Properties

Label 2-6e3-24.5-c4-0-45
Degree $2$
Conductor $216$
Sign $1$
Analytic cond. $22.3279$
Root an. cond. $4.72524$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 16·4-s + 39.9·5-s − 85.8·7-s + 64·8-s + 159.·10-s + 240.·11-s − 343.·14-s + 256·16-s + 639.·20-s + 962.·22-s + 972.·25-s − 1.37e3·28-s + 818·29-s − 1.37e3·31-s + 1.02e3·32-s − 3.43e3·35-s + 2.55e3·40-s + 3.85e3·44-s + 4.96e3·49-s + 3.89e3·50-s + 2.37e3·53-s + 9.62e3·55-s − 5.49e3·56-s + 3.27e3·58-s − 6.86e3·59-s − 5.49e3·62-s + ⋯
L(s)  = 1  + 2-s + 4-s + 1.59·5-s − 1.75·7-s + 8-s + 1.59·10-s + 1.98·11-s − 1.75·14-s + 16-s + 1.59·20-s + 1.98·22-s + 1.55·25-s − 1.75·28-s + 0.972·29-s − 1.42·31-s + 32-s − 2.80·35-s + 1.59·40-s + 1.98·44-s + 2.06·49-s + 1.55·50-s + 0.846·53-s + 3.18·55-s − 1.75·56-s + 0.972·58-s − 1.97·59-s − 1.42·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(22.3279\)
Root analytic conductor: \(4.72524\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (53, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(4.548382521\)
\(L(\frac12)\) \(\approx\) \(4.548382521\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
3 \( 1 \)
good5 \( 1 - 39.9T + 625T^{2} \)
7 \( 1 + 85.8T + 2.40e3T^{2} \)
11 \( 1 - 240.T + 1.46e4T^{2} \)
13 \( 1 - 2.85e4T^{2} \)
17 \( 1 - 8.35e4T^{2} \)
19 \( 1 - 1.30e5T^{2} \)
23 \( 1 - 2.79e5T^{2} \)
29 \( 1 - 818T + 7.07e5T^{2} \)
31 \( 1 + 1.37e3T + 9.23e5T^{2} \)
37 \( 1 - 1.87e6T^{2} \)
41 \( 1 - 2.82e6T^{2} \)
43 \( 1 - 3.41e6T^{2} \)
47 \( 1 - 4.87e6T^{2} \)
53 \( 1 - 2.37e3T + 7.89e6T^{2} \)
59 \( 1 + 6.86e3T + 1.21e7T^{2} \)
61 \( 1 - 1.38e7T^{2} \)
67 \( 1 - 2.01e7T^{2} \)
71 \( 1 - 2.54e7T^{2} \)
73 \( 1 + 1.86e3T + 2.83e7T^{2} \)
79 \( 1 + 9.11e3T + 3.89e7T^{2} \)
83 \( 1 - 9.28e3T + 4.74e7T^{2} \)
89 \( 1 - 6.27e7T^{2} \)
97 \( 1 + 1.50e4T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.02951783867068545325985688941, −10.65236177543510878759151035612, −9.690692064818591743031039294994, −9.109228008659545326262349403439, −6.87707233220923188959162915445, −6.39721403535345579166425181559, −5.62422536360054807850068993410, −3.99147529087032663907428208666, −2.86332146375591210772586427906, −1.47020803365910127492534811995, 1.47020803365910127492534811995, 2.86332146375591210772586427906, 3.99147529087032663907428208666, 5.62422536360054807850068993410, 6.39721403535345579166425181559, 6.87707233220923188959162915445, 9.109228008659545326262349403439, 9.690692064818591743031039294994, 10.65236177543510878759151035612, 12.02951783867068545325985688941

Graph of the $Z$-function along the critical line