.73i 0.590377i 0.955439 + 0.295188i \(0.0953824\pi\)
−0.955439 + 0.295188i \(0.904618\pi\)
\(234\) 0 0
\(235\) 620.618i 0.172275i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2481.10 0.671503 0.335752 0.941951i \(-0.391010\pi\)
0.335752 + 0.941951i \(0.391010\pi\)
\(240\) 0 0
\(241\) 3380.39 0.903526 0.451763 0.892138i \(-0.350795\pi\)
0.451763 + 0.892138i \(0.350795\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 1510.39i − 0.393858i
\(246\) 0 0
\(247\) − 1361.67i − 0.350773i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −925.089 −0.232634 −0.116317 0.993212i \(-0.537109\pi\)
−0.116317 + 0.993212i \(0.537109\pi\)
\(252\) 0 0
\(253\) 1328.16 0.330043
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 6512.95i − 1.58080i −0.612588 0.790402i \(-0.709872\pi\)
0.612588 0.790402i \(-0.290128\pi\)
\(258\) 0 0
\(259\) − 1751.24i − 0.420141i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4789.97 1.12305 0.561525 0.827460i \(-0.310215\pi\)
0.561525 + 0.827460i \(0.310215\pi\)
\(264\) 0 0
\(265\) −870.946 −0.201894
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 4947.13i − 1.12131i −0.828050 0.560654i \(-0.810550\pi\)
0.828050 0.560654i \(-0.189450\pi\)
\(270\) 0 0
\(271\) − 2410.24i − 0.540264i −0.962823 0.270132i \(-0.912933\pi\)
0.962823 0.270132i \(-0.0870674\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1387.91 0.304343
\(276\) 0 0
\(277\) 7868.39 1.70674 0.853368 0.521309i \(-0.174556\pi\)
0.853368 + 0.521309i \(0.174556\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 105.174i 0.0223281i 0.999938 + 0.0111640i \(0.00355369\pi\)
−0.999938 + 0.0111640i \(0.996446\pi\)
\(282\) 0 0
\(283\) 7571.83i 1.59045i 0.606312 + 0.795227i \(0.292648\pi\)
−0.606312 + 0.795227i \(0.707352\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1085.68 0.223295
\(288\) 0 0
\(289\) 4879.82 0.993247
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3710.49i 0.739826i 0.929066 + 0.369913i \(0.120612\pi\)
−0.929066 + 0.369913i \(0.879388\pi\)
\(294\) 0 0
\(295\) 98.1494i 0.0193711i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1590.39 −0.307608
\(300\) 0 0
\(301\) −1156.58 −0.221475
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3380.91i 0.634722i
\(306\) 0 0
\(307\) − 2213.98i − 0.411591i −0.978595 0.205795i \(-0.934022\pi\)
0.978595 0.205795i \(-0.0659781\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2363.06 0.430857 0.215429 0.976520i \(-0.430885\pi\)
0.215429 + 0.976520i \(0.430885\pi\)
\(312\) 0 0
\(313\) 6549.59 1.18276 0.591381 0.806392i \(-0.298583\pi\)
0.591381 + 0.806392i \(0.298583\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 9439.49i − 1.67248i −0.548367 0.836238i \(-0.684750\pi\)
0.548367 0.836238i \(-0.315250\pi\)
\(318\) 0 0
\(319\) − 14676.1i − 2.57588i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 117.980 0.0203237
\(324\) 0 0
\(325\) −1661.94 −0.283656
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 794.028i 0.133058i
\(330\) 0 0
\(331\) 5204.47i 0.864241i 0.901816 + 0.432120i \(0.142234\pi\)
−0.901816 + 0.432120i \(0.857766\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1874.73 −0.305754
\(336\) 0 0
\(337\) 7094.31 1.14674 0.573370 0.819296i \(-0.305636\pi\)
0.573370 + 0.819296i \(0.305636\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 3012.98i − 0.478480i
\(342\) 0 0
\(343\) − 4126.61i − 0.649609i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7220.79 1.11710 0.558548 0.829472i \(-0.311359\pi\)
0.558548 + 0.829472i \(0.311359\pi\)
\(348\) 0 0
\(349\) 8494.10 1.30280 0.651402 0.758733i \(-0.274181\pi\)
0.651402 + 0.758733i \(0.274181\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12828.2i 1.93421i 0.254385 + 0.967103i \(0.418127\pi\)
−0.254385 + 0.967103i \(0.581873\pi\)
\(354\) 0 0
\(355\) − 4882.39i − 0.729944i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7108.51 −1.04505 −0.522524 0.852624i \(-0.675010\pi\)
−0.522524 + 0.852624i \(0.675010\pi\)
\(360\) 0 0
\(361\) 6439.44 0.938831
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1232.32i 0.176720i
\(366\) 0 0
\(367\) − 11036.4i − 1.56975i −0.619656 0.784873i \(-0.712728\pi\)
0.619656 0.784873i \(-0.287272\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1114.30 −0.155934
\(372\) 0 0
\(373\) 12170.7 1.68948 0.844739 0.535178i \(-0.179755\pi\)
0.844739 + 0.535178i \(0.179755\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17573.8i 2.40078i
\(378\) 0 0
\(379\) − 3342.88i − 0.453066i −0.974003 0.226533i \(-0.927261\pi\)
0.974003 0.226533i \(-0.0727392\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5913.51 0.788946 0.394473 0.918907i \(-0.370927\pi\)
0.394473 + 0.918907i \(0.370927\pi\)
\(384\) 0 0
\(385\) 1775.72 0.235062
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5614.04i 0.731731i 0.930668 + 0.365865i \(0.119227\pi\)
−0.930668 + 0.365865i \(0.880773\pi\)
\(390\) 0 0
\(391\) − 137.797i − 0.0178227i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5768.13 0.734749
\(396\) 0 0
\(397\) 8698.42 1.09965 0.549825 0.835280i \(-0.314694\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 6213.28i − 0.773757i −0.922131 0.386878i \(-0.873553\pi\)
0.922131 0.386878i \(-0.126447\pi\)
\(402\) 0 0
\(403\) 3607.86i 0.445956i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −15198.0 −1.85095
\(408\) 0 0
\(409\) −7049.01 −0.852203 −0.426101 0.904675i \(-0.640113\pi\)
−0.426101 + 0.904675i \(0.640113\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 125.574i 0.0149615i
\(414\) 0 0
\(415\) − 297.277i − 0.0351633i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1852.88 −0.216036 −0.108018 0.994149i \(-0.534450\pi\)
−0.108018 + 0.994149i \(0.534450\pi\)
\(420\) 0 0
\(421\) −3719.81 −0.430623 −0.215312 0.976545i \(-0.569077\pi\)
−0.215312 + 0.976545i \(0.569077\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 143.996i − 0.0164349i
\(426\) 0 0
\(427\) 4325.58i 0.490233i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10575.5 −1.18191 −0.590953 0.806706i \(-0.701248\pi\)
−0.590953 + 0.806706i \(0.701248\pi\)
\(432\) 0 0
\(433\) 392.491 0.0435610 0.0217805 0.999763i \(-0.493067\pi\)
0.0217805 + 0.999763i \(0.493067\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 490.032i 0.0536416i
\(438\) 0 0
\(439\) − 5896.93i − 0.641105i −0.947231 0.320553i \(-0.896131\pi\)
0.947231 0.320553i \(-0.103869\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9000.77 −0.965326 −0.482663 0.875806i \(-0.660330\pi\)
−0.482663 + 0.875806i \(0.660330\pi\)
\(444\) 0 0
\(445\) −2374.52 −0.252951
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 16867.0i − 1.77283i −0.462892 0.886415i \(-0.653188\pi\)
0.462892 0.886415i \(-0.346812\pi\)
\(450\) 0 0
\(451\) − 9422.02i − 0.983737i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2126.31 −0.219084
\(456\) 0 0
\(457\) −14093.6 −1.44260 −0.721302 0.692621i \(-0.756456\pi\)
−0.721302 + 0.692621i \(0.756456\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 571.138i − 0.0577018i −0.999584 0.0288509i \(-0.990815\pi\)
0.999584 0.0288509i \(-0.00918481\pi\)
\(462\) 0 0
\(463\) 8105.80i 0.813625i 0.913512 + 0.406813i \(0.133360\pi\)
−0.913512 + 0.406813i \(0.866640\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6979.97 0.691637 0.345818 0.938301i \(-0.387601\pi\)
0.345818 + 0.938301i \(0.387601\pi\)
\(468\) 0 0
\(469\) −2398.56 −0.236151
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10037.3i 0.975718i
\(474\) 0 0
\(475\) 512.077i 0.0494647i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4346.35 0.414592 0.207296 0.978278i \(-0.433534\pi\)
0.207296 + 0.978278i \(0.433534\pi\)
\(480\) 0 0
\(481\) 18198.7 1.72513
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 274.714i 0.0257198i
\(486\) 0 0
\(487\) 7542.79i 0.701841i 0.936405 + 0.350921i \(0.114131\pi\)
−0.936405 + 0.350921i \(0.885869\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9224.04 0.847811 0.423905 0.905706i \(-0.360659\pi\)
0.423905 + 0.905706i \(0.360659\pi\)
\(492\) 0 0
\(493\) −1522.65 −0.139101
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 6246.59i − 0.563779i
\(498\) 0 0
\(499\) − 9222.35i − 0.827353i −0.910424 0.413676i \(-0.864245\pi\)
0.910424 0.413676i \(-0.135755\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15756.4 1.39670 0.698351 0.715755i \(-0.253917\pi\)
0.698351 + 0.715755i \(0.253917\pi\)
\(504\) 0 0
\(505\) 6744.27 0.594289
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 13026.3i − 1.13435i −0.823599 0.567173i \(-0.808037\pi\)
0.823599 0.567173i \(-0.191963\pi\)
\(510\) 0 0
\(511\) 1576.65i 0.136491i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5985.49 −0.512140
\(516\) 0 0
\(517\) 6890.92 0.586194
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10658.0i 0.896233i 0.893975 + 0.448116i \(0.147905\pi\)
−0.893975 + 0.448116i \(0.852095\pi\)
\(522\) 0 0
\(523\) − 2978.41i − 0.249019i −0.992218 0.124509i \(-0.960264\pi\)
0.992218 0.124509i \(-0.0397357\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −312.597 −0.0258386
\(528\) 0 0
\(529\) −11594.7 −0.952959
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11282.3i 0.916868i
\(534\) 0 0
\(535\) − 7947.99i − 0.642283i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16770.3 −1.34016
\(540\) 0 0
\(541\) 1745.08 0.138682 0.0693410 0.997593i \(-0.477910\pi\)
0.0693410 + 0.997593i \(0.477910\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 8432.61i − 0.662777i
\(546\) 0 0
\(547\) 7508.43i 0.586905i 0.955974 + 0.293453i \(0.0948043\pi\)
−0.955974 + 0.293453i \(0.905196\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5414.82 0.418655
\(552\) 0 0
\(553\) 7379.82 0.567490
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10270.1i 0.781250i 0.920550 + 0.390625i \(0.127741\pi\)
−0.920550 + 0.390625i \(0.872259\pi\)
\(558\) 0 0
\(559\) − 12019.0i − 0.909394i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16226.8 1.21470 0.607352 0.794433i \(-0.292232\pi\)
0.607352 + 0.794433i \(0.292232\pi\)
\(564\) 0 0
\(565\) −7507.95 −0.559048
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 5838.15i − 0.430137i −0.976599 0.215069i \(-0.931003\pi\)
0.976599 0.215069i \(-0.0689975\pi\)
\(570\) 0 0
\(571\) 6560.15i 0.480794i 0.970675 + 0.240397i \(0.0772777\pi\)
−0.970675 + 0.240397i \(0.922722\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 598.093 0.0433777
\(576\) 0 0
\(577\) −18667.7 −1.34688 −0.673438 0.739243i \(-0.735183\pi\)
−0.673438 + 0.739243i \(0.735183\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 380.341i − 0.0271587i
\(582\) 0 0
\(583\) 9670.39i 0.686975i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6635.47 0.466568 0.233284 0.972409i \(-0.425053\pi\)
0.233284 + 0.972409i \(0.425053\pi\)
\(588\) 0 0
\(589\) 1111.65 0.0777670
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 10842.9i − 0.750870i −0.926849 0.375435i \(-0.877493\pi\)
0.926849 0.375435i \(-0.122507\pi\)
\(594\) 0 0
\(595\) − 184.231i − 0.0126937i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24193.1 1.65025 0.825127 0.564948i \(-0.191104\pi\)
0.825127 + 0.564948i \(0.191104\pi\)
\(600\) 0 0
\(601\) 15971.1 1.08399 0.541994 0.840383i \(-0.317670\pi\)
0.541994 + 0.840383i \(0.317670\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 8755.46i − 0.588364i
\(606\) 0 0
\(607\) − 8024.95i − 0.536611i −0.963334 0.268305i \(-0.913536\pi\)
0.963334 0.268305i \(-0.0864636\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8251.46 −0.546348
\(612\) 0 0
\(613\) 9725.48 0.640797 0.320398 0.947283i \(-0.396183\pi\)
0.320398 + 0.947283i \(0.396183\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 24882.0i − 1.62352i −0.583990 0.811761i \(-0.698509\pi\)
0.583990 0.811761i \(-0.301491\pi\)
\(618\) 0 0
\(619\) 20644.9i 1.34053i 0.742120 + 0.670267i \(0.233820\pi\)
−0.742120 + 0.670267i \(0.766180\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3038.00 −0.195369
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1576.79i 0.0999537i
\(630\) 0 0
\(631\) − 7597.15i − 0.479299i −0.970859 0.239650i \(-0.922967\pi\)
0.970859 0.239650i \(-0.0770325\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2077.06 −0.129804
\(636\) 0 0
\(637\) 20081.4 1.24907
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3812.73i 0.234936i 0.993077 + 0.117468i \(0.0374777\pi\)
−0.993077 + 0.117468i \(0.962522\pi\)
\(642\) 0 0
\(643\) − 4046.71i − 0.248191i −0.992270 0.124095i \(-0.960397\pi\)
0.992270 0.124095i \(-0.0396029\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −28536.0 −1.73395 −0.866974 0.498353i \(-0.833938\pi\)
−0.866974 + 0.498353i \(0.833938\pi\)
\(648\) 0 0
\(649\) 1089.78 0.0659133
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 16067.6i − 0.962899i −0.876474 0.481449i \(-0.840110\pi\)
0.876474 0.481449i \(-0.159890\pi\)
\(654\) 0 0
\(655\) − 825.317i − 0.0492333i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −13800.3 −0.815756 −0.407878 0.913036i \(-0.633731\pi\)
−0.407878 + 0.913036i \(0.633731\pi\)
\(660\) 0 0
\(661\) −14129.5 −0.831431 −0.415715 0.909495i \(-0.636469\pi\)
−0.415715 + 0.909495i \(0.636469\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 655.159i 0.0382045i
\(666\) 0 0
\(667\) − 6324.37i − 0.367137i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 37539.3 2.15974
\(672\) 0 0
\(673\) −5999.06 −0.343606 −0.171803 0.985131i \(-0.554959\pi\)
−0.171803 + 0.985131i \(0.554959\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10956.0i 0.621968i 0.950415 + 0.310984i \(0.100658\pi\)
−0.950415 + 0.310984i \(0.899342\pi\)
\(678\) 0 0
\(679\) 351.473i 0.0198649i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −33310.5 −1.86617 −0.933084 0.359659i \(-0.882893\pi\)
−0.933084 + 0.359659i \(0.882893\pi\)
\(684\) 0 0
\(685\) 1065.76 0.0594462
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 11579.7i − 0.640278i
\(690\) 0 0
\(691\) − 298.971i − 0.0164593i −0.999966 0.00822966i \(-0.997380\pi\)
0.999966 0.00822966i \(-0.00261961\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4085.06 −0.222957
\(696\) 0 0
\(697\) −977.535 −0.0531231
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 29219.4i 1.57432i 0.616747 + 0.787161i \(0.288450\pi\)
−0.616747 + 0.787161i \(0.711550\pi\)
\(702\) 0 0
\(703\) − 5607.37i − 0.300833i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8628.71 0.459004
\(708\) 0 0
\(709\) 17485.6 0.926214 0.463107 0.886302i \(-0.346735\pi\)
0.463107 + 0.886302i \(0.346735\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 1298.38i − 0.0681973i
\(714\) 0 0
\(715\) 18453.1i 0.965184i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −23281.8 −1.20760 −0.603801 0.797135i \(-0.706348\pi\)
−0.603801 + 0.797135i \(0.706348\pi\)
\(720\) 0 0
\(721\) −7657.91 −0.395556
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 6608.89i − 0.338549i
\(726\) 0 0
\(727\) 1403.69i 0.0716093i 0.999359 + 0.0358046i \(0.0113994\pi\)
−0.999359 + 0.0358046i \(0.988601\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1041.37 0.0526900
\(732\) 0 0
\(733\) −30220.4 −1.52280 −0.761402 0.648280i \(-0.775489\pi\)
−0.761402 + 0.648280i \(0.775489\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20815.7i 1.04038i
\(738\) 0 0
\(739\) 34125.5i 1.69868i 0.527843 + 0.849342i \(0.323001\pi\)
−0.527843 + 0.849342i \(0.676999\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12683.6 0.626268 0.313134 0.949709i \(-0.398621\pi\)
0.313134 + 0.949709i \(0.398621\pi\)
\(744\) 0 0
\(745\) 1859.99 0.0914693
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 10168.8i − 0.496073i
\(750\) 0 0
\(751\) 15777.5i 0.766616i 0.923621 + 0.383308i \(0.125215\pi\)
−0.923621 + 0.383308i \(0.874785\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −16514.5 −0.796057
\(756\) 0 0
\(757\) −13079.9 −0.628003 −0.314001 0.949423i \(-0.601670\pi\)
−0.314001 + 0.949423i \(0.601670\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7814.60i 0.372246i 0.982526 + 0.186123i \(0.0595922\pi\)
−0.982526 + 0.186123i \(0.940408\pi\)
\(762\) 0 0
\(763\) − 10788.8i − 0.511901i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1304.95 −0.0614329
\(768\) 0 0
\(769\) 1314.68 0.0616495 0.0308248 0.999525i \(-0.490187\pi\)
0.0308248 + 0.999525i \(0.490187\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 28082.8i 1.30669i 0.757061 + 0.653344i \(0.226634\pi\)
−0.757061 + 0.653344i \(0.773366\pi\)
\(774\) 0 0
\(775\) − 1356.79i − 0.0628869i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3476.29 0.159886
\(780\) 0 0
\(781\) −54210.7 −2.48375
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 2320.33i − 0.105498i
\(786\) 0 0
\(787\) 23777.6i 1.07698i 0.842633 + 0.538489i \(0.181005\pi\)
−0.842633 + 0.538489i \(0.818995\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9605.78 −0.431785
\(792\) 0 0
\(793\) −44951.0 −2.01294
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21940.2i 0.975111i 0.873092 + 0.487555i \(0.162111\pi\)
−0.873092 + 0.487555i \(0.837889\pi\)
\(798\) 0 0
\(799\) − 714.934i − 0.0316552i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13682.9 0.601318
\(804\) 0 0
\(805\) 765.208 0.0335032
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 22835.5i − 0.992402i −0.868208 0.496201i \(-0.834728\pi\)
0.868208 0.496201i \(-0.165272\pi\)
\(810\) 0 0
\(811\) 29505.2i 1.27752i 0.769407 + 0.638759i \(0.220552\pi\)
−0.769407 + 0.638759i \(0.779448\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −11991.6 −0.515397
\(816\) 0 0
\(817\) −3703.30 −0.158583
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 35909.6i 1.52650i 0.646105 + 0.763248i \(0.276397\pi\)
−0.646105 + 0.763248i \(0.723603\pi\)
\(822\) 0 0
\(823\) − 29714.2i − 1.25853i −0.777189 0.629267i \(-0.783355\pi\)
0.777189 0.629267i \(-0.216645\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14542.2 0.611465 0.305732 0.952118i \(-0.401099\pi\)
0.305732 + 0.952118i \(0.401099\pi\)
\(828\) 0 0
\(829\) −6765.34 −0.283438 −0.141719 0.989907i \(-0.545263\pi\)
−0.141719 + 0.989907i \(0.545263\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1739.92i 0.0723706i
\(834\) 0 0
\(835\) 3029.39i 0.125553i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9817.26 −0.403968 −0.201984 0.979389i \(-0.564739\pi\)
−0.201984 + 0.979389i \(0.564739\pi\)
\(840\) 0 0
\(841\) −45495.0 −1.86539
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 11111.5i − 0.452362i
\(846\) 0 0
\(847\) − 11201.9i − 0.454428i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6549.26 −0.263814
\(852\) 0 0
\(853\) 5322.48 0.213644 0.106822 0.994278i \(-0.465933\pi\)
0.106822 + 0.994278i \(0.465933\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20964.5i 0.835630i 0.908532 + 0.417815i \(0.137204\pi\)
−0.908532 + 0.417815i \(0.862796\pi\)
\(858\) 0 0
\(859\) 41995.8i 1.66808i 0.551705 + 0.834039i \(0.313977\pi\)
−0.551705 + 0.834039i \(0.686023\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −14325.6 −0.565065 −0.282532 0.959258i \(-0.591174\pi\)
−0.282532 + 0.959258i \(0.591174\pi\)
\(864\) 0 0
\(865\) −6358.94 −0.249954
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 64045.4i − 2.50010i
\(870\) 0 0
\(871\) − 24925.6i − 0.969656i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 799.634 0.0308943
\(876\) 0 0
\(877\) −30888.3 −1.18931 −0.594654 0.803981i \(-0.702711\pi\)
−0.594654 + 0.803981i \(0.702711\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 13371.4i − 0.511344i −0.966764 0.255672i \(-0.917703\pi\)
0.966764 0.255672i \(-0.0822968\pi\)
\(882\) 0 0
\(883\) 32657.0i 1.24462i 0.782773 + 0.622308i \(0.213805\pi\)
−0.782773 + 0.622308i \(0.786195\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 45855.4 1.73582 0.867911 0.496719i \(-0.165462\pi\)
0.867911 + 0.496719i \(0.165462\pi\)
\(888\) 0 0
\(889\) −2657.42 −0.100255
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2542.44i 0.0952736i
\(894\) 0 0
\(895\) 14293.1i 0.533815i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −14347.0 −0.532258
\(900\) 0 0
\(901\) 1003.30 0.0370976
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 8684.52i − 0.318987i
\(906\) 0 0
\(907\) − 9944.06i − 0.364043i −0.983295 0.182022i \(-0.941736\pi\)
0.983295 0.182022i \(-0.0582641\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2143.92 −0.0779707 −0.0389854 0.999240i \(-0.512413\pi\)
−0.0389854 + 0.999240i \(0.512413\pi\)
\(912\) 0 0
\(913\) −3300.76 −0.119649
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1055.92i − 0.0380258i
\(918\) 0 0
\(919\) − 14171.4i − 0.508673i −0.967116 0.254336i \(-0.918143\pi\)
0.967116 0.254336i \(-0.0818570\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 64914.0 2.31492
\(924\) 0 0
\(925\) −6843.90 −0.243271
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 6611.21i − 0.233484i −0.993162 0.116742i \(-0.962755\pi\)
0.993162 0.116742i \(-0.0372451\pi\)
\(930\) 0 0
\(931\) − 6187.48i − 0.217816i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1598.84 −0.0559225
\(936\) 0 0
\(937\) 4874.63 0.169954 0.0849771 0.996383i \(-0.472918\pi\)
0.0849771 + 0.996383i \(0.472918\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 9360.15i − 0.324264i −0.986769 0.162132i \(-0.948163\pi\)
0.986769 0.162132i \(-0.0518370\pi\)
\(942\) 0 0
\(943\) − 4060.22i − 0.140211i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −33182.4 −1.13863 −0.569315 0.822119i \(-0.692792\pi\)
−0.569315 + 0.822119i \(0.692792\pi\)
\(948\) 0 0
\(949\) −16384.4 −0.560444
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 50051.9i 1.70130i 0.525730 + 0.850651i \(0.323792\pi\)
−0.525730 + 0.850651i \(0.676208\pi\)
\(954\) 0 0
\(955\) 5487.12i 0.185926i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1363.55 0.0459138
\(960\) 0 0
\(961\) 26845.6 0.901131
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 6368.93i − 0.212459i
\(966\) 0 0
\(967\) − 12066.8i − 0.401283i −0.979665 0.200641i \(-0.935697\pi\)
0.979665 0.200641i \(-0.0643026\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 38464.1 1.27124 0.635619 0.772003i \(-0.280745\pi\)
0.635619 + 0.772003i \(0.280745\pi\)
\(972\) 0 0
\(973\) −5226.49 −0.172203
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 9271.79i − 0.303614i −0.988410 0.151807i \(-0.951491\pi\)
0.988410 0.151807i \(-0.0485092\pi\)
\(978\) 0 0
\(979\) 26365.1i 0.860707i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 27407.2 0.889270 0.444635 0.895712i \(-0.353333\pi\)
0.444635 + 0.895712i \(0.353333\pi\)
\(984\) 0 0
\(985\) 10853.8 0.351097
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4325.36i 0.139068i
\(990\) 0 0
\(991\) − 21099.0i − 0.676320i −0.941089 0.338160i \(-0.890196\pi\)
0.941089 0.338160i \(-0.109804\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 26054.1 0.830122
\(996\) 0 0
\(997\) −12537.7 −0.398269 −0.199135 0.979972i \(-0.563813\pi\)
−0.199135 + 0.979972i \(0.563813\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.4.h.c.431.3 12
3.2 odd 2 inner 2160.4.h.c.431.9 yes 12
4.3 odd 2 inner 2160.4.h.c.431.4 yes 12
12.11 even 2 inner 2160.4.h.c.431.10 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2160.4.h.c.431.3 12 1.1 even 1 trivial
2160.4.h.c.431.4 yes 12 4.3 odd 2 inner
2160.4.h.c.431.9 yes 12 3.2 odd 2 inner
2160.4.h.c.431.10 yes 12 12.11 even 2 inner