Properties

Label 2142.2.p.h.1135.3
Level $2142$
Weight $2$
Character 2142.1135
Analytic conductor $17.104$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2142,2,Mod(1135,2142)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2142, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2142.1135"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2142.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,0,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1039561130\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 36 x^{14} - 108 x^{13} + 244 x^{12} - 424 x^{11} + 674 x^{10} - 1804 x^{9} + \cdots + 388 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1135.3
Root \(0.343636 + 1.58460i\) of defining polynomial
Character \(\chi\) \(=\) 2142.1135
Dual form 2142.2.p.h.1891.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(-1.26230 - 1.26230i) q^{5} +(0.707107 - 0.707107i) q^{7} -1.00000i q^{8} +(1.26230 - 1.26230i) q^{10} +(-0.256310 + 0.256310i) q^{11} -7.02105 q^{13} +(0.707107 + 0.707107i) q^{14} +1.00000 q^{16} +(1.73795 - 3.73892i) q^{17} +5.90462i q^{19} +(1.26230 + 1.26230i) q^{20} +(-0.256310 - 0.256310i) q^{22} +(-4.08539 + 4.08539i) q^{23} -1.81321i q^{25} -7.02105i q^{26} +(-0.707107 + 0.707107i) q^{28} +(2.89759 + 2.89759i) q^{29} +(6.39559 + 6.39559i) q^{31} +1.00000i q^{32} +(3.73892 + 1.73795i) q^{34} -1.78516 q^{35} +(3.75382 + 3.75382i) q^{37} -5.90462 q^{38} +(-1.26230 + 1.26230i) q^{40} +(7.96346 - 7.96346i) q^{41} +6.12644i q^{43} +(0.256310 - 0.256310i) q^{44} +(-4.08539 - 4.08539i) q^{46} +12.7093 q^{47} -1.00000i q^{49} +1.81321 q^{50} +7.02105 q^{52} -9.23249i q^{53} +0.647080 q^{55} +(-0.707107 - 0.707107i) q^{56} +(-2.89759 + 2.89759i) q^{58} +4.37397i q^{59} +(1.28967 - 1.28967i) q^{61} +(-6.39559 + 6.39559i) q^{62} -1.00000 q^{64} +(8.86266 + 8.86266i) q^{65} -2.23388 q^{67} +(-1.73795 + 3.73892i) q^{68} -1.78516i q^{70} +(3.98590 + 3.98590i) q^{71} +(4.62068 + 4.62068i) q^{73} +(-3.75382 + 3.75382i) q^{74} -5.90462i q^{76} +0.362477i q^{77} +(6.00332 - 6.00332i) q^{79} +(-1.26230 - 1.26230i) q^{80} +(7.96346 + 7.96346i) q^{82} -9.38309i q^{83} +(-6.91344 + 2.52581i) q^{85} -6.12644 q^{86} +(0.256310 + 0.256310i) q^{88} +13.0683 q^{89} +(-4.96463 + 4.96463i) q^{91} +(4.08539 - 4.08539i) q^{92} +12.7093i q^{94} +(7.45338 - 7.45338i) q^{95} +(6.72848 + 6.72848i) q^{97} +1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} - 4 q^{11} - 24 q^{13} + 16 q^{16} + 8 q^{17} - 4 q^{22} - 4 q^{29} + 24 q^{31} + 8 q^{34} + 8 q^{35} - 12 q^{37} + 8 q^{38} + 4 q^{44} - 32 q^{47} - 8 q^{50} + 24 q^{52} - 16 q^{55} + 4 q^{58}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2142\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1667\) \(1837\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −1.26230 1.26230i −0.564517 0.564517i 0.366071 0.930587i \(-0.380703\pi\)
−0.930587 + 0.366071i \(0.880703\pi\)
\(6\) 0 0
\(7\) 0.707107 0.707107i 0.267261 0.267261i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.26230 1.26230i 0.399174 0.399174i
\(11\) −0.256310 + 0.256310i −0.0772805 + 0.0772805i −0.744690 0.667410i \(-0.767403\pi\)
0.667410 + 0.744690i \(0.267403\pi\)
\(12\) 0 0
\(13\) −7.02105 −1.94729 −0.973645 0.228070i \(-0.926759\pi\)
−0.973645 + 0.228070i \(0.926759\pi\)
\(14\) 0.707107 + 0.707107i 0.188982 + 0.188982i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.73795 3.73892i 0.421516 0.906821i
\(18\) 0 0
\(19\) 5.90462i 1.35461i 0.735701 + 0.677306i \(0.236853\pi\)
−0.735701 + 0.677306i \(0.763147\pi\)
\(20\) 1.26230 + 1.26230i 0.282258 + 0.282258i
\(21\) 0 0
\(22\) −0.256310 0.256310i −0.0546455 0.0546455i
\(23\) −4.08539 + 4.08539i −0.851863 + 0.851863i −0.990363 0.138499i \(-0.955772\pi\)
0.138499 + 0.990363i \(0.455772\pi\)
\(24\) 0 0
\(25\) 1.81321i 0.362642i
\(26\) 7.02105i 1.37694i
\(27\) 0 0
\(28\) −0.707107 + 0.707107i −0.133631 + 0.133631i
\(29\) 2.89759 + 2.89759i 0.538070 + 0.538070i 0.922962 0.384892i \(-0.125761\pi\)
−0.384892 + 0.922962i \(0.625761\pi\)
\(30\) 0 0
\(31\) 6.39559 + 6.39559i 1.14868 + 1.14868i 0.986812 + 0.161871i \(0.0517528\pi\)
0.161871 + 0.986812i \(0.448247\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 3.73892 + 1.73795i 0.641219 + 0.298057i
\(35\) −1.78516 −0.301747
\(36\) 0 0
\(37\) 3.75382 + 3.75382i 0.617124 + 0.617124i 0.944793 0.327669i \(-0.106263\pi\)
−0.327669 + 0.944793i \(0.606263\pi\)
\(38\) −5.90462 −0.957855
\(39\) 0 0
\(40\) −1.26230 + 1.26230i −0.199587 + 0.199587i
\(41\) 7.96346 7.96346i 1.24368 1.24368i 0.285222 0.958462i \(-0.407933\pi\)
0.958462 0.285222i \(-0.0920672\pi\)
\(42\) 0 0
\(43\) 6.12644i 0.934273i 0.884185 + 0.467137i \(0.154714\pi\)
−0.884185 + 0.467137i \(0.845286\pi\)
\(44\) 0.256310 0.256310i 0.0386402 0.0386402i
\(45\) 0 0
\(46\) −4.08539 4.08539i −0.602358 0.602358i
\(47\) 12.7093 1.85385 0.926924 0.375249i \(-0.122443\pi\)
0.926924 + 0.375249i \(0.122443\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 1.81321 0.256427
\(51\) 0 0
\(52\) 7.02105 0.973645
\(53\) 9.23249i 1.26818i −0.773259 0.634090i \(-0.781375\pi\)
0.773259 0.634090i \(-0.218625\pi\)
\(54\) 0 0
\(55\) 0.647080 0.0872522
\(56\) −0.707107 0.707107i −0.0944911 0.0944911i
\(57\) 0 0
\(58\) −2.89759 + 2.89759i −0.380473 + 0.380473i
\(59\) 4.37397i 0.569443i 0.958610 + 0.284721i \(0.0919011\pi\)
−0.958610 + 0.284721i \(0.908099\pi\)
\(60\) 0 0
\(61\) 1.28967 1.28967i 0.165125 0.165125i −0.619708 0.784833i \(-0.712749\pi\)
0.784833 + 0.619708i \(0.212749\pi\)
\(62\) −6.39559 + 6.39559i −0.812241 + 0.812241i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 8.86266 + 8.86266i 1.09928 + 1.09928i
\(66\) 0 0
\(67\) −2.23388 −0.272912 −0.136456 0.990646i \(-0.543571\pi\)
−0.136456 + 0.990646i \(0.543571\pi\)
\(68\) −1.73795 + 3.73892i −0.210758 + 0.453411i
\(69\) 0 0
\(70\) 1.78516i 0.213367i
\(71\) 3.98590 + 3.98590i 0.473039 + 0.473039i 0.902897 0.429858i \(-0.141436\pi\)
−0.429858 + 0.902897i \(0.641436\pi\)
\(72\) 0 0
\(73\) 4.62068 + 4.62068i 0.540809 + 0.540809i 0.923766 0.382957i \(-0.125094\pi\)
−0.382957 + 0.923766i \(0.625094\pi\)
\(74\) −3.75382 + 3.75382i −0.436373 + 0.436373i
\(75\) 0 0
\(76\) 5.90462i 0.677306i
\(77\) 0.362477i 0.0413081i
\(78\) 0 0
\(79\) 6.00332 6.00332i 0.675426 0.675426i −0.283535 0.958962i \(-0.591507\pi\)
0.958962 + 0.283535i \(0.0915073\pi\)
\(80\) −1.26230 1.26230i −0.141129 0.141129i
\(81\) 0 0
\(82\) 7.96346 + 7.96346i 0.879417 + 0.879417i
\(83\) 9.38309i 1.02993i −0.857212 0.514964i \(-0.827805\pi\)
0.857212 0.514964i \(-0.172195\pi\)
\(84\) 0 0
\(85\) −6.91344 + 2.52581i −0.749868 + 0.273963i
\(86\) −6.12644 −0.660631
\(87\) 0 0
\(88\) 0.256310 + 0.256310i 0.0273228 + 0.0273228i
\(89\) 13.0683 1.38524 0.692619 0.721303i \(-0.256457\pi\)
0.692619 + 0.721303i \(0.256457\pi\)
\(90\) 0 0
\(91\) −4.96463 + 4.96463i −0.520435 + 0.520435i
\(92\) 4.08539 4.08539i 0.425932 0.425932i
\(93\) 0 0
\(94\) 12.7093i 1.31087i
\(95\) 7.45338 7.45338i 0.764701 0.764701i
\(96\) 0 0
\(97\) 6.72848 + 6.72848i 0.683174 + 0.683174i 0.960714 0.277540i \(-0.0895192\pi\)
−0.277540 + 0.960714i \(0.589519\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 1.81321i 0.181321i
\(101\) 11.7639 1.17055 0.585276 0.810834i \(-0.300986\pi\)
0.585276 + 0.810834i \(0.300986\pi\)
\(102\) 0 0
\(103\) −15.4955 −1.52682 −0.763410 0.645914i \(-0.776476\pi\)
−0.763410 + 0.645914i \(0.776476\pi\)
\(104\) 7.02105i 0.688471i
\(105\) 0 0
\(106\) 9.23249 0.896739
\(107\) −4.66108 4.66108i −0.450604 0.450604i 0.444951 0.895555i \(-0.353221\pi\)
−0.895555 + 0.444951i \(0.853221\pi\)
\(108\) 0 0
\(109\) 0.449863 0.449863i 0.0430890 0.0430890i −0.685234 0.728323i \(-0.740300\pi\)
0.728323 + 0.685234i \(0.240300\pi\)
\(110\) 0.647080i 0.0616966i
\(111\) 0 0
\(112\) 0.707107 0.707107i 0.0668153 0.0668153i
\(113\) −8.79800 + 8.79800i −0.827646 + 0.827646i −0.987191 0.159545i \(-0.948997\pi\)
0.159545 + 0.987191i \(0.448997\pi\)
\(114\) 0 0
\(115\) 10.3140 0.961782
\(116\) −2.89759 2.89759i −0.269035 0.269035i
\(117\) 0 0
\(118\) −4.37397 −0.402657
\(119\) −1.41490 3.87273i −0.129703 0.355013i
\(120\) 0 0
\(121\) 10.8686i 0.988055i
\(122\) 1.28967 + 1.28967i 0.116761 + 0.116761i
\(123\) 0 0
\(124\) −6.39559 6.39559i −0.574341 0.574341i
\(125\) −8.60030 + 8.60030i −0.769234 + 0.769234i
\(126\) 0 0
\(127\) 21.8018i 1.93459i 0.253649 + 0.967296i \(0.418369\pi\)
−0.253649 + 0.967296i \(0.581631\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −8.86266 + 8.86266i −0.777306 + 0.777306i
\(131\) −0.0814023 0.0814023i −0.00711215 0.00711215i 0.703542 0.710654i \(-0.251601\pi\)
−0.710654 + 0.703542i \(0.751601\pi\)
\(132\) 0 0
\(133\) 4.17520 + 4.17520i 0.362035 + 0.362035i
\(134\) 2.23388i 0.192978i
\(135\) 0 0
\(136\) −3.73892 1.73795i −0.320610 0.149028i
\(137\) −0.499607 −0.0426843 −0.0213421 0.999772i \(-0.506794\pi\)
−0.0213421 + 0.999772i \(0.506794\pi\)
\(138\) 0 0
\(139\) 6.91600 + 6.91600i 0.586608 + 0.586608i 0.936711 0.350103i \(-0.113854\pi\)
−0.350103 + 0.936711i \(0.613854\pi\)
\(140\) 1.78516 0.150873
\(141\) 0 0
\(142\) −3.98590 + 3.98590i −0.334489 + 0.334489i
\(143\) 1.79957 1.79957i 0.150487 0.150487i
\(144\) 0 0
\(145\) 7.31525i 0.607498i
\(146\) −4.62068 + 4.62068i −0.382410 + 0.382410i
\(147\) 0 0
\(148\) −3.75382 3.75382i −0.308562 0.308562i
\(149\) −11.3616 −0.930782 −0.465391 0.885105i \(-0.654086\pi\)
−0.465391 + 0.885105i \(0.654086\pi\)
\(150\) 0 0
\(151\) 8.78206i 0.714674i 0.933975 + 0.357337i \(0.116315\pi\)
−0.933975 + 0.357337i \(0.883685\pi\)
\(152\) 5.90462 0.478928
\(153\) 0 0
\(154\) −0.362477 −0.0292093
\(155\) 16.1463i 1.29690i
\(156\) 0 0
\(157\) 2.46419 0.196664 0.0983320 0.995154i \(-0.468649\pi\)
0.0983320 + 0.995154i \(0.468649\pi\)
\(158\) 6.00332 + 6.00332i 0.477599 + 0.477599i
\(159\) 0 0
\(160\) 1.26230 1.26230i 0.0997934 0.0997934i
\(161\) 5.77762i 0.455340i
\(162\) 0 0
\(163\) −10.1778 + 10.1778i −0.797187 + 0.797187i −0.982651 0.185464i \(-0.940621\pi\)
0.185464 + 0.982651i \(0.440621\pi\)
\(164\) −7.96346 + 7.96346i −0.621842 + 0.621842i
\(165\) 0 0
\(166\) 9.38309 0.728269
\(167\) 9.74825 + 9.74825i 0.754342 + 0.754342i 0.975286 0.220944i \(-0.0709139\pi\)
−0.220944 + 0.975286i \(0.570914\pi\)
\(168\) 0 0
\(169\) 36.2952 2.79194
\(170\) −2.52581 6.91344i −0.193721 0.530237i
\(171\) 0 0
\(172\) 6.12644i 0.467137i
\(173\) −11.2812 11.2812i −0.857695 0.857695i 0.133371 0.991066i \(-0.457420\pi\)
−0.991066 + 0.133371i \(0.957420\pi\)
\(174\) 0 0
\(175\) −1.28213 1.28213i −0.0969202 0.0969202i
\(176\) −0.256310 + 0.256310i −0.0193201 + 0.0193201i
\(177\) 0 0
\(178\) 13.0683i 0.979511i
\(179\) 2.00990i 0.150227i 0.997175 + 0.0751134i \(0.0239319\pi\)
−0.997175 + 0.0751134i \(0.976068\pi\)
\(180\) 0 0
\(181\) 15.0900 15.0900i 1.12163 1.12163i 0.130135 0.991496i \(-0.458459\pi\)
0.991496 0.130135i \(-0.0415412\pi\)
\(182\) −4.96463 4.96463i −0.368003 0.368003i
\(183\) 0 0
\(184\) 4.08539 + 4.08539i 0.301179 + 0.301179i
\(185\) 9.47687i 0.696754i
\(186\) 0 0
\(187\) 0.512868 + 1.40378i 0.0375046 + 0.102654i
\(188\) −12.7093 −0.926924
\(189\) 0 0
\(190\) 7.45338 + 7.45338i 0.540725 + 0.540725i
\(191\) −8.62703 −0.624230 −0.312115 0.950044i \(-0.601037\pi\)
−0.312115 + 0.950044i \(0.601037\pi\)
\(192\) 0 0
\(193\) −10.9385 + 10.9385i −0.787367 + 0.787367i −0.981062 0.193695i \(-0.937953\pi\)
0.193695 + 0.981062i \(0.437953\pi\)
\(194\) −6.72848 + 6.72848i −0.483077 + 0.483077i
\(195\) 0 0
\(196\) 1.00000i 0.0714286i
\(197\) −10.8246 + 10.8246i −0.771221 + 0.771221i −0.978320 0.207099i \(-0.933598\pi\)
0.207099 + 0.978320i \(0.433598\pi\)
\(198\) 0 0
\(199\) −9.06251 9.06251i −0.642424 0.642424i 0.308727 0.951151i \(-0.400097\pi\)
−0.951151 + 0.308727i \(0.900097\pi\)
\(200\) −1.81321 −0.128213
\(201\) 0 0
\(202\) 11.7639i 0.827706i
\(203\) 4.09782 0.287610
\(204\) 0 0
\(205\) −20.1045 −1.40416
\(206\) 15.4955i 1.07962i
\(207\) 0 0
\(208\) −7.02105 −0.486822
\(209\) −1.51341 1.51341i −0.104685 0.104685i
\(210\) 0 0
\(211\) 10.3530 10.3530i 0.712728 0.712728i −0.254377 0.967105i \(-0.581871\pi\)
0.967105 + 0.254377i \(0.0818706\pi\)
\(212\) 9.23249i 0.634090i
\(213\) 0 0
\(214\) 4.66108 4.66108i 0.318625 0.318625i
\(215\) 7.73339 7.73339i 0.527413 0.527413i
\(216\) 0 0
\(217\) 9.04474 0.613997
\(218\) 0.449863 + 0.449863i 0.0304685 + 0.0304685i
\(219\) 0 0
\(220\) −0.647080 −0.0436261
\(221\) −12.2023 + 26.2511i −0.820813 + 1.76584i
\(222\) 0 0
\(223\) 14.7723i 0.989228i 0.869113 + 0.494614i \(0.164691\pi\)
−0.869113 + 0.494614i \(0.835309\pi\)
\(224\) 0.707107 + 0.707107i 0.0472456 + 0.0472456i
\(225\) 0 0
\(226\) −8.79800 8.79800i −0.585234 0.585234i
\(227\) −10.3677 + 10.3677i −0.688129 + 0.688129i −0.961818 0.273690i \(-0.911756\pi\)
0.273690 + 0.961818i \(0.411756\pi\)
\(228\) 0 0
\(229\) 19.3079i 1.27590i −0.770078 0.637950i \(-0.779783\pi\)
0.770078 0.637950i \(-0.220217\pi\)
\(230\) 10.3140i 0.680083i
\(231\) 0 0
\(232\) 2.89759 2.89759i 0.190236 0.190236i
\(233\) 11.3972 + 11.3972i 0.746658 + 0.746658i 0.973850 0.227192i \(-0.0729544\pi\)
−0.227192 + 0.973850i \(0.572954\pi\)
\(234\) 0 0
\(235\) −16.0430 16.0430i −1.04653 1.04653i
\(236\) 4.37397i 0.284721i
\(237\) 0 0
\(238\) 3.87273 1.41490i 0.251032 0.0917141i
\(239\) 8.31892 0.538106 0.269053 0.963125i \(-0.413289\pi\)
0.269053 + 0.963125i \(0.413289\pi\)
\(240\) 0 0
\(241\) −18.4359 18.4359i −1.18756 1.18756i −0.977739 0.209824i \(-0.932711\pi\)
−0.209824 0.977739i \(-0.567289\pi\)
\(242\) −10.8686 −0.698661
\(243\) 0 0
\(244\) −1.28967 + 1.28967i −0.0825624 + 0.0825624i
\(245\) −1.26230 + 1.26230i −0.0806452 + 0.0806452i
\(246\) 0 0
\(247\) 41.4566i 2.63782i
\(248\) 6.39559 6.39559i 0.406121 0.406121i
\(249\) 0 0
\(250\) −8.60030 8.60030i −0.543931 0.543931i
\(251\) 20.3603 1.28513 0.642564 0.766232i \(-0.277871\pi\)
0.642564 + 0.766232i \(0.277871\pi\)
\(252\) 0 0
\(253\) 2.09426i 0.131665i
\(254\) −21.8018 −1.36796
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 19.5012i 1.21645i −0.793765 0.608225i \(-0.791882\pi\)
0.793765 0.608225i \(-0.208118\pi\)
\(258\) 0 0
\(259\) 5.30870 0.329867
\(260\) −8.86266 8.86266i −0.549639 0.549639i
\(261\) 0 0
\(262\) 0.0814023 0.0814023i 0.00502905 0.00502905i
\(263\) 15.2627i 0.941141i −0.882363 0.470570i \(-0.844048\pi\)
0.882363 0.470570i \(-0.155952\pi\)
\(264\) 0 0
\(265\) −11.6541 + 11.6541i −0.715909 + 0.715909i
\(266\) −4.17520 + 4.17520i −0.255998 + 0.255998i
\(267\) 0 0
\(268\) 2.23388 0.136456
\(269\) −20.6722 20.6722i −1.26041 1.26041i −0.950897 0.309508i \(-0.899836\pi\)
−0.309508 0.950897i \(-0.600164\pi\)
\(270\) 0 0
\(271\) −21.6579 −1.31563 −0.657813 0.753182i \(-0.728518\pi\)
−0.657813 + 0.753182i \(0.728518\pi\)
\(272\) 1.73795 3.73892i 0.105379 0.226705i
\(273\) 0 0
\(274\) 0.499607i 0.0301823i
\(275\) 0.464744 + 0.464744i 0.0280251 + 0.0280251i
\(276\) 0 0
\(277\) 5.66374 + 5.66374i 0.340301 + 0.340301i 0.856480 0.516179i \(-0.172646\pi\)
−0.516179 + 0.856480i \(0.672646\pi\)
\(278\) −6.91600 + 6.91600i −0.414794 + 0.414794i
\(279\) 0 0
\(280\) 1.78516i 0.106684i
\(281\) 12.1004i 0.721847i 0.932595 + 0.360923i \(0.117538\pi\)
−0.932595 + 0.360923i \(0.882462\pi\)
\(282\) 0 0
\(283\) 0.170593 0.170593i 0.0101407 0.0101407i −0.702018 0.712159i \(-0.747718\pi\)
0.712159 + 0.702018i \(0.247718\pi\)
\(284\) −3.98590 3.98590i −0.236519 0.236519i
\(285\) 0 0
\(286\) 1.79957 + 1.79957i 0.106411 + 0.106411i
\(287\) 11.2620i 0.664777i
\(288\) 0 0
\(289\) −10.9590 12.9961i −0.644649 0.764479i
\(290\) 7.31525 0.429566
\(291\) 0 0
\(292\) −4.62068 4.62068i −0.270405 0.270405i
\(293\) −3.48214 −0.203429 −0.101714 0.994814i \(-0.532433\pi\)
−0.101714 + 0.994814i \(0.532433\pi\)
\(294\) 0 0
\(295\) 5.52125 5.52125i 0.321460 0.321460i
\(296\) 3.75382 3.75382i 0.218186 0.218186i
\(297\) 0 0
\(298\) 11.3616i 0.658162i
\(299\) 28.6838 28.6838i 1.65882 1.65882i
\(300\) 0 0
\(301\) 4.33205 + 4.33205i 0.249695 + 0.249695i
\(302\) −8.78206 −0.505351
\(303\) 0 0
\(304\) 5.90462i 0.338653i
\(305\) −3.25589 −0.186431
\(306\) 0 0
\(307\) 29.2933 1.67186 0.835928 0.548839i \(-0.184930\pi\)
0.835928 + 0.548839i \(0.184930\pi\)
\(308\) 0.362477i 0.0206541i
\(309\) 0 0
\(310\) 16.1463 0.917047
\(311\) 12.4156 + 12.4156i 0.704025 + 0.704025i 0.965272 0.261247i \(-0.0841338\pi\)
−0.261247 + 0.965272i \(0.584134\pi\)
\(312\) 0 0
\(313\) 6.97350 6.97350i 0.394166 0.394166i −0.482004 0.876169i \(-0.660091\pi\)
0.876169 + 0.482004i \(0.160091\pi\)
\(314\) 2.46419i 0.139062i
\(315\) 0 0
\(316\) −6.00332 + 6.00332i −0.337713 + 0.337713i
\(317\) −18.9765 + 18.9765i −1.06583 + 1.06583i −0.0681525 + 0.997675i \(0.521710\pi\)
−0.997675 + 0.0681525i \(0.978290\pi\)
\(318\) 0 0
\(319\) −1.48537 −0.0831645
\(320\) 1.26230 + 1.26230i 0.0705646 + 0.0705646i
\(321\) 0 0
\(322\) −5.77762 −0.321974
\(323\) 22.0769 + 10.2620i 1.22839 + 0.570990i
\(324\) 0 0
\(325\) 12.7306i 0.706169i
\(326\) −10.1778 10.1778i −0.563697 0.563697i
\(327\) 0 0
\(328\) −7.96346 7.96346i −0.439708 0.439708i
\(329\) 8.98686 8.98686i 0.495462 0.495462i
\(330\) 0 0
\(331\) 5.12997i 0.281969i 0.990012 + 0.140984i \(0.0450267\pi\)
−0.990012 + 0.140984i \(0.954973\pi\)
\(332\) 9.38309i 0.514964i
\(333\) 0 0
\(334\) −9.74825 + 9.74825i −0.533400 + 0.533400i
\(335\) 2.81982 + 2.81982i 0.154063 + 0.154063i
\(336\) 0 0
\(337\) 2.77812 + 2.77812i 0.151334 + 0.151334i 0.778713 0.627380i \(-0.215873\pi\)
−0.627380 + 0.778713i \(0.715873\pi\)
\(338\) 36.2952i 1.97420i
\(339\) 0 0
\(340\) 6.91344 2.52581i 0.374934 0.136982i
\(341\) −3.27851 −0.177541
\(342\) 0 0
\(343\) −0.707107 0.707107i −0.0381802 0.0381802i
\(344\) 6.12644 0.330316
\(345\) 0 0
\(346\) 11.2812 11.2812i 0.606482 0.606482i
\(347\) 8.57595 8.57595i 0.460381 0.460381i −0.438399 0.898780i \(-0.644454\pi\)
0.898780 + 0.438399i \(0.144454\pi\)
\(348\) 0 0
\(349\) 0.594539i 0.0318249i −0.999873 0.0159125i \(-0.994935\pi\)
0.999873 0.0159125i \(-0.00506531\pi\)
\(350\) 1.28213 1.28213i 0.0685329 0.0685329i
\(351\) 0 0
\(352\) −0.256310 0.256310i −0.0136614 0.0136614i
\(353\) 27.2958 1.45281 0.726406 0.687266i \(-0.241189\pi\)
0.726406 + 0.687266i \(0.241189\pi\)
\(354\) 0 0
\(355\) 10.0628i 0.534077i
\(356\) −13.0683 −0.692619
\(357\) 0 0
\(358\) −2.00990 −0.106226
\(359\) 15.7415i 0.830802i 0.909638 + 0.415401i \(0.136359\pi\)
−0.909638 + 0.415401i \(0.863641\pi\)
\(360\) 0 0
\(361\) −15.8645 −0.834974
\(362\) 15.0900 + 15.0900i 0.793113 + 0.793113i
\(363\) 0 0
\(364\) 4.96463 4.96463i 0.260218 0.260218i
\(365\) 11.6653i 0.610592i
\(366\) 0 0
\(367\) 6.22217 6.22217i 0.324795 0.324795i −0.525808 0.850603i \(-0.676237\pi\)
0.850603 + 0.525808i \(0.176237\pi\)
\(368\) −4.08539 + 4.08539i −0.212966 + 0.212966i
\(369\) 0 0
\(370\) 9.47687 0.492679
\(371\) −6.52836 6.52836i −0.338935 0.338935i
\(372\) 0 0
\(373\) 2.51310 0.130123 0.0650617 0.997881i \(-0.479276\pi\)
0.0650617 + 0.997881i \(0.479276\pi\)
\(374\) −1.40378 + 0.512868i −0.0725877 + 0.0265198i
\(375\) 0 0
\(376\) 12.7093i 0.655434i
\(377\) −20.3442 20.3442i −1.04778 1.04778i
\(378\) 0 0
\(379\) 14.8107 + 14.8107i 0.760772 + 0.760772i 0.976462 0.215690i \(-0.0691999\pi\)
−0.215690 + 0.976462i \(0.569200\pi\)
\(380\) −7.45338 + 7.45338i −0.382351 + 0.382351i
\(381\) 0 0
\(382\) 8.62703i 0.441397i
\(383\) 35.6542i 1.82184i 0.412580 + 0.910921i \(0.364628\pi\)
−0.412580 + 0.910921i \(0.635372\pi\)
\(384\) 0 0
\(385\) 0.457554 0.457554i 0.0233191 0.0233191i
\(386\) −10.9385 10.9385i −0.556752 0.556752i
\(387\) 0 0
\(388\) −6.72848 6.72848i −0.341587 0.341587i
\(389\) 26.6867i 1.35307i 0.736411 + 0.676534i \(0.236519\pi\)
−0.736411 + 0.676534i \(0.763481\pi\)
\(390\) 0 0
\(391\) 8.17473 + 22.3752i 0.413414 + 1.13156i
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) −10.8246 10.8246i −0.545336 0.545336i
\(395\) −15.1560 −0.762579
\(396\) 0 0
\(397\) −23.2453 + 23.2453i −1.16665 + 1.16665i −0.183656 + 0.982991i \(0.558793\pi\)
−0.982991 + 0.183656i \(0.941207\pi\)
\(398\) 9.06251 9.06251i 0.454262 0.454262i
\(399\) 0 0
\(400\) 1.81321i 0.0906605i
\(401\) −4.94397 + 4.94397i −0.246890 + 0.246890i −0.819693 0.572803i \(-0.805856\pi\)
0.572803 + 0.819693i \(0.305856\pi\)
\(402\) 0 0
\(403\) −44.9038 44.9038i −2.23682 2.23682i
\(404\) −11.7639 −0.585276
\(405\) 0 0
\(406\) 4.09782i 0.203371i
\(407\) −1.92428 −0.0953833
\(408\) 0 0
\(409\) 24.4249 1.20773 0.603867 0.797085i \(-0.293626\pi\)
0.603867 + 0.797085i \(0.293626\pi\)
\(410\) 20.1045i 0.992891i
\(411\) 0 0
\(412\) 15.4955 0.763410
\(413\) 3.09287 + 3.09287i 0.152190 + 0.152190i
\(414\) 0 0
\(415\) −11.8443 + 11.8443i −0.581411 + 0.581411i
\(416\) 7.02105i 0.344235i
\(417\) 0 0
\(418\) 1.51341 1.51341i 0.0740235 0.0740235i
\(419\) −8.83294 + 8.83294i −0.431517 + 0.431517i −0.889144 0.457627i \(-0.848700\pi\)
0.457627 + 0.889144i \(0.348700\pi\)
\(420\) 0 0
\(421\) 0.570702 0.0278143 0.0139071 0.999903i \(-0.495573\pi\)
0.0139071 + 0.999903i \(0.495573\pi\)
\(422\) 10.3530 + 10.3530i 0.503974 + 0.503974i
\(423\) 0 0
\(424\) −9.23249 −0.448369
\(425\) −6.77945 3.15127i −0.328851 0.152859i
\(426\) 0 0
\(427\) 1.82386i 0.0882630i
\(428\) 4.66108 + 4.66108i 0.225302 + 0.225302i
\(429\) 0 0
\(430\) 7.73339 + 7.73339i 0.372937 + 0.372937i
\(431\) 25.5324 25.5324i 1.22985 1.22985i 0.265835 0.964018i \(-0.414352\pi\)
0.964018 0.265835i \(-0.0856478\pi\)
\(432\) 0 0
\(433\) 4.54033i 0.218194i −0.994031 0.109097i \(-0.965204\pi\)
0.994031 0.109097i \(-0.0347960\pi\)
\(434\) 9.04474i 0.434161i
\(435\) 0 0
\(436\) −0.449863 + 0.449863i −0.0215445 + 0.0215445i
\(437\) −24.1227 24.1227i −1.15394 1.15394i
\(438\) 0 0
\(439\) 4.10702 + 4.10702i 0.196017 + 0.196017i 0.798290 0.602273i \(-0.205738\pi\)
−0.602273 + 0.798290i \(0.705738\pi\)
\(440\) 0.647080i 0.0308483i
\(441\) 0 0
\(442\) −26.2511 12.2023i −1.24864 0.580402i
\(443\) 34.5919 1.64351 0.821755 0.569841i \(-0.192995\pi\)
0.821755 + 0.569841i \(0.192995\pi\)
\(444\) 0 0
\(445\) −16.4961 16.4961i −0.781990 0.781990i
\(446\) −14.7723 −0.699490
\(447\) 0 0
\(448\) −0.707107 + 0.707107i −0.0334077 + 0.0334077i
\(449\) 4.26160 4.26160i 0.201117 0.201117i −0.599361 0.800479i \(-0.704579\pi\)
0.800479 + 0.599361i \(0.204579\pi\)
\(450\) 0 0
\(451\) 4.08223i 0.192225i
\(452\) 8.79800 8.79800i 0.413823 0.413823i
\(453\) 0 0
\(454\) −10.3677 10.3677i −0.486580 0.486580i
\(455\) 12.5337 0.587588
\(456\) 0 0
\(457\) 39.3436i 1.84042i −0.391427 0.920209i \(-0.628019\pi\)
0.391427 0.920209i \(-0.371981\pi\)
\(458\) 19.3079 0.902198
\(459\) 0 0
\(460\) −10.3140 −0.480891
\(461\) 34.4718i 1.60551i 0.596308 + 0.802756i \(0.296634\pi\)
−0.596308 + 0.802756i \(0.703366\pi\)
\(462\) 0 0
\(463\) −2.39896 −0.111489 −0.0557446 0.998445i \(-0.517753\pi\)
−0.0557446 + 0.998445i \(0.517753\pi\)
\(464\) 2.89759 + 2.89759i 0.134517 + 0.134517i
\(465\) 0 0
\(466\) −11.3972 + 11.3972i −0.527967 + 0.527967i
\(467\) 24.3491i 1.12674i −0.826203 0.563372i \(-0.809504\pi\)
0.826203 0.563372i \(-0.190496\pi\)
\(468\) 0 0
\(469\) −1.57959 + 1.57959i −0.0729387 + 0.0729387i
\(470\) 16.0430 16.0430i 0.740007 0.740007i
\(471\) 0 0
\(472\) 4.37397 0.201328
\(473\) −1.57027 1.57027i −0.0722011 0.0722011i
\(474\) 0 0
\(475\) 10.7063 0.491239
\(476\) 1.41490 + 3.87273i 0.0648517 + 0.177506i
\(477\) 0 0
\(478\) 8.31892i 0.380498i
\(479\) 5.89635 + 5.89635i 0.269411 + 0.269411i 0.828863 0.559452i \(-0.188988\pi\)
−0.559452 + 0.828863i \(0.688988\pi\)
\(480\) 0 0
\(481\) −26.3558 26.3558i −1.20172 1.20172i
\(482\) 18.4359 18.4359i 0.839734 0.839734i
\(483\) 0 0
\(484\) 10.8686i 0.494028i
\(485\) 16.9867i 0.771326i
\(486\) 0 0
\(487\) 16.7497 16.7497i 0.759000 0.759000i −0.217140 0.976140i \(-0.569673\pi\)
0.976140 + 0.217140i \(0.0696729\pi\)
\(488\) −1.28967 1.28967i −0.0583805 0.0583805i
\(489\) 0 0
\(490\) −1.26230 1.26230i −0.0570248 0.0570248i
\(491\) 13.6628i 0.616593i 0.951290 + 0.308297i \(0.0997590\pi\)
−0.951290 + 0.308297i \(0.900241\pi\)
\(492\) 0 0
\(493\) 15.8698 5.79799i 0.714738 0.261128i
\(494\) 41.4566 1.86522
\(495\) 0 0
\(496\) 6.39559 + 6.39559i 0.287171 + 0.287171i
\(497\) 5.63691 0.252850
\(498\) 0 0
\(499\) −4.38730 + 4.38730i −0.196402 + 0.196402i −0.798456 0.602053i \(-0.794349\pi\)
0.602053 + 0.798456i \(0.294349\pi\)
\(500\) 8.60030 8.60030i 0.384617 0.384617i
\(501\) 0 0
\(502\) 20.3603i 0.908723i
\(503\) 3.82151 3.82151i 0.170393 0.170393i −0.616759 0.787152i \(-0.711555\pi\)
0.787152 + 0.616759i \(0.211555\pi\)
\(504\) 0 0
\(505\) −14.8496 14.8496i −0.660796 0.660796i
\(506\) 2.09426 0.0931011
\(507\) 0 0
\(508\) 21.8018i 0.967296i
\(509\) −17.2922 −0.766464 −0.383232 0.923652i \(-0.625189\pi\)
−0.383232 + 0.923652i \(0.625189\pi\)
\(510\) 0 0
\(511\) 6.53462 0.289075
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 19.5012 0.860160
\(515\) 19.5600 + 19.5600i 0.861915 + 0.861915i
\(516\) 0 0
\(517\) −3.25754 + 3.25754i −0.143266 + 0.143266i
\(518\) 5.30870i 0.233251i
\(519\) 0 0
\(520\) 8.86266 8.86266i 0.388653 0.388653i
\(521\) 21.2438 21.2438i 0.930707 0.930707i −0.0670431 0.997750i \(-0.521356\pi\)
0.997750 + 0.0670431i \(0.0213565\pi\)
\(522\) 0 0
\(523\) −0.0942759 −0.00412240 −0.00206120 0.999998i \(-0.500656\pi\)
−0.00206120 + 0.999998i \(0.500656\pi\)
\(524\) 0.0814023 + 0.0814023i 0.00355607 + 0.00355607i
\(525\) 0 0
\(526\) 15.2627 0.665487
\(527\) 35.0279 12.7974i 1.52584 0.557462i
\(528\) 0 0
\(529\) 10.3809i 0.451342i
\(530\) −11.6541 11.6541i −0.506224 0.506224i
\(531\) 0 0
\(532\) −4.17520 4.17520i −0.181018 0.181018i
\(533\) −55.9119 + 55.9119i −2.42181 + 2.42181i
\(534\) 0 0
\(535\) 11.7674i 0.508747i
\(536\) 2.23388i 0.0964888i
\(537\) 0 0
\(538\) 20.6722 20.6722i 0.891241 0.891241i
\(539\) 0.256310 + 0.256310i 0.0110401 + 0.0110401i
\(540\) 0 0
\(541\) −0.162766 0.162766i −0.00699785 0.00699785i 0.703599 0.710597i \(-0.251575\pi\)
−0.710597 + 0.703599i \(0.751575\pi\)
\(542\) 21.6579i 0.930288i
\(543\) 0 0
\(544\) 3.73892 + 1.73795i 0.160305 + 0.0745141i
\(545\) −1.13572 −0.0486489
\(546\) 0 0
\(547\) −12.7921 12.7921i −0.546951 0.546951i 0.378606 0.925558i \(-0.376403\pi\)
−0.925558 + 0.378606i \(0.876403\pi\)
\(548\) 0.499607 0.0213421
\(549\) 0 0
\(550\) −0.464744 + 0.464744i −0.0198168 + 0.0198168i
\(551\) −17.1092 + 17.1092i −0.728876 + 0.728876i
\(552\) 0 0
\(553\) 8.48998i 0.361031i
\(554\) −5.66374 + 5.66374i −0.240629 + 0.240629i
\(555\) 0 0
\(556\) −6.91600 6.91600i −0.293304 0.293304i
\(557\) −7.62887 −0.323245 −0.161623 0.986853i \(-0.551673\pi\)
−0.161623 + 0.986853i \(0.551673\pi\)
\(558\) 0 0
\(559\) 43.0141i 1.81930i
\(560\) −1.78516 −0.0754367
\(561\) 0 0
\(562\) −12.1004 −0.510423
\(563\) 7.74927i 0.326593i 0.986577 + 0.163296i \(0.0522127\pi\)
−0.986577 + 0.163296i \(0.947787\pi\)
\(564\) 0 0
\(565\) 22.2114 0.934440
\(566\) 0.170593 + 0.170593i 0.00717057 + 0.00717057i
\(567\) 0 0
\(568\) 3.98590 3.98590i 0.167244 0.167244i
\(569\) 33.8165i 1.41766i −0.705380 0.708830i \(-0.749223\pi\)
0.705380 0.708830i \(-0.250777\pi\)
\(570\) 0 0
\(571\) −32.9181 + 32.9181i −1.37758 + 1.37758i −0.528885 + 0.848694i \(0.677390\pi\)
−0.848694 + 0.528885i \(0.822610\pi\)
\(572\) −1.79957 + 1.79957i −0.0752437 + 0.0752437i
\(573\) 0 0
\(574\) 11.2620 0.470068
\(575\) 7.40768 + 7.40768i 0.308921 + 0.308921i
\(576\) 0 0
\(577\) 40.5091 1.68642 0.843208 0.537587i \(-0.180664\pi\)
0.843208 + 0.537587i \(0.180664\pi\)
\(578\) 12.9961 10.9590i 0.540568 0.455836i
\(579\) 0 0
\(580\) 7.31525i 0.303749i
\(581\) −6.63485 6.63485i −0.275260 0.275260i
\(582\) 0 0
\(583\) 2.36638 + 2.36638i 0.0980055 + 0.0980055i
\(584\) 4.62068 4.62068i 0.191205 0.191205i
\(585\) 0 0
\(586\) 3.48214i 0.143846i
\(587\) 13.2004i 0.544837i −0.962179 0.272418i \(-0.912176\pi\)
0.962179 0.272418i \(-0.0878235\pi\)
\(588\) 0 0
\(589\) −37.7635 + 37.7635i −1.55602 + 1.55602i
\(590\) 5.52125 + 5.52125i 0.227306 + 0.227306i
\(591\) 0 0
\(592\) 3.75382 + 3.75382i 0.154281 + 0.154281i
\(593\) 28.4113i 1.16671i 0.812216 + 0.583357i \(0.198261\pi\)
−0.812216 + 0.583357i \(0.801739\pi\)
\(594\) 0 0
\(595\) −3.10252 + 6.67456i −0.127191 + 0.273630i
\(596\) 11.3616 0.465391
\(597\) 0 0
\(598\) 28.6838 + 28.6838i 1.17297 + 1.17297i
\(599\) −14.3208 −0.585132 −0.292566 0.956245i \(-0.594509\pi\)
−0.292566 + 0.956245i \(0.594509\pi\)
\(600\) 0 0
\(601\) −9.92695 + 9.92695i −0.404929 + 0.404929i −0.879966 0.475037i \(-0.842435\pi\)
0.475037 + 0.879966i \(0.342435\pi\)
\(602\) −4.33205 + 4.33205i −0.176561 + 0.176561i
\(603\) 0 0
\(604\) 8.78206i 0.357337i
\(605\) 13.7194 13.7194i 0.557774 0.557774i
\(606\) 0 0
\(607\) −3.04883 3.04883i −0.123748 0.123748i 0.642520 0.766269i \(-0.277889\pi\)
−0.766269 + 0.642520i \(0.777889\pi\)
\(608\) −5.90462 −0.239464
\(609\) 0 0
\(610\) 3.25589i 0.131827i
\(611\) −89.2330 −3.60998
\(612\) 0 0
\(613\) −44.9795 −1.81670 −0.908352 0.418207i \(-0.862659\pi\)
−0.908352 + 0.418207i \(0.862659\pi\)
\(614\) 29.2933i 1.18218i
\(615\) 0 0
\(616\) 0.362477 0.0146046
\(617\) −11.7456 11.7456i −0.472862 0.472862i 0.429978 0.902840i \(-0.358521\pi\)
−0.902840 + 0.429978i \(0.858521\pi\)
\(618\) 0 0
\(619\) 17.8630 17.8630i 0.717974 0.717974i −0.250216 0.968190i \(-0.580502\pi\)
0.968190 + 0.250216i \(0.0805017\pi\)
\(620\) 16.1463i 0.648450i
\(621\) 0 0
\(622\) −12.4156 + 12.4156i −0.497821 + 0.497821i
\(623\) 9.24069 9.24069i 0.370221 0.370221i
\(624\) 0 0
\(625\) 12.6462 0.505849
\(626\) 6.97350 + 6.97350i 0.278717 + 0.278717i
\(627\) 0 0
\(628\) −2.46419 −0.0983320
\(629\) 20.5592 7.51126i 0.819749 0.299494i
\(630\) 0 0
\(631\) 3.53435i 0.140700i 0.997522 + 0.0703501i \(0.0224116\pi\)
−0.997522 + 0.0703501i \(0.977588\pi\)
\(632\) −6.00332 6.00332i −0.238799 0.238799i
\(633\) 0 0
\(634\) −18.9765 18.9765i −0.753654 0.753654i
\(635\) 27.5203 27.5203i 1.09211 1.09211i
\(636\) 0 0
\(637\) 7.02105i 0.278184i
\(638\) 1.48537i 0.0588062i
\(639\) 0 0
\(640\) −1.26230 + 1.26230i −0.0498967 + 0.0498967i
\(641\) 1.94227 + 1.94227i 0.0767150 + 0.0767150i 0.744423 0.667708i \(-0.232725\pi\)
−0.667708 + 0.744423i \(0.732725\pi\)
\(642\) 0 0
\(643\) 13.4629 + 13.4629i 0.530924 + 0.530924i 0.920847 0.389923i \(-0.127499\pi\)
−0.389923 + 0.920847i \(0.627499\pi\)
\(644\) 5.77762i 0.227670i
\(645\) 0 0
\(646\) −10.2620 + 22.0769i −0.403751 + 0.868604i
\(647\) −20.4010 −0.802047 −0.401024 0.916068i \(-0.631345\pi\)
−0.401024 + 0.916068i \(0.631345\pi\)
\(648\) 0 0
\(649\) −1.12109 1.12109i −0.0440068 0.0440068i
\(650\) −12.7306 −0.499337
\(651\) 0 0
\(652\) 10.1778 10.1778i 0.398594 0.398594i
\(653\) 30.4618 30.4618i 1.19206 1.19206i 0.215575 0.976487i \(-0.430838\pi\)
0.976487 0.215575i \(-0.0691624\pi\)
\(654\) 0 0
\(655\) 0.205508i 0.00802985i
\(656\) 7.96346 7.96346i 0.310921 0.310921i
\(657\) 0 0
\(658\) 8.98686 + 8.98686i 0.350344 + 0.350344i
\(659\) 12.4422 0.484678 0.242339 0.970192i \(-0.422085\pi\)
0.242339 + 0.970192i \(0.422085\pi\)
\(660\) 0 0
\(661\) 20.2314i 0.786911i 0.919344 + 0.393456i \(0.128720\pi\)
−0.919344 + 0.393456i \(0.871280\pi\)
\(662\) −5.12997 −0.199382
\(663\) 0 0
\(664\) −9.38309 −0.364135
\(665\) 10.5407i 0.408750i
\(666\) 0 0
\(667\) −23.6756 −0.916723
\(668\) −9.74825 9.74825i −0.377171 0.377171i
\(669\) 0 0
\(670\) −2.81982 + 2.81982i −0.108939 + 0.108939i
\(671\) 0.661110i 0.0255219i
\(672\) 0 0
\(673\) 24.3330 24.3330i 0.937970 0.937970i −0.0602153 0.998185i \(-0.519179\pi\)
0.998185 + 0.0602153i \(0.0191787\pi\)
\(674\) −2.77812 + 2.77812i −0.107009 + 0.107009i
\(675\) 0 0
\(676\) −36.2952 −1.39597
\(677\) −7.19287 7.19287i −0.276444 0.276444i 0.555243 0.831688i \(-0.312625\pi\)
−0.831688 + 0.555243i \(0.812625\pi\)
\(678\) 0 0
\(679\) 9.51551 0.365172
\(680\) 2.52581 + 6.91344i 0.0968606 + 0.265118i
\(681\) 0 0
\(682\) 3.27851i 0.125541i
\(683\) −12.4713 12.4713i −0.477202 0.477202i 0.427034 0.904236i \(-0.359559\pi\)
−0.904236 + 0.427034i \(0.859559\pi\)
\(684\) 0 0
\(685\) 0.630652 + 0.630652i 0.0240960 + 0.0240960i
\(686\) 0.707107 0.707107i 0.0269975 0.0269975i
\(687\) 0 0
\(688\) 6.12644i 0.233568i
\(689\) 64.8218i 2.46951i
\(690\) 0 0
\(691\) 31.3551 31.3551i 1.19280 1.19280i 0.216526 0.976277i \(-0.430527\pi\)
0.976277 0.216526i \(-0.0694727\pi\)
\(692\) 11.2812 + 11.2812i 0.428848 + 0.428848i
\(693\) 0 0
\(694\) 8.57595 + 8.57595i 0.325539 + 0.325539i
\(695\) 17.4601i 0.662300i
\(696\) 0 0
\(697\) −15.9346 43.6148i −0.603566 1.65203i
\(698\) 0.594539 0.0225036
\(699\) 0 0
\(700\) 1.28213 + 1.28213i 0.0484601 + 0.0484601i
\(701\) −5.31490 −0.200741 −0.100370 0.994950i \(-0.532003\pi\)
−0.100370 + 0.994950i \(0.532003\pi\)
\(702\) 0 0
\(703\) −22.1649 + 22.1649i −0.835964 + 0.835964i
\(704\) 0.256310 0.256310i 0.00966006 0.00966006i
\(705\) 0 0
\(706\) 27.2958i 1.02729i
\(707\) 8.31834 8.31834i 0.312843 0.312843i
\(708\) 0 0
\(709\) 35.3451 + 35.3451i 1.32741 + 1.32741i 0.907621 + 0.419792i \(0.137897\pi\)
0.419792 + 0.907621i \(0.362103\pi\)
\(710\) 10.0628 0.377649
\(711\) 0 0
\(712\) 13.0683i 0.489756i
\(713\) −52.2570 −1.95704
\(714\) 0 0
\(715\) −4.54318 −0.169905
\(716\) 2.00990i 0.0751134i
\(717\) 0 0
\(718\) −15.7415 −0.587466
\(719\) 4.49360 + 4.49360i 0.167583 + 0.167583i 0.785916 0.618333i \(-0.212192\pi\)
−0.618333 + 0.785916i \(0.712192\pi\)
\(720\) 0 0
\(721\) −10.9570 + 10.9570i −0.408060 + 0.408060i
\(722\) 15.8645i 0.590416i
\(723\) 0 0
\(724\) −15.0900 + 15.0900i −0.560816 + 0.560816i
\(725\) 5.25395 5.25395i 0.195127 0.195127i
\(726\) 0 0
\(727\) 41.1826 1.52738 0.763689 0.645584i \(-0.223386\pi\)
0.763689 + 0.645584i \(0.223386\pi\)
\(728\) 4.96463 + 4.96463i 0.184002 + 0.184002i
\(729\) 0 0
\(730\) 11.6653 0.431753
\(731\) 22.9063 + 10.6475i 0.847219 + 0.393811i
\(732\) 0 0
\(733\) 9.83517i 0.363270i −0.983366 0.181635i \(-0.941861\pi\)
0.983366 0.181635i \(-0.0581390\pi\)
\(734\) 6.22217 + 6.22217i 0.229664 + 0.229664i
\(735\) 0 0
\(736\) −4.08539 4.08539i −0.150590 0.150590i
\(737\) 0.572566 0.572566i 0.0210907 0.0210907i
\(738\) 0 0
\(739\) 22.4548i 0.826015i −0.910728 0.413007i \(-0.864478\pi\)
0.910728 0.413007i \(-0.135522\pi\)
\(740\) 9.47687i 0.348377i
\(741\) 0 0
\(742\) 6.52836 6.52836i 0.239663 0.239663i
\(743\) −28.9164 28.9164i −1.06084 1.06084i −0.998025 0.0628155i \(-0.979992\pi\)
−0.0628155 0.998025i \(-0.520008\pi\)
\(744\) 0 0
\(745\) 14.3418 + 14.3418i 0.525442 + 0.525442i
\(746\) 2.51310i 0.0920111i
\(747\) 0 0
\(748\) −0.512868 1.40378i −0.0187523 0.0513272i
\(749\) −6.59177 −0.240858
\(750\) 0 0
\(751\) −1.73255 1.73255i −0.0632218 0.0632218i 0.674789 0.738011i \(-0.264235\pi\)
−0.738011 + 0.674789i \(0.764235\pi\)
\(752\) 12.7093 0.463462
\(753\) 0 0
\(754\) 20.3442 20.3442i 0.740890 0.740890i
\(755\) 11.0856 11.0856i 0.403445 0.403445i
\(756\) 0 0
\(757\) 23.6189i 0.858445i 0.903199 + 0.429222i \(0.141212\pi\)
−0.903199 + 0.429222i \(0.858788\pi\)
\(758\) −14.8107 + 14.8107i −0.537947 + 0.537947i
\(759\) 0 0
\(760\) −7.45338 7.45338i −0.270363 0.270363i
\(761\) 30.4905 1.10528 0.552639 0.833421i \(-0.313621\pi\)
0.552639 + 0.833421i \(0.313621\pi\)
\(762\) 0 0
\(763\) 0.636202i 0.0230321i
\(764\) 8.62703 0.312115
\(765\) 0 0
\(766\) −35.6542 −1.28824
\(767\) 30.7099i 1.10887i
\(768\) 0 0
\(769\) −1.17195 −0.0422614 −0.0211307 0.999777i \(-0.506727\pi\)
−0.0211307 + 0.999777i \(0.506727\pi\)
\(770\) 0.457554 + 0.457554i 0.0164891 + 0.0164891i
\(771\) 0 0
\(772\) 10.9385 10.9385i 0.393683 0.393683i
\(773\) 4.60742i 0.165718i 0.996561 + 0.0828588i \(0.0264050\pi\)
−0.996561 + 0.0828588i \(0.973595\pi\)
\(774\) 0 0
\(775\) 11.5966 11.5966i 0.416561 0.416561i
\(776\) 6.72848 6.72848i 0.241538 0.241538i
\(777\) 0 0
\(778\) −26.6867 −0.956764
\(779\) 47.0212 + 47.0212i 1.68471 + 1.68471i
\(780\) 0 0
\(781\) −2.04325 −0.0731133
\(782\) −22.3752 + 8.17473i −0.800135 + 0.292328i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) −3.11055 3.11055i −0.111020 0.111020i
\(786\) 0 0
\(787\) −16.7085 16.7085i −0.595595 0.595595i 0.343542 0.939137i \(-0.388373\pi\)
−0.939137 + 0.343542i \(0.888373\pi\)
\(788\) 10.8246 10.8246i 0.385611 0.385611i
\(789\) 0 0
\(790\) 15.1560i 0.539225i
\(791\) 12.4422i 0.442395i
\(792\) 0 0
\(793\) −9.05482 + 9.05482i −0.321546 + 0.321546i
\(794\) −23.2453 23.2453i −0.824944 0.824944i
\(795\) 0 0
\(796\) 9.06251 + 9.06251i 0.321212 + 0.321212i
\(797\) 15.9167i 0.563797i 0.959444 + 0.281899i \(0.0909642\pi\)
−0.959444 + 0.281899i \(0.909036\pi\)
\(798\) 0 0
\(799\) 22.0882 47.5192i 0.781426 1.68111i
\(800\) 1.81321 0.0641067
\(801\) 0 0
\(802\) −4.94397 4.94397i −0.174578 0.174578i
\(803\) −2.36865 −0.0835880
\(804\) 0 0
\(805\) 7.29307 7.29307i 0.257047 0.257047i
\(806\) 44.9038 44.9038i 1.58167 1.58167i
\(807\) 0 0
\(808\) 11.7639i 0.413853i
\(809\) −19.9363 + 19.9363i −0.700923 + 0.700923i −0.964609 0.263686i \(-0.915062\pi\)
0.263686 + 0.964609i \(0.415062\pi\)
\(810\) 0 0
\(811\) −25.3306 25.3306i −0.889477 0.889477i 0.104996 0.994473i \(-0.466517\pi\)
−0.994473 + 0.104996i \(0.966517\pi\)
\(812\) −4.09782 −0.143805
\(813\) 0 0
\(814\) 1.92428i 0.0674462i
\(815\) 25.6948 0.900051
\(816\) 0 0
\(817\) −36.1743 −1.26558
\(818\) 24.4249i 0.853996i
\(819\) 0 0
\(820\) 20.1045 0.702080
\(821\) 17.8482 + 17.8482i 0.622908 + 0.622908i 0.946274 0.323366i \(-0.104815\pi\)
−0.323366 + 0.946274i \(0.604815\pi\)
\(822\) 0 0
\(823\) 10.3518 10.3518i 0.360842 0.360842i −0.503281 0.864123i \(-0.667874\pi\)
0.864123 + 0.503281i \(0.167874\pi\)
\(824\) 15.4955i 0.539812i
\(825\) 0 0
\(826\) −3.09287 + 3.09287i −0.107615 + 0.107615i
\(827\) −26.0979 + 26.0979i −0.907512 + 0.907512i −0.996071 0.0885592i \(-0.971774\pi\)
0.0885592 + 0.996071i \(0.471774\pi\)
\(828\) 0 0
\(829\) 8.45739 0.293737 0.146869 0.989156i \(-0.453081\pi\)
0.146869 + 0.989156i \(0.453081\pi\)
\(830\) −11.8443 11.8443i −0.411120 0.411120i
\(831\) 0 0
\(832\) 7.02105 0.243411
\(833\) −3.73892 1.73795i −0.129546 0.0602165i
\(834\) 0 0
\(835\) 24.6104i 0.851677i
\(836\) 1.51341 + 1.51341i 0.0523425 + 0.0523425i
\(837\) 0 0
\(838\) −8.83294 8.83294i −0.305129 0.305129i
\(839\) −20.0774 + 20.0774i −0.693150 + 0.693150i −0.962924 0.269774i \(-0.913051\pi\)
0.269774 + 0.962924i \(0.413051\pi\)
\(840\) 0 0
\(841\) 12.2079i 0.420962i
\(842\) 0.570702i 0.0196677i
\(843\) 0 0
\(844\) −10.3530 + 10.3530i −0.356364 + 0.356364i
\(845\) −45.8153 45.8153i −1.57609 1.57609i
\(846\) 0 0
\(847\) 7.68527 + 7.68527i 0.264069 + 0.264069i
\(848\) 9.23249i 0.317045i
\(849\) 0 0
\(850\) 3.15127 6.77945i 0.108088 0.232533i
\(851\) −30.6717 −1.05141
\(852\) 0 0
\(853\) 22.4310 + 22.4310i 0.768021 + 0.768021i 0.977758 0.209737i \(-0.0672606\pi\)
−0.209737 + 0.977758i \(0.567261\pi\)
\(854\) 1.82386 0.0624113
\(855\) 0 0
\(856\) −4.66108 + 4.66108i −0.159313 + 0.159313i
\(857\) −24.6896 + 24.6896i −0.843382 + 0.843382i −0.989297 0.145915i \(-0.953387\pi\)
0.145915 + 0.989297i \(0.453387\pi\)
\(858\) 0 0
\(859\) 12.1397i 0.414201i 0.978320 + 0.207100i \(0.0664027\pi\)
−0.978320 + 0.207100i \(0.933597\pi\)
\(860\) −7.73339 + 7.73339i −0.263706 + 0.263706i
\(861\) 0 0
\(862\) 25.5324 + 25.5324i 0.869638 + 0.869638i
\(863\) 11.3223 0.385417 0.192709 0.981256i \(-0.438273\pi\)
0.192709 + 0.981256i \(0.438273\pi\)
\(864\) 0 0
\(865\) 28.4805i 0.968367i
\(866\) 4.54033 0.154287
\(867\) 0 0
\(868\) −9.04474 −0.306998
\(869\) 3.07743i 0.104395i
\(870\) 0 0
\(871\) 15.6842 0.531438
\(872\) −0.449863 0.449863i −0.0152343 0.0152343i
\(873\) 0 0
\(874\) 24.1227 24.1227i 0.815962 0.815962i
\(875\) 12.1627i 0.411173i
\(876\) 0 0
\(877\) 4.09408 4.09408i 0.138247 0.138247i −0.634596 0.772844i \(-0.718834\pi\)
0.772844 + 0.634596i \(0.218834\pi\)
\(878\) −4.10702 + 4.10702i −0.138605 + 0.138605i
\(879\) 0 0
\(880\) 0.647080 0.0218131
\(881\) 8.25200 + 8.25200i 0.278017 + 0.278017i 0.832317 0.554300i \(-0.187014\pi\)
−0.554300 + 0.832317i \(0.687014\pi\)
\(882\) 0 0
\(883\) −19.4147 −0.653355 −0.326678 0.945136i \(-0.605929\pi\)
−0.326678 + 0.945136i \(0.605929\pi\)
\(884\) 12.2023 26.2511i 0.410406 0.882922i
\(885\) 0 0
\(886\) 34.5919i 1.16214i
\(887\) −33.4898 33.4898i −1.12448 1.12448i −0.991060 0.133417i \(-0.957405\pi\)
−0.133417 0.991060i \(-0.542595\pi\)
\(888\) 0 0
\(889\) 15.4162 + 15.4162i 0.517042 + 0.517042i
\(890\) 16.4961 16.4961i 0.552950 0.552950i
\(891\) 0 0
\(892\) 14.7723i 0.494614i
\(893\) 75.0438i 2.51125i
\(894\) 0 0
\(895\) 2.53709 2.53709i 0.0848056 0.0848056i
\(896\) −0.707107 0.707107i −0.0236228 0.0236228i
\(897\) 0 0
\(898\) 4.26160 + 4.26160i 0.142211 + 0.142211i
\(899\) 37.0637i 1.23614i
\(900\) 0 0
\(901\) −34.5195 16.0456i −1.15001 0.534558i
\(902\) −4.08223 −0.135923
\(903\) 0 0
\(904\) 8.79800 + 8.79800i 0.292617 + 0.292617i
\(905\) −38.0962 −1.26636
\(906\) 0 0
\(907\) −5.54811 + 5.54811i −0.184222 + 0.184222i −0.793193 0.608971i \(-0.791583\pi\)
0.608971 + 0.793193i \(0.291583\pi\)
\(908\) 10.3677 10.3677i 0.344064 0.344064i
\(909\) 0 0
\(910\) 12.5337i 0.415488i
\(911\) −26.1612 + 26.1612i −0.866759 + 0.866759i −0.992112 0.125353i \(-0.959994\pi\)
0.125353 + 0.992112i \(0.459994\pi\)
\(912\) 0 0
\(913\) 2.40498 + 2.40498i 0.0795933 + 0.0795933i
\(914\) 39.3436 1.30137
\(915\) 0 0
\(916\) 19.3079i 0.637950i
\(917\) −0.115120 −0.00380160
\(918\) 0 0
\(919\) 1.76526 0.0582305 0.0291152 0.999576i \(-0.490731\pi\)
0.0291152 + 0.999576i \(0.490731\pi\)
\(920\) 10.3140i 0.340041i
\(921\) 0 0
\(922\) −34.4718 −1.13527
\(923\) −27.9852 27.9852i −0.921144 0.921144i
\(924\) 0 0
\(925\) 6.80646 6.80646i 0.223795 0.223795i
\(926\) 2.39896i 0.0788348i
\(927\) 0 0
\(928\) −2.89759 + 2.89759i −0.0951182 + 0.0951182i
\(929\) −4.48787 + 4.48787i −0.147242 + 0.147242i −0.776885 0.629643i \(-0.783201\pi\)
0.629643 + 0.776885i \(0.283201\pi\)
\(930\) 0 0
\(931\) 5.90462 0.193516
\(932\) −11.3972 11.3972i −0.373329 0.373329i
\(933\) 0 0
\(934\) 24.3491 0.796728
\(935\) 1.12459 2.41938i 0.0367782 0.0791221i
\(936\) 0 0
\(937\) 32.7891i 1.07117i 0.844480 + 0.535587i \(0.179910\pi\)
−0.844480 + 0.535587i \(0.820090\pi\)
\(938\) −1.57959 1.57959i −0.0515754 0.0515754i
\(939\) 0 0
\(940\) 16.0430 + 16.0430i 0.523264 + 0.523264i
\(941\) −8.37437 + 8.37437i −0.272997 + 0.272997i −0.830305 0.557309i \(-0.811834\pi\)
0.557309 + 0.830305i \(0.311834\pi\)
\(942\) 0 0
\(943\) 65.0677i 2.11890i
\(944\) 4.37397i 0.142361i
\(945\) 0 0
\(946\) 1.57027 1.57027i 0.0510539 0.0510539i
\(947\) 26.6181 + 26.6181i 0.864972 + 0.864972i 0.991911 0.126938i \(-0.0405151\pi\)
−0.126938 + 0.991911i \(0.540515\pi\)
\(948\) 0 0
\(949\) −32.4420 32.4420i −1.05311 1.05311i
\(950\) 10.7063i 0.347359i
\(951\) 0 0
\(952\) −3.87273 + 1.41490i −0.125516 + 0.0458571i
\(953\) −2.71517 −0.0879530 −0.0439765 0.999033i \(-0.514003\pi\)
−0.0439765 + 0.999033i \(0.514003\pi\)
\(954\) 0 0
\(955\) 10.8899 + 10.8899i 0.352388 + 0.352388i
\(956\) −8.31892 −0.269053
\(957\) 0 0
\(958\) −5.89635 + 5.89635i −0.190502 + 0.190502i
\(959\) −0.353275 + 0.353275i −0.0114079 + 0.0114079i
\(960\) 0 0
\(961\) 50.8073i 1.63894i
\(962\) 26.3558 26.3558i 0.849744 0.849744i
\(963\) 0 0
\(964\) 18.4359 + 18.4359i 0.593782 + 0.593782i
\(965\) 27.6152 0.888963
\(966\) 0 0
\(967\) 32.1282i 1.03317i 0.856235 + 0.516587i \(0.172798\pi\)
−0.856235 + 0.516587i \(0.827202\pi\)
\(968\) 10.8686 0.349330
\(969\) 0 0
\(970\) 16.9867 0.545410
\(971\) 25.2962i 0.811795i −0.913919 0.405898i \(-0.866959\pi\)
0.913919 0.405898i \(-0.133041\pi\)
\(972\) 0 0
\(973\) 9.78070 0.313555
\(974\) 16.7497 + 16.7497i 0.536694 + 0.536694i
\(975\) 0 0
\(976\) 1.28967 1.28967i 0.0412812 0.0412812i
\(977\) 2.37227i 0.0758957i −0.999280 0.0379479i \(-0.987918\pi\)
0.999280 0.0379479i \(-0.0120821\pi\)
\(978\) 0 0
\(979\) −3.34954 + 3.34954i −0.107052 + 0.107052i
\(980\) 1.26230 1.26230i 0.0403226 0.0403226i
\(981\) 0 0
\(982\) −13.6628 −0.435997
\(983\) −30.4349 30.4349i −0.970723 0.970723i 0.0288603 0.999583i \(-0.490812\pi\)
−0.999583 + 0.0288603i \(0.990812\pi\)
\(984\) 0 0
\(985\) 27.3277 0.870734
\(986\) 5.79799 + 15.8698i 0.184645 + 0.505396i
\(987\) 0 0
\(988\) 41.4566i 1.31891i
\(989\) −25.0289 25.0289i −0.795873 0.795873i
\(990\) 0 0
\(991\) −22.5640 22.5640i −0.716770 0.716770i 0.251173 0.967942i \(-0.419184\pi\)
−0.967942 + 0.251173i \(0.919184\pi\)
\(992\) −6.39559 + 6.39559i −0.203060 + 0.203060i
\(993\) 0 0
\(994\) 5.63691i 0.178792i
\(995\) 22.8792i 0.725318i
\(996\) 0 0
\(997\) −22.2438 + 22.2438i −0.704468 + 0.704468i −0.965366 0.260899i \(-0.915981\pi\)
0.260899 + 0.965366i \(0.415981\pi\)
\(998\) −4.38730 4.38730i −0.138877 0.138877i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2142.2.p.h.1135.3 16
3.2 odd 2 2142.2.p.i.1135.6 yes 16
17.4 even 4 inner 2142.2.p.h.1891.3 yes 16
51.38 odd 4 2142.2.p.i.1891.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2142.2.p.h.1135.3 16 1.1 even 1 trivial
2142.2.p.h.1891.3 yes 16 17.4 even 4 inner
2142.2.p.i.1135.6 yes 16 3.2 odd 2
2142.2.p.i.1891.6 yes 16 51.38 odd 4