Properties

Label 216.5.h.b.53.2
Level $216$
Weight $5$
Character 216.53
Self dual yes
Analytic conductor $22.328$
Analytic rank $0$
Dimension $2$
CM discriminant -24
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [216,5,Mod(53,216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(216, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("216.53"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 216.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.3279120261\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 53.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 216.53

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} +39.9706 q^{5} -85.8528 q^{7} +64.0000 q^{8} +159.882 q^{10} +240.706 q^{11} -343.411 q^{14} +256.000 q^{16} +639.529 q^{20} +962.823 q^{22} +972.646 q^{25} -1373.65 q^{28} +818.000 q^{29} -1373.20 q^{31} +1024.00 q^{32} -3431.59 q^{35} +2558.12 q^{40} +3851.29 q^{44} +4969.71 q^{49} +3890.58 q^{50} +2379.08 q^{53} +9621.14 q^{55} -5494.58 q^{56} +3272.00 q^{58} -6862.00 q^{59} -5492.81 q^{62} +4096.00 q^{64} -13726.3 q^{70} -1860.70 q^{73} -20665.3 q^{77} -9118.00 q^{79} +10232.5 q^{80} +9281.28 q^{83} +15405.2 q^{88} -15089.8 q^{97} +19878.8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 32 q^{4} + 46 q^{5} - 2 q^{7} + 128 q^{8} + 184 q^{10} + 142 q^{11} - 8 q^{14} + 512 q^{16} + 736 q^{20} + 568 q^{22} + 384 q^{25} - 32 q^{28} + 1636 q^{29} + 478 q^{31} + 2048 q^{32} - 2926 q^{35}+ \cdots + 38400 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/216\mathbb{Z}\right)^\times\).

\(n\) \(55\) \(109\) \(137\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 1.00000
\(3\) 0 0
\(4\) 16.0000 1.00000
\(5\) 39.9706 1.59882 0.799411 0.600784i \(-0.205145\pi\)
0.799411 + 0.600784i \(0.205145\pi\)
\(6\) 0 0
\(7\) −85.8528 −1.75210 −0.876049 0.482222i \(-0.839830\pi\)
−0.876049 + 0.482222i \(0.839830\pi\)
\(8\) 64.0000 1.00000
\(9\) 0 0
\(10\) 159.882 1.59882
\(11\) 240.706 1.98930 0.994651 0.103289i \(-0.0329368\pi\)
0.994651 + 0.103289i \(0.0329368\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −343.411 −1.75210
\(15\) 0 0
\(16\) 256.000 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 639.529 1.59882
\(21\) 0 0
\(22\) 962.823 1.98930
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 972.646 1.55623
\(26\) 0 0
\(27\) 0 0
\(28\) −1373.65 −1.75210
\(29\) 818.000 0.972652 0.486326 0.873778i \(-0.338337\pi\)
0.486326 + 0.873778i \(0.338337\pi\)
\(30\) 0 0
\(31\) −1373.20 −1.42893 −0.714466 0.699670i \(-0.753330\pi\)
−0.714466 + 0.699670i \(0.753330\pi\)
\(32\) 1024.00 1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) −3431.59 −2.80129
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 2558.12 1.59882
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 3851.29 1.98930
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 4969.71 2.06985
\(50\) 3890.58 1.55623
\(51\) 0 0
\(52\) 0 0
\(53\) 2379.08 0.846950 0.423475 0.905908i \(-0.360810\pi\)
0.423475 + 0.905908i \(0.360810\pi\)
\(54\) 0 0
\(55\) 9621.14 3.18054
\(56\) −5494.58 −1.75210
\(57\) 0 0
\(58\) 3272.00 0.972652
\(59\) −6862.00 −1.97127 −0.985636 0.168882i \(-0.945984\pi\)
−0.985636 + 0.168882i \(0.945984\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −5492.81 −1.42893
\(63\) 0 0
\(64\) 4096.00 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −13726.3 −2.80129
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −1860.70 −0.349164 −0.174582 0.984643i \(-0.555857\pi\)
−0.174582 + 0.984643i \(0.555857\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −20665.3 −3.48545
\(78\) 0 0
\(79\) −9118.00 −1.46098 −0.730492 0.682921i \(-0.760709\pi\)
−0.730492 + 0.682921i \(0.760709\pi\)
\(80\) 10232.5 1.59882
\(81\) 0 0
\(82\) 0 0
\(83\) 9281.28 1.34726 0.673630 0.739069i \(-0.264734\pi\)
0.673630 + 0.739069i \(0.264734\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 15405.2 1.98930
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −15089.8 −1.60376 −0.801882 0.597483i \(-0.796168\pi\)
−0.801882 + 0.597483i \(0.796168\pi\)
\(98\) 19878.8 2.06985
\(99\) 0 0
\(100\) 15562.3 1.55623
\(101\) −19134.4 −1.87574 −0.937870 0.346987i \(-0.887205\pi\)
−0.937870 + 0.346987i \(0.887205\pi\)
\(102\) 0 0
\(103\) −21118.0 −1.99057 −0.995287 0.0969729i \(-0.969084\pi\)
−0.995287 + 0.0969729i \(0.969084\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 9516.33 0.846950
\(107\) −6843.68 −0.597754 −0.298877 0.954292i \(-0.596612\pi\)
−0.298877 + 0.954292i \(0.596612\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 38484.6 3.18054
\(111\) 0 0
\(112\) −21978.3 −1.75210
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 13088.0 0.972652
\(117\) 0 0
\(118\) −27448.0 −1.97127
\(119\) 0 0
\(120\) 0 0
\(121\) 43298.2 2.95733
\(122\) 0 0
\(123\) 0 0
\(124\) −21971.3 −1.42893
\(125\) 13895.6 0.889319
\(126\) 0 0
\(127\) −31788.8 −1.97091 −0.985454 0.169945i \(-0.945641\pi\)
−0.985454 + 0.169945i \(0.945641\pi\)
\(128\) 16384.0 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 2881.56 0.167913 0.0839567 0.996469i \(-0.473244\pi\)
0.0839567 + 0.996469i \(0.473244\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −54905.4 −2.80129
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 32695.9 1.55510
\(146\) −7442.79 −0.349164
\(147\) 0 0
\(148\) 0 0
\(149\) −2623.88 −0.118187 −0.0590937 0.998252i \(-0.518821\pi\)
−0.0590937 + 0.998252i \(0.518821\pi\)
\(150\) 0 0
\(151\) −8957.93 −0.392874 −0.196437 0.980516i \(-0.562937\pi\)
−0.196437 + 0.980516i \(0.562937\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −82661.0 −3.48545
\(155\) −54887.7 −2.28461
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) −36472.0 −1.46098
\(159\) 0 0
\(160\) 40929.9 1.59882
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 37125.1 1.34726
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 28561.0 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 42532.3 1.42111 0.710553 0.703643i \(-0.248445\pi\)
0.710553 + 0.703643i \(0.248445\pi\)
\(174\) 0 0
\(175\) −83504.4 −2.72667
\(176\) 61620.6 1.98930
\(177\) 0 0
\(178\) 0 0
\(179\) 60236.2 1.87997 0.939986 0.341212i \(-0.110837\pi\)
0.939986 + 0.341212i \(0.110837\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −68780.0 −1.84649 −0.923247 0.384208i \(-0.874475\pi\)
−0.923247 + 0.384208i \(0.874475\pi\)
\(194\) −60359.3 −1.60376
\(195\) 0 0
\(196\) 79515.3 2.06985
\(197\) −37624.1 −0.969467 −0.484734 0.874662i \(-0.661083\pi\)
−0.484734 + 0.874662i \(0.661083\pi\)
\(198\) 0 0
\(199\) 79189.9 1.99970 0.999848 0.0174508i \(-0.00555506\pi\)
0.999848 + 0.0174508i \(0.00555506\pi\)
\(200\) 62249.3 1.55623
\(201\) 0 0
\(202\) −76537.7 −1.87574
\(203\) −70227.6 −1.70418
\(204\) 0 0
\(205\) 0 0
\(206\) −84472.0 −1.99057
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 38065.3 0.846950
\(213\) 0 0
\(214\) −27374.7 −0.597754
\(215\) 0 0
\(216\) 0 0
\(217\) 117893. 2.50363
\(218\) 0 0
\(219\) 0 0
\(220\) 153938. 3.18054
\(221\) 0 0
\(222\) 0 0
\(223\) −46558.0 −0.936234 −0.468117 0.883666i \(-0.655067\pi\)
−0.468117 + 0.883666i \(0.655067\pi\)
\(224\) −87913.3 −1.75210
\(225\) 0 0
\(226\) 0 0
\(227\) 16658.0 0.323274 0.161637 0.986850i \(-0.448323\pi\)
0.161637 + 0.986850i \(0.448323\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 52352.0 0.972652
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −109792. −1.97127
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 29762.0 0.512422 0.256211 0.966621i \(-0.417526\pi\)
0.256211 + 0.966621i \(0.417526\pi\)
\(242\) 173193. 2.95733
\(243\) 0 0
\(244\) 0 0
\(245\) 198642. 3.30932
\(246\) 0 0
\(247\) 0 0
\(248\) −87885.0 −1.42893
\(249\) 0 0
\(250\) 55582.4 0.889319
\(251\) 94898.0 1.50629 0.753147 0.657853i \(-0.228535\pi\)
0.753147 + 0.657853i \(0.228535\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −127155. −1.97091
\(255\) 0 0
\(256\) 65536.0 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 11526.3 0.167913
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 95093.3 1.35412
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 40178.0 0.555244 0.277622 0.960690i \(-0.410454\pi\)
0.277622 + 0.960690i \(0.410454\pi\)
\(270\) 0 0
\(271\) 44691.0 0.608529 0.304264 0.952588i \(-0.401589\pi\)
0.304264 + 0.952588i \(0.401589\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 234121. 3.09582
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −219621. −2.80129
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 83521.0 1.00000
\(290\) 130784. 1.55510
\(291\) 0 0
\(292\) −29771.2 −0.349164
\(293\) −22702.0 −0.264441 −0.132221 0.991220i \(-0.542211\pi\)
−0.132221 + 0.991220i \(0.542211\pi\)
\(294\) 0 0
\(295\) −274278. −3.15172
\(296\) 0 0
\(297\) 0 0
\(298\) −10495.5 −0.118187
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −35831.7 −0.392874
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) −330644. −3.48545
\(309\) 0 0
\(310\) −219551. −2.28461
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 110424. 1.12713 0.563565 0.826072i \(-0.309429\pi\)
0.563565 + 0.826072i \(0.309429\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −145888. −1.46098
\(317\) −111164. −1.10623 −0.553113 0.833106i \(-0.686560\pi\)
−0.553113 + 0.833106i \(0.686560\pi\)
\(318\) 0 0
\(319\) 196897. 1.93490
\(320\) 163719. 1.59882
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 148500. 1.34726
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −191038. −1.68213 −0.841066 0.540933i \(-0.818071\pi\)
−0.841066 + 0.540933i \(0.818071\pi\)
\(338\) 114244. 1.00000
\(339\) 0 0
\(340\) 0 0
\(341\) −330538. −2.84258
\(342\) 0 0
\(343\) −220531. −1.87448
\(344\) 0 0
\(345\) 0 0
\(346\) 170129. 1.42111
\(347\) 51830.2 0.430451 0.215226 0.976564i \(-0.430951\pi\)
0.215226 + 0.976564i \(0.430951\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −334018. −2.72667
\(351\) 0 0
\(352\) 246483. 1.98930
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 240945. 1.87997
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 130321. 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −74373.1 −0.558252
\(366\) 0 0
\(367\) −2894.55 −0.0214907 −0.0107453 0.999942i \(-0.503420\pi\)
−0.0107453 + 0.999942i \(0.503420\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −204251. −1.48394
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) −826002. −5.57262
\(386\) −275120. −1.84649
\(387\) 0 0
\(388\) −241437. −1.60376
\(389\) 257411. 1.70109 0.850545 0.525902i \(-0.176272\pi\)
0.850545 + 0.525902i \(0.176272\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 318061. 2.06985
\(393\) 0 0
\(394\) −150496. −0.969467
\(395\) −364452. −2.33585
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 316760. 1.99970
\(399\) 0 0
\(400\) 248997. 1.55623
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −306151. −1.87574
\(405\) 0 0
\(406\) −280910. −1.70418
\(407\) 0 0
\(408\) 0 0
\(409\) −334178. −1.99771 −0.998853 0.0478805i \(-0.984753\pi\)
−0.998853 + 0.0478805i \(0.984753\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −337888. −1.99057
\(413\) 589122. 3.45386
\(414\) 0 0
\(415\) 370978. 2.15403
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 181778. 1.03541 0.517706 0.855559i \(-0.326786\pi\)
0.517706 + 0.855559i \(0.326786\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 152261. 0.846950
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −109499. −0.597754
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 281407. 1.50092 0.750462 0.660914i \(-0.229831\pi\)
0.750462 + 0.660914i \(0.229831\pi\)
\(434\) 471574. 2.50363
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 354586. 1.83989 0.919947 0.392043i \(-0.128231\pi\)
0.919947 + 0.392043i \(0.128231\pi\)
\(440\) 615753. 3.18054
\(441\) 0 0
\(442\) 0 0
\(443\) −385102. −1.96231 −0.981157 0.193214i \(-0.938109\pi\)
−0.981157 + 0.193214i \(0.938109\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −186232. −0.936234
\(447\) 0 0
\(448\) −351653. −1.75210
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 66632.0 0.323274
\(455\) 0 0
\(456\) 0 0
\(457\) 410186. 1.96403 0.982016 0.188798i \(-0.0604590\pi\)
0.982016 + 0.188798i \(0.0604590\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −274213. −1.29029 −0.645144 0.764061i \(-0.723203\pi\)
−0.645144 + 0.764061i \(0.723203\pi\)
\(462\) 0 0
\(463\) −9921.15 −0.0462807 −0.0231404 0.999732i \(-0.507366\pi\)
−0.0231404 + 0.999732i \(0.507366\pi\)
\(464\) 209408. 0.972652
\(465\) 0 0
\(466\) 0 0
\(467\) −359466. −1.64825 −0.824126 0.566406i \(-0.808333\pi\)
−0.824126 + 0.566406i \(0.808333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −439168. −1.97127
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 119048. 0.512422
\(483\) 0 0
\(484\) 692771. 2.95733
\(485\) −603148. −2.56413
\(486\) 0 0
\(487\) 466562. 1.96721 0.983607 0.180327i \(-0.0577158\pi\)
0.983607 + 0.180327i \(0.0577158\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 794568. 3.30932
\(491\) 481582. 1.99760 0.998798 0.0490245i \(-0.0156112\pi\)
0.998798 + 0.0490245i \(0.0156112\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −351540. −1.42893
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 222330. 0.889319
\(501\) 0 0
\(502\) 379592. 1.50629
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) −764814. −2.99898
\(506\) 0 0
\(507\) 0 0
\(508\) −508620. −1.97091
\(509\) −139557. −0.538663 −0.269331 0.963048i \(-0.586803\pi\)
−0.269331 + 0.963048i \(0.586803\pi\)
\(510\) 0 0
\(511\) 159746. 0.611770
\(512\) 262144. 1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) −844098. −3.18257
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 46105.0 0.167913
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 279841. 1.00000
\(530\) 380373. 1.35412
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −273546. −0.955702
\(536\) 0 0
\(537\) 0 0
\(538\) 160712. 0.555244
\(539\) 1.19624e6 4.11755
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 178764. 0.608529
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 936485. 3.09582
\(551\) 0 0
\(552\) 0 0
\(553\) 782806. 2.55979
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −611560. −1.97119 −0.985595 0.169124i \(-0.945906\pi\)
−0.985595 + 0.169124i \(0.945906\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −878486. −2.80129
\(561\) 0 0
\(562\) 0 0
\(563\) −40451.2 −0.127619 −0.0638094 0.997962i \(-0.520325\pi\)
−0.0638094 + 0.997962i \(0.520325\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −581758. −1.74739 −0.873697 0.486471i \(-0.838284\pi\)
−0.873697 + 0.486471i \(0.838284\pi\)
\(578\) 334084. 1.00000
\(579\) 0 0
\(580\) 523135. 1.55510
\(581\) −796824. −2.36053
\(582\) 0 0
\(583\) 572658. 1.68484
\(584\) −119085. −0.349164
\(585\) 0 0
\(586\) −90808.0 −0.264441
\(587\) 555922. 1.61338 0.806692 0.590973i \(-0.201256\pi\)
0.806692 + 0.590973i \(0.201256\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −1.09711e6 −3.15172
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −41982.1 −0.118187
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −458055. −1.26814 −0.634072 0.773274i \(-0.718618\pi\)
−0.634072 + 0.773274i \(0.718618\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −143327. −0.392874
\(605\) 1.73065e6 4.72824
\(606\) 0 0
\(607\) −203998. −0.553667 −0.276833 0.960918i \(-0.589285\pi\)
−0.276833 + 0.960918i \(0.589285\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −1.32258e6 −3.48545
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) −878203. −2.28461
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −52488.7 −0.134371
\(626\) 441695. 1.12713
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −105542. −0.265073 −0.132536 0.991178i \(-0.542312\pi\)
−0.132536 + 0.991178i \(0.542312\pi\)
\(632\) −583552. −1.46098
\(633\) 0 0
\(634\) −444654. −1.10623
\(635\) −1.27061e6 −3.15113
\(636\) 0 0
\(637\) 0 0
\(638\) 787589. 1.93490
\(639\) 0 0
\(640\) 654878. 1.59882
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) −1.65172e6 −3.92146
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −805185. −1.88829 −0.944147 0.329525i \(-0.893111\pi\)
−0.944147 + 0.329525i \(0.893111\pi\)
\(654\) 0 0
\(655\) 115178. 0.268464
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −525926. −1.21103 −0.605513 0.795835i \(-0.707032\pi\)
−0.605513 + 0.795835i \(0.707032\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 594002. 1.34726
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 215619. 0.476055 0.238028 0.971258i \(-0.423499\pi\)
0.238028 + 0.971258i \(0.423499\pi\)
\(674\) −764152. −1.68213
\(675\) 0 0
\(676\) 456976. 1.00000
\(677\) 895058. 1.95287 0.976436 0.215807i \(-0.0692381\pi\)
0.976436 + 0.215807i \(0.0692381\pi\)
\(678\) 0 0
\(679\) 1.29550e6 2.80995
\(680\) 0 0
\(681\) 0 0
\(682\) −1.32215e6 −2.84258
\(683\) 846578. 1.81479 0.907393 0.420282i \(-0.138069\pi\)
0.907393 + 0.420282i \(0.138069\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −882122. −1.87448
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 680517. 1.42111
\(693\) 0 0
\(694\) 207321. 0.430451
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.33607e6 −2.72667
\(701\) 429481. 0.873993 0.436997 0.899463i \(-0.356042\pi\)
0.436997 + 0.899463i \(0.356042\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 985930. 1.98930
\(705\) 0 0
\(706\) 0 0
\(707\) 1.64274e6 3.28648
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 963779. 1.87997
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 1.81304e6 3.48768
\(722\) 521284. 1.00000
\(723\) 0 0
\(724\) 0 0
\(725\) 795624. 1.51367
\(726\) 0 0
\(727\) −387381. −0.732941 −0.366471 0.930430i \(-0.619434\pi\)
−0.366471 + 0.930430i \(0.619434\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −297492. −0.558252
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) −11578.2 −0.0214907
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −817004. −1.48394
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −104878. −0.188961
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 587550. 1.04732
\(750\) 0 0
\(751\) −1.07310e6 −1.90266 −0.951329 0.308177i \(-0.900281\pi\)
−0.951329 + 0.308177i \(0.900281\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −358054. −0.628137
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −731022. −1.23617 −0.618084 0.786112i \(-0.712091\pi\)
−0.618084 + 0.786112i \(0.712091\pi\)
\(770\) −3.30401e6 −5.57262
\(771\) 0 0
\(772\) −1.10048e6 −1.84649
\(773\) 136658. 0.228705 0.114353 0.993440i \(-0.463521\pi\)
0.114353 + 0.993440i \(0.463521\pi\)
\(774\) 0 0
\(775\) −1.33564e6 −2.22375
\(776\) −965748. −1.60376
\(777\) 0 0
\(778\) 1.02964e6 1.70109
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.27224e6 2.06985
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −601985. −0.969467
\(789\) 0 0
\(790\) −1.45781e6 −2.33585
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 1.26704e6 1.99970
\(797\) 841087. 1.32411 0.662055 0.749455i \(-0.269684\pi\)
0.662055 + 0.749455i \(0.269684\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 995989. 1.55623
\(801\) 0 0
\(802\) 0 0
\(803\) −447880. −0.694594
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −1.22460e6 −1.87574
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −1.12364e6 −1.70418
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −1.33671e6 −1.99771
\(819\) 0 0
\(820\) 0 0
\(821\) −899182. −1.33402 −0.667008 0.745050i \(-0.732425\pi\)
−0.667008 + 0.745050i \(0.732425\pi\)
\(822\) 0 0
\(823\) −75202.2 −0.111028 −0.0555138 0.998458i \(-0.517680\pi\)
−0.0555138 + 0.998458i \(0.517680\pi\)
\(824\) −1.35155e6 −1.99057
\(825\) 0 0
\(826\) 2.35649e6 3.45386
\(827\) 1.02226e6 1.49468 0.747342 0.664439i \(-0.231330\pi\)
0.747342 + 0.664439i \(0.231330\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 1.48391e6 2.15403
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 727112. 1.03541
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −38157.0 −0.0539489
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.14160e6 1.59882
\(846\) 0 0
\(847\) −3.71727e6 −5.18152
\(848\) 609045. 0.846950
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −437996. −0.597754
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 1.70004e6 2.27210
\(866\) 1.12563e6 1.50092
\(867\) 0 0
\(868\) 1.88629e6 2.50363
\(869\) −2.19475e6 −2.90634
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.19298e6 −1.55817
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 1.41834e6 1.83989
\(879\) 0 0
\(880\) 2.46301e6 3.18054
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.54041e6 −1.96231
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 2.72915e6 3.45322
\(890\) 0 0
\(891\) 0 0
\(892\) −744928. −0.936234
\(893\) 0 0
\(894\) 0 0
\(895\) 2.40768e6 3.00574
\(896\) −1.40661e6 −1.75210
\(897\) 0 0
\(898\) 0 0
\(899\) −1.12328e6 −1.38985
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 266528. 0.323274
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 2.23406e6 2.68011
\(914\) 1.64074e6 1.96403
\(915\) 0 0
\(916\) 0 0
\(917\) −247390. −0.294201
\(918\) 0 0
\(919\) 1.60846e6 1.90449 0.952246 0.305333i \(-0.0987679\pi\)
0.952246 + 0.305333i \(0.0987679\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1.09685e6 −1.29029
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −39684.6 −0.0462807
\(927\) 0 0
\(928\) 837632. 0.972652
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −1.43786e6 −1.64825
\(935\) 0 0
\(936\) 0 0
\(937\) −1.69868e6 −1.93478 −0.967390 0.253291i \(-0.918487\pi\)
−0.967390 + 0.253291i \(0.918487\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 110730. 0.125050 0.0625251 0.998043i \(-0.480085\pi\)
0.0625251 + 0.998043i \(0.480085\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −1.75667e6 −1.97127
\(945\) 0 0
\(946\) 0 0
\(947\) 1.59544e6 1.77902 0.889509 0.456917i \(-0.151046\pi\)
0.889509 + 0.456917i \(0.151046\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 962167. 1.04185
\(962\) 0 0
\(963\) 0 0
\(964\) 476192. 0.512422
\(965\) −2.74918e6 −2.95221
\(966\) 0 0
\(967\) −386547. −0.413380 −0.206690 0.978406i \(-0.566269\pi\)
−0.206690 + 0.978406i \(0.566269\pi\)
\(968\) 2.77108e6 2.95733
\(969\) 0 0
\(970\) −2.41259e6 −2.56413
\(971\) −1.27989e6 −1.35749 −0.678743 0.734376i \(-0.737475\pi\)
−0.678743 + 0.734376i \(0.737475\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.86625e6 1.96721
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 3.17827e6 3.30932
\(981\) 0 0
\(982\) 1.92633e6 1.99760
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −1.50385e6 −1.55001
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.72748e6 1.75900 0.879502 0.475895i \(-0.157876\pi\)
0.879502 + 0.475895i \(0.157876\pi\)
\(992\) −1.40616e6 −1.42893
\(993\) 0 0
\(994\) 0 0
\(995\) 3.16527e6 3.19716
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 216.5.h.b.53.2 yes 2
3.2 odd 2 216.5.h.a.53.1 2
4.3 odd 2 864.5.h.b.593.2 2
8.3 odd 2 864.5.h.a.593.1 2
8.5 even 2 216.5.h.a.53.1 2
12.11 even 2 864.5.h.a.593.1 2
24.5 odd 2 CM 216.5.h.b.53.2 yes 2
24.11 even 2 864.5.h.b.593.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.5.h.a.53.1 2 3.2 odd 2
216.5.h.a.53.1 2 8.5 even 2
216.5.h.b.53.2 yes 2 1.1 even 1 trivial
216.5.h.b.53.2 yes 2 24.5 odd 2 CM
864.5.h.a.593.1 2 8.3 odd 2
864.5.h.a.593.1 2 12.11 even 2
864.5.h.b.593.2 2 4.3 odd 2
864.5.h.b.593.2 2 24.11 even 2