Properties

Label 2142.2.p.g.1135.5
Level $2142$
Weight $2$
Character 2142.1135
Analytic conductor $17.104$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2142,2,Mod(1135,2142)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2142, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2142.1135"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2142.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12,4,0,0,0,0,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1039561130\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 38x^{10} + 509x^{8} + 2748x^{6} + 4804x^{4} + 2496x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 714)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1135.5
Root \(3.26061i\) of defining polynomial
Character \(\chi\) \(=\) 2142.1135
Dual form 2142.2.p.g.1891.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(2.30560 + 2.30560i) q^{5} +(-0.707107 + 0.707107i) q^{7} +1.00000i q^{8} +(2.30560 - 2.30560i) q^{10} +(-1.30560 + 1.30560i) q^{11} +5.71315 q^{13} +(0.707107 + 0.707107i) q^{14} +1.00000 q^{16} +(-1.64722 + 3.77977i) q^{17} +5.00953i q^{19} +(-2.30560 - 2.30560i) q^{20} +(1.30560 + 1.30560i) q^{22} +(-4.58060 + 4.58060i) q^{23} +5.63155i q^{25} -5.71315i q^{26} +(0.707107 - 0.707107i) q^{28} +(-6.80737 - 6.80737i) q^{29} +(-0.764801 - 0.764801i) q^{31} -1.00000i q^{32} +(3.77977 + 1.64722i) q^{34} -3.26061 q^{35} +(-1.17305 - 1.17305i) q^{37} +5.00953 q^{38} +(-2.30560 + 2.30560i) q^{40} +(-8.19179 + 8.19179i) q^{41} -6.49371i q^{43} +(1.30560 - 1.30560i) q^{44} +(4.58060 + 4.58060i) q^{46} +4.87629 q^{47} -1.00000i q^{49} +5.63155 q^{50} -5.71315 q^{52} -12.9777i q^{53} -6.02036 q^{55} +(-0.707107 - 0.707107i) q^{56} +(-6.80737 + 6.80737i) q^{58} +10.9980i q^{59} +(5.77747 - 5.77747i) q^{61} +(-0.764801 + 0.764801i) q^{62} -1.00000 q^{64} +(13.1722 + 13.1722i) q^{65} -10.1865 q^{67} +(1.64722 - 3.77977i) q^{68} +3.26061i q^{70} +(-1.96941 - 1.96941i) q^{71} +(6.98042 + 6.98042i) q^{73} +(-1.17305 + 1.17305i) q^{74} -5.00953i q^{76} -1.84639i q^{77} +(-5.84293 + 5.84293i) q^{79} +(2.30560 + 2.30560i) q^{80} +(8.19179 + 8.19179i) q^{82} +13.5467i q^{83} +(-12.5125 + 4.91679i) q^{85} -6.49371 q^{86} +(-1.30560 - 1.30560i) q^{88} +17.6188 q^{89} +(-4.03980 + 4.03980i) q^{91} +(4.58060 - 4.58060i) q^{92} -4.87629i q^{94} +(-11.5500 + 11.5500i) q^{95} +(3.89882 + 3.89882i) q^{97} -1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} + 4 q^{5} + 4 q^{10} + 8 q^{11} + 12 q^{13} + 12 q^{16} + 12 q^{17} - 4 q^{20} - 8 q^{22} - 8 q^{23} - 12 q^{29} + 12 q^{31} + 4 q^{34} + 4 q^{35} + 24 q^{38} - 4 q^{40} - 4 q^{41} - 8 q^{44}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2142\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1667\) \(1837\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 2.30560 + 2.30560i 1.03109 + 1.03109i 0.999501 + 0.0315935i \(0.0100582\pi\)
0.0315935 + 0.999501i \(0.489942\pi\)
\(6\) 0 0
\(7\) −0.707107 + 0.707107i −0.267261 + 0.267261i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.30560 2.30560i 0.729094 0.729094i
\(11\) −1.30560 + 1.30560i −0.393652 + 0.393652i −0.875987 0.482335i \(-0.839789\pi\)
0.482335 + 0.875987i \(0.339789\pi\)
\(12\) 0 0
\(13\) 5.71315 1.58454 0.792271 0.610170i \(-0.208899\pi\)
0.792271 + 0.610170i \(0.208899\pi\)
\(14\) 0.707107 + 0.707107i 0.188982 + 0.188982i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.64722 + 3.77977i −0.399510 + 0.916729i
\(18\) 0 0
\(19\) 5.00953i 1.14927i 0.818411 + 0.574633i \(0.194855\pi\)
−0.818411 + 0.574633i \(0.805145\pi\)
\(20\) −2.30560 2.30560i −0.515547 0.515547i
\(21\) 0 0
\(22\) 1.30560 + 1.30560i 0.278354 + 0.278354i
\(23\) −4.58060 + 4.58060i −0.955121 + 0.955121i −0.999035 0.0439142i \(-0.986017\pi\)
0.0439142 + 0.999035i \(0.486017\pi\)
\(24\) 0 0
\(25\) 5.63155i 1.12631i
\(26\) 5.71315i 1.12044i
\(27\) 0 0
\(28\) 0.707107 0.707107i 0.133631 0.133631i
\(29\) −6.80737 6.80737i −1.26410 1.26410i −0.949089 0.315007i \(-0.897993\pi\)
−0.315007 0.949089i \(-0.602007\pi\)
\(30\) 0 0
\(31\) −0.764801 0.764801i −0.137362 0.137362i 0.635082 0.772445i \(-0.280966\pi\)
−0.772445 + 0.635082i \(0.780966\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 3.77977 + 1.64722i 0.648225 + 0.282496i
\(35\) −3.26061 −0.551143
\(36\) 0 0
\(37\) −1.17305 1.17305i −0.192848 0.192848i 0.604077 0.796926i \(-0.293542\pi\)
−0.796926 + 0.604077i \(0.793542\pi\)
\(38\) 5.00953 0.812653
\(39\) 0 0
\(40\) −2.30560 + 2.30560i −0.364547 + 0.364547i
\(41\) −8.19179 + 8.19179i −1.27934 + 1.27934i −0.338308 + 0.941036i \(0.609854\pi\)
−0.941036 + 0.338308i \(0.890146\pi\)
\(42\) 0 0
\(43\) 6.49371i 0.990282i −0.868813 0.495141i \(-0.835116\pi\)
0.868813 0.495141i \(-0.164884\pi\)
\(44\) 1.30560 1.30560i 0.196826 0.196826i
\(45\) 0 0
\(46\) 4.58060 + 4.58060i 0.675373 + 0.675373i
\(47\) 4.87629 0.711279 0.355640 0.934623i \(-0.384263\pi\)
0.355640 + 0.934623i \(0.384263\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 5.63155 0.796422
\(51\) 0 0
\(52\) −5.71315 −0.792271
\(53\) 12.9777i 1.78262i −0.453396 0.891309i \(-0.649788\pi\)
0.453396 0.891309i \(-0.350212\pi\)
\(54\) 0 0
\(55\) −6.02036 −0.811785
\(56\) −0.707107 0.707107i −0.0944911 0.0944911i
\(57\) 0 0
\(58\) −6.80737 + 6.80737i −0.893851 + 0.893851i
\(59\) 10.9980i 1.43182i 0.698193 + 0.715910i \(0.253988\pi\)
−0.698193 + 0.715910i \(0.746012\pi\)
\(60\) 0 0
\(61\) 5.77747 5.77747i 0.739730 0.739730i −0.232796 0.972526i \(-0.574787\pi\)
0.972526 + 0.232796i \(0.0747874\pi\)
\(62\) −0.764801 + 0.764801i −0.0971298 + 0.0971298i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 13.1722 + 13.1722i 1.63381 + 1.63381i
\(66\) 0 0
\(67\) −10.1865 −1.24448 −0.622240 0.782827i \(-0.713777\pi\)
−0.622240 + 0.782827i \(0.713777\pi\)
\(68\) 1.64722 3.77977i 0.199755 0.458364i
\(69\) 0 0
\(70\) 3.26061i 0.389717i
\(71\) −1.96941 1.96941i −0.233726 0.233726i 0.580520 0.814246i \(-0.302849\pi\)
−0.814246 + 0.580520i \(0.802849\pi\)
\(72\) 0 0
\(73\) 6.98042 + 6.98042i 0.816996 + 0.816996i 0.985672 0.168676i \(-0.0539490\pi\)
−0.168676 + 0.985672i \(0.553949\pi\)
\(74\) −1.17305 + 1.17305i −0.136364 + 0.136364i
\(75\) 0 0
\(76\) 5.00953i 0.574633i
\(77\) 1.84639i 0.210416i
\(78\) 0 0
\(79\) −5.84293 + 5.84293i −0.657381 + 0.657381i −0.954760 0.297379i \(-0.903888\pi\)
0.297379 + 0.954760i \(0.403888\pi\)
\(80\) 2.30560 + 2.30560i 0.257774 + 0.257774i
\(81\) 0 0
\(82\) 8.19179 + 8.19179i 0.904632 + 0.904632i
\(83\) 13.5467i 1.48695i 0.668766 + 0.743473i \(0.266823\pi\)
−0.668766 + 0.743473i \(0.733177\pi\)
\(84\) 0 0
\(85\) −12.5125 + 4.91679i −1.35717 + 0.533301i
\(86\) −6.49371 −0.700235
\(87\) 0 0
\(88\) −1.30560 1.30560i −0.139177 0.139177i
\(89\) 17.6188 1.86759 0.933794 0.357812i \(-0.116477\pi\)
0.933794 + 0.357812i \(0.116477\pi\)
\(90\) 0 0
\(91\) −4.03980 + 4.03980i −0.423487 + 0.423487i
\(92\) 4.58060 4.58060i 0.477561 0.477561i
\(93\) 0 0
\(94\) 4.87629i 0.502950i
\(95\) −11.5500 + 11.5500i −1.18500 + 1.18500i
\(96\) 0 0
\(97\) 3.89882 + 3.89882i 0.395866 + 0.395866i 0.876772 0.480906i \(-0.159692\pi\)
−0.480906 + 0.876772i \(0.659692\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 5.63155i 0.563155i
\(101\) −13.6813 −1.36134 −0.680669 0.732591i \(-0.738311\pi\)
−0.680669 + 0.732591i \(0.738311\pi\)
\(102\) 0 0
\(103\) 0.545951 0.0537941 0.0268971 0.999638i \(-0.491437\pi\)
0.0268971 + 0.999638i \(0.491437\pi\)
\(104\) 5.71315i 0.560220i
\(105\) 0 0
\(106\) −12.9777 −1.26050
\(107\) −2.70541 2.70541i −0.261542 0.261542i 0.564138 0.825680i \(-0.309209\pi\)
−0.825680 + 0.564138i \(0.809209\pi\)
\(108\) 0 0
\(109\) 2.89425 2.89425i 0.277219 0.277219i −0.554779 0.831998i \(-0.687197\pi\)
0.831998 + 0.554779i \(0.187197\pi\)
\(110\) 6.02036i 0.574019i
\(111\) 0 0
\(112\) −0.707107 + 0.707107i −0.0668153 + 0.0668153i
\(113\) −2.18078 + 2.18078i −0.205151 + 0.205151i −0.802203 0.597052i \(-0.796339\pi\)
0.597052 + 0.802203i \(0.296339\pi\)
\(114\) 0 0
\(115\) −21.1220 −1.96964
\(116\) 6.80737 + 6.80737i 0.632048 + 0.632048i
\(117\) 0 0
\(118\) 10.9980 1.01245
\(119\) −1.50794 3.83746i −0.138232 0.351780i
\(120\) 0 0
\(121\) 7.59083i 0.690076i
\(122\) −5.77747 5.77747i −0.523068 0.523068i
\(123\) 0 0
\(124\) 0.764801 + 0.764801i 0.0686812 + 0.0686812i
\(125\) −1.45611 + 1.45611i −0.130238 + 0.130238i
\(126\) 0 0
\(127\) 3.77239i 0.334746i 0.985894 + 0.167373i \(0.0535284\pi\)
−0.985894 + 0.167373i \(0.946472\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 13.1722 13.1722i 1.15528 1.15528i
\(131\) 7.76100 + 7.76100i 0.678082 + 0.678082i 0.959566 0.281484i \(-0.0908266\pi\)
−0.281484 + 0.959566i \(0.590827\pi\)
\(132\) 0 0
\(133\) −3.54227 3.54227i −0.307154 0.307154i
\(134\) 10.1865i 0.879980i
\(135\) 0 0
\(136\) −3.77977 1.64722i −0.324113 0.141248i
\(137\) 8.64712 0.738774 0.369387 0.929276i \(-0.379568\pi\)
0.369387 + 0.929276i \(0.379568\pi\)
\(138\) 0 0
\(139\) 2.08193 + 2.08193i 0.176587 + 0.176587i 0.789866 0.613279i \(-0.210150\pi\)
−0.613279 + 0.789866i \(0.710150\pi\)
\(140\) 3.26061 0.275572
\(141\) 0 0
\(142\) −1.96941 + 1.96941i −0.165269 + 0.165269i
\(143\) −7.45906 + 7.45906i −0.623758 + 0.623758i
\(144\) 0 0
\(145\) 31.3901i 2.60680i
\(146\) 6.98042 6.98042i 0.577703 0.577703i
\(147\) 0 0
\(148\) 1.17305 + 1.17305i 0.0964242 + 0.0964242i
\(149\) 6.48200 0.531026 0.265513 0.964107i \(-0.414459\pi\)
0.265513 + 0.964107i \(0.414459\pi\)
\(150\) 0 0
\(151\) 13.0424i 1.06138i 0.847567 + 0.530689i \(0.178067\pi\)
−0.847567 + 0.530689i \(0.821933\pi\)
\(152\) −5.00953 −0.406327
\(153\) 0 0
\(154\) −1.84639 −0.148787
\(155\) 3.52665i 0.283267i
\(156\) 0 0
\(157\) 16.4243 1.31080 0.655401 0.755281i \(-0.272500\pi\)
0.655401 + 0.755281i \(0.272500\pi\)
\(158\) 5.84293 + 5.84293i 0.464839 + 0.464839i
\(159\) 0 0
\(160\) 2.30560 2.30560i 0.182273 0.182273i
\(161\) 6.47795i 0.510534i
\(162\) 0 0
\(163\) 4.40677 4.40677i 0.345165 0.345165i −0.513140 0.858305i \(-0.671518\pi\)
0.858305 + 0.513140i \(0.171518\pi\)
\(164\) 8.19179 8.19179i 0.639672 0.639672i
\(165\) 0 0
\(166\) 13.5467 1.05143
\(167\) −11.3979 11.3979i −0.881994 0.881994i 0.111743 0.993737i \(-0.464357\pi\)
−0.993737 + 0.111743i \(0.964357\pi\)
\(168\) 0 0
\(169\) 19.6400 1.51077
\(170\) 4.91679 + 12.5125i 0.377101 + 0.959662i
\(171\) 0 0
\(172\) 6.49371i 0.495141i
\(173\) 10.4886 + 10.4886i 0.797436 + 0.797436i 0.982691 0.185254i \(-0.0593109\pi\)
−0.185254 + 0.982691i \(0.559311\pi\)
\(174\) 0 0
\(175\) −3.98211 3.98211i −0.301019 0.301019i
\(176\) −1.30560 + 1.30560i −0.0984131 + 0.0984131i
\(177\) 0 0
\(178\) 17.6188i 1.32058i
\(179\) 5.48452i 0.409932i 0.978769 + 0.204966i \(0.0657085\pi\)
−0.978769 + 0.204966i \(0.934292\pi\)
\(180\) 0 0
\(181\) −5.75711 + 5.75711i −0.427923 + 0.427923i −0.887920 0.459997i \(-0.847850\pi\)
0.459997 + 0.887920i \(0.347850\pi\)
\(182\) 4.03980 + 4.03980i 0.299450 + 0.299450i
\(183\) 0 0
\(184\) −4.58060 4.58060i −0.337686 0.337686i
\(185\) 5.40917i 0.397690i
\(186\) 0 0
\(187\) −2.78424 7.08546i −0.203604 0.518140i
\(188\) −4.87629 −0.355640
\(189\) 0 0
\(190\) 11.5500 + 11.5500i 0.837922 + 0.837922i
\(191\) 24.2852 1.75721 0.878607 0.477546i \(-0.158474\pi\)
0.878607 + 0.477546i \(0.158474\pi\)
\(192\) 0 0
\(193\) 11.3040 11.3040i 0.813678 0.813678i −0.171505 0.985183i \(-0.554863\pi\)
0.985183 + 0.171505i \(0.0548630\pi\)
\(194\) 3.89882 3.89882i 0.279919 0.279919i
\(195\) 0 0
\(196\) 1.00000i 0.0714286i
\(197\) −1.29953 + 1.29953i −0.0925875 + 0.0925875i −0.751883 0.659296i \(-0.770854\pi\)
0.659296 + 0.751883i \(0.270854\pi\)
\(198\) 0 0
\(199\) −6.09112 6.09112i −0.431788 0.431788i 0.457448 0.889236i \(-0.348764\pi\)
−0.889236 + 0.457448i \(0.848764\pi\)
\(200\) −5.63155 −0.398211
\(201\) 0 0
\(202\) 13.6813i 0.962611i
\(203\) 9.62707 0.675688
\(204\) 0 0
\(205\) −37.7739 −2.63825
\(206\) 0.545951i 0.0380382i
\(207\) 0 0
\(208\) 5.71315 0.396135
\(209\) −6.54043 6.54043i −0.452411 0.452411i
\(210\) 0 0
\(211\) −11.4696 + 11.4696i −0.789597 + 0.789597i −0.981428 0.191831i \(-0.938557\pi\)
0.191831 + 0.981428i \(0.438557\pi\)
\(212\) 12.9777i 0.891309i
\(213\) 0 0
\(214\) −2.70541 + 2.70541i −0.184938 + 0.184938i
\(215\) 14.9719 14.9719i 1.02107 1.02107i
\(216\) 0 0
\(217\) 1.08159 0.0734232
\(218\) −2.89425 2.89425i −0.196023 0.196023i
\(219\) 0 0
\(220\) 6.02036 0.405893
\(221\) −9.41083 + 21.5944i −0.633041 + 1.45259i
\(222\) 0 0
\(223\) 14.2184i 0.952133i 0.879409 + 0.476066i \(0.157938\pi\)
−0.879409 + 0.476066i \(0.842062\pi\)
\(224\) 0.707107 + 0.707107i 0.0472456 + 0.0472456i
\(225\) 0 0
\(226\) 2.18078 + 2.18078i 0.145064 + 0.145064i
\(227\) 12.4143 12.4143i 0.823967 0.823967i −0.162707 0.986674i \(-0.552023\pi\)
0.986674 + 0.162707i \(0.0520225\pi\)
\(228\) 0 0
\(229\) 7.48179i 0.494411i 0.968963 + 0.247205i \(0.0795122\pi\)
−0.968963 + 0.247205i \(0.920488\pi\)
\(230\) 21.1220i 1.39275i
\(231\) 0 0
\(232\) 6.80737 6.80737i 0.446925 0.446925i
\(233\) −12.7751 12.7751i −0.836925 0.836925i 0.151528 0.988453i \(-0.451581\pi\)
−0.988453 + 0.151528i \(0.951581\pi\)
\(234\) 0 0
\(235\) 11.2427 + 11.2427i 0.733396 + 0.733396i
\(236\) 10.9980i 0.715910i
\(237\) 0 0
\(238\) −3.83746 + 1.50794i −0.248746 + 0.0977451i
\(239\) 24.8996 1.61062 0.805311 0.592853i \(-0.201999\pi\)
0.805311 + 0.592853i \(0.201999\pi\)
\(240\) 0 0
\(241\) −7.66021 7.66021i −0.493437 0.493437i 0.415950 0.909387i \(-0.363449\pi\)
−0.909387 + 0.415950i \(0.863449\pi\)
\(242\) 7.59083 0.487957
\(243\) 0 0
\(244\) −5.77747 + 5.77747i −0.369865 + 0.369865i
\(245\) 2.30560 2.30560i 0.147299 0.147299i
\(246\) 0 0
\(247\) 28.6202i 1.82106i
\(248\) 0.764801 0.764801i 0.0485649 0.0485649i
\(249\) 0 0
\(250\) 1.45611 + 1.45611i 0.0920924 + 0.0920924i
\(251\) −8.75005 −0.552298 −0.276149 0.961115i \(-0.589058\pi\)
−0.276149 + 0.961115i \(0.589058\pi\)
\(252\) 0 0
\(253\) 11.9608i 0.751971i
\(254\) 3.77239 0.236701
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 22.9937i 1.43431i 0.696916 + 0.717153i \(0.254555\pi\)
−0.696916 + 0.717153i \(0.745445\pi\)
\(258\) 0 0
\(259\) 1.65894 0.103082
\(260\) −13.1722 13.1722i −0.816906 0.816906i
\(261\) 0 0
\(262\) 7.76100 7.76100i 0.479476 0.479476i
\(263\) 7.87376i 0.485517i −0.970087 0.242759i \(-0.921948\pi\)
0.970087 0.242759i \(-0.0780523\pi\)
\(264\) 0 0
\(265\) 29.9212 29.9212i 1.83805 1.83805i
\(266\) −3.54227 + 3.54227i −0.217191 + 0.217191i
\(267\) 0 0
\(268\) 10.1865 0.622240
\(269\) 9.05635 + 9.05635i 0.552175 + 0.552175i 0.927068 0.374893i \(-0.122320\pi\)
−0.374893 + 0.927068i \(0.622320\pi\)
\(270\) 0 0
\(271\) 25.4839 1.54804 0.774018 0.633163i \(-0.218244\pi\)
0.774018 + 0.633163i \(0.218244\pi\)
\(272\) −1.64722 + 3.77977i −0.0998776 + 0.229182i
\(273\) 0 0
\(274\) 8.64712i 0.522392i
\(275\) −7.35254 7.35254i −0.443375 0.443375i
\(276\) 0 0
\(277\) −12.2501 12.2501i −0.736036 0.736036i 0.235772 0.971808i \(-0.424238\pi\)
−0.971808 + 0.235772i \(0.924238\pi\)
\(278\) 2.08193 2.08193i 0.124866 0.124866i
\(279\) 0 0
\(280\) 3.26061i 0.194858i
\(281\) 15.2279i 0.908421i −0.890894 0.454210i \(-0.849921\pi\)
0.890894 0.454210i \(-0.150079\pi\)
\(282\) 0 0
\(283\) 8.18153 8.18153i 0.486341 0.486341i −0.420808 0.907150i \(-0.638253\pi\)
0.907150 + 0.420808i \(0.138253\pi\)
\(284\) 1.96941 + 1.96941i 0.116863 + 0.116863i
\(285\) 0 0
\(286\) 7.45906 + 7.45906i 0.441064 + 0.441064i
\(287\) 11.5849i 0.683838i
\(288\) 0 0
\(289\) −11.5733 12.4522i −0.680783 0.732485i
\(290\) −31.3901 −1.84329
\(291\) 0 0
\(292\) −6.98042 6.98042i −0.408498 0.408498i
\(293\) 11.4033 0.666187 0.333093 0.942894i \(-0.391908\pi\)
0.333093 + 0.942894i \(0.391908\pi\)
\(294\) 0 0
\(295\) −25.3570 + 25.3570i −1.47634 + 1.47634i
\(296\) 1.17305 1.17305i 0.0681822 0.0681822i
\(297\) 0 0
\(298\) 6.48200i 0.375492i
\(299\) −26.1696 + 26.1696i −1.51343 + 1.51343i
\(300\) 0 0
\(301\) 4.59175 + 4.59175i 0.264664 + 0.264664i
\(302\) 13.0424 0.750507
\(303\) 0 0
\(304\) 5.00953i 0.287316i
\(305\) 26.6410 1.52546
\(306\) 0 0
\(307\) 12.3314 0.703787 0.351894 0.936040i \(-0.385538\pi\)
0.351894 + 0.936040i \(0.385538\pi\)
\(308\) 1.84639i 0.105208i
\(309\) 0 0
\(310\) −3.52665 −0.200300
\(311\) −23.3587 23.3587i −1.32455 1.32455i −0.910048 0.414503i \(-0.863955\pi\)
−0.414503 0.910048i \(-0.636045\pi\)
\(312\) 0 0
\(313\) −10.0953 + 10.0953i −0.570621 + 0.570621i −0.932302 0.361681i \(-0.882203\pi\)
0.361681 + 0.932302i \(0.382203\pi\)
\(314\) 16.4243i 0.926877i
\(315\) 0 0
\(316\) 5.84293 5.84293i 0.328691 0.328691i
\(317\) −6.57821 + 6.57821i −0.369469 + 0.369469i −0.867283 0.497815i \(-0.834136\pi\)
0.497815 + 0.867283i \(0.334136\pi\)
\(318\) 0 0
\(319\) 17.7754 0.995229
\(320\) −2.30560 2.30560i −0.128887 0.128887i
\(321\) 0 0
\(322\) −6.47795 −0.361002
\(323\) −18.9349 8.25182i −1.05356 0.459144i
\(324\) 0 0
\(325\) 32.1739i 1.78469i
\(326\) −4.40677 4.40677i −0.244069 0.244069i
\(327\) 0 0
\(328\) −8.19179 8.19179i −0.452316 0.452316i
\(329\) −3.44805 + 3.44805i −0.190097 + 0.190097i
\(330\) 0 0
\(331\) 7.63186i 0.419485i 0.977757 + 0.209742i \(0.0672625\pi\)
−0.977757 + 0.209742i \(0.932737\pi\)
\(332\) 13.5467i 0.743473i
\(333\) 0 0
\(334\) −11.3979 + 11.3979i −0.623664 + 0.623664i
\(335\) −23.4860 23.4860i −1.28318 1.28318i
\(336\) 0 0
\(337\) 2.31022 + 2.31022i 0.125845 + 0.125845i 0.767224 0.641379i \(-0.221637\pi\)
−0.641379 + 0.767224i \(0.721637\pi\)
\(338\) 19.6400i 1.06828i
\(339\) 0 0
\(340\) 12.5125 4.91679i 0.678583 0.266650i
\(341\) 1.99704 0.108146
\(342\) 0 0
\(343\) 0.707107 + 0.707107i 0.0381802 + 0.0381802i
\(344\) 6.49371 0.350118
\(345\) 0 0
\(346\) 10.4886 10.4886i 0.563873 0.563873i
\(347\) 5.30560 5.30560i 0.284819 0.284819i −0.550208 0.835028i \(-0.685452\pi\)
0.835028 + 0.550208i \(0.185452\pi\)
\(348\) 0 0
\(349\) 21.0965i 1.12927i −0.825340 0.564635i \(-0.809017\pi\)
0.825340 0.564635i \(-0.190983\pi\)
\(350\) −3.98211 + 3.98211i −0.212853 + 0.212853i
\(351\) 0 0
\(352\) 1.30560 + 1.30560i 0.0695885 + 0.0695885i
\(353\) 1.42983 0.0761022 0.0380511 0.999276i \(-0.487885\pi\)
0.0380511 + 0.999276i \(0.487885\pi\)
\(354\) 0 0
\(355\) 9.08131i 0.481986i
\(356\) −17.6188 −0.933794
\(357\) 0 0
\(358\) 5.48452 0.289866
\(359\) 1.53180i 0.0808452i −0.999183 0.0404226i \(-0.987130\pi\)
0.999183 0.0404226i \(-0.0128704\pi\)
\(360\) 0 0
\(361\) −6.09541 −0.320811
\(362\) 5.75711 + 5.75711i 0.302587 + 0.302587i
\(363\) 0 0
\(364\) 4.03980 4.03980i 0.211743 0.211743i
\(365\) 32.1881i 1.68480i
\(366\) 0 0
\(367\) −16.7992 + 16.7992i −0.876914 + 0.876914i −0.993214 0.116300i \(-0.962896\pi\)
0.116300 + 0.993214i \(0.462896\pi\)
\(368\) −4.58060 + 4.58060i −0.238780 + 0.238780i
\(369\) 0 0
\(370\) −5.40917 −0.281209
\(371\) 9.17659 + 9.17659i 0.476425 + 0.476425i
\(372\) 0 0
\(373\) 28.2473 1.46259 0.731295 0.682061i \(-0.238916\pi\)
0.731295 + 0.682061i \(0.238916\pi\)
\(374\) −7.08546 + 2.78424i −0.366381 + 0.143970i
\(375\) 0 0
\(376\) 4.87629i 0.251475i
\(377\) −38.8915 38.8915i −2.00301 2.00301i
\(378\) 0 0
\(379\) −11.1432 11.1432i −0.572387 0.572387i 0.360408 0.932795i \(-0.382638\pi\)
−0.932795 + 0.360408i \(0.882638\pi\)
\(380\) 11.5500 11.5500i 0.592501 0.592501i
\(381\) 0 0
\(382\) 24.2852i 1.24254i
\(383\) 32.2696i 1.64890i −0.565935 0.824450i \(-0.691485\pi\)
0.565935 0.824450i \(-0.308515\pi\)
\(384\) 0 0
\(385\) 4.25704 4.25704i 0.216959 0.216959i
\(386\) −11.3040 11.3040i −0.575357 0.575357i
\(387\) 0 0
\(388\) −3.89882 3.89882i −0.197933 0.197933i
\(389\) 35.3387i 1.79174i −0.444314 0.895871i \(-0.646552\pi\)
0.444314 0.895871i \(-0.353448\pi\)
\(390\) 0 0
\(391\) −9.76834 24.8589i −0.494006 1.25717i
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) 1.29953 + 1.29953i 0.0654692 + 0.0654692i
\(395\) −26.9429 −1.35564
\(396\) 0 0
\(397\) 8.58575 8.58575i 0.430907 0.430907i −0.458030 0.888937i \(-0.651445\pi\)
0.888937 + 0.458030i \(0.151445\pi\)
\(398\) −6.09112 + 6.09112i −0.305320 + 0.305320i
\(399\) 0 0
\(400\) 5.63155i 0.281578i
\(401\) −0.915055 + 0.915055i −0.0456956 + 0.0456956i −0.729585 0.683890i \(-0.760287\pi\)
0.683890 + 0.729585i \(0.260287\pi\)
\(402\) 0 0
\(403\) −4.36942 4.36942i −0.217656 0.217656i
\(404\) 13.6813 0.680669
\(405\) 0 0
\(406\) 9.62707i 0.477783i
\(407\) 3.06306 0.151830
\(408\) 0 0
\(409\) −6.73985 −0.333264 −0.166632 0.986019i \(-0.553289\pi\)
−0.166632 + 0.986019i \(0.553289\pi\)
\(410\) 37.7739i 1.86552i
\(411\) 0 0
\(412\) −0.545951 −0.0268971
\(413\) −7.77677 7.77677i −0.382670 0.382670i
\(414\) 0 0
\(415\) −31.2333 + 31.2333i −1.53318 + 1.53318i
\(416\) 5.71315i 0.280110i
\(417\) 0 0
\(418\) −6.54043 + 6.54043i −0.319903 + 0.319903i
\(419\) 15.2800 15.2800i 0.746478 0.746478i −0.227338 0.973816i \(-0.573002\pi\)
0.973816 + 0.227338i \(0.0730023\pi\)
\(420\) 0 0
\(421\) −23.1022 −1.12593 −0.562966 0.826480i \(-0.690340\pi\)
−0.562966 + 0.826480i \(0.690340\pi\)
\(422\) 11.4696 + 11.4696i 0.558329 + 0.558329i
\(423\) 0 0
\(424\) 12.9777 0.630251
\(425\) −21.2860 9.27643i −1.03252 0.449973i
\(426\) 0 0
\(427\) 8.17058i 0.395402i
\(428\) 2.70541 + 2.70541i 0.130771 + 0.130771i
\(429\) 0 0
\(430\) −14.9719 14.9719i −0.722009 0.722009i
\(431\) 8.55830 8.55830i 0.412239 0.412239i −0.470279 0.882518i \(-0.655847\pi\)
0.882518 + 0.470279i \(0.155847\pi\)
\(432\) 0 0
\(433\) 9.88742i 0.475159i 0.971368 + 0.237579i \(0.0763540\pi\)
−0.971368 + 0.237579i \(0.923646\pi\)
\(434\) 1.08159i 0.0519181i
\(435\) 0 0
\(436\) −2.89425 + 2.89425i −0.138609 + 0.138609i
\(437\) −22.9467 22.9467i −1.09769 1.09769i
\(438\) 0 0
\(439\) 4.48946 + 4.48946i 0.214270 + 0.214270i 0.806079 0.591808i \(-0.201586\pi\)
−0.591808 + 0.806079i \(0.701586\pi\)
\(440\) 6.02036i 0.287009i
\(441\) 0 0
\(442\) 21.5944 + 9.41083i 1.02714 + 0.447627i
\(443\) 6.90922 0.328267 0.164134 0.986438i \(-0.447517\pi\)
0.164134 + 0.986438i \(0.447517\pi\)
\(444\) 0 0
\(445\) 40.6218 + 40.6218i 1.92566 + 1.92566i
\(446\) 14.2184 0.673260
\(447\) 0 0
\(448\) 0.707107 0.707107i 0.0334077 0.0334077i
\(449\) 22.2387 22.2387i 1.04951 1.04951i 0.0508021 0.998709i \(-0.483822\pi\)
0.998709 0.0508021i \(-0.0161778\pi\)
\(450\) 0 0
\(451\) 21.3904i 1.00723i
\(452\) 2.18078 2.18078i 0.102575 0.102575i
\(453\) 0 0
\(454\) −12.4143 12.4143i −0.582633 0.582633i
\(455\) −18.6283 −0.873309
\(456\) 0 0
\(457\) 39.8882i 1.86589i 0.360018 + 0.932945i \(0.382771\pi\)
−0.360018 + 0.932945i \(0.617229\pi\)
\(458\) 7.48179 0.349601
\(459\) 0 0
\(460\) 21.1220 0.984820
\(461\) 6.78516i 0.316016i 0.987438 + 0.158008i \(0.0505073\pi\)
−0.987438 + 0.158008i \(0.949493\pi\)
\(462\) 0 0
\(463\) −27.7289 −1.28867 −0.644335 0.764743i \(-0.722866\pi\)
−0.644335 + 0.764743i \(0.722866\pi\)
\(464\) −6.80737 6.80737i −0.316024 0.316024i
\(465\) 0 0
\(466\) −12.7751 + 12.7751i −0.591796 + 0.591796i
\(467\) 2.92533i 0.135368i 0.997707 + 0.0676841i \(0.0215610\pi\)
−0.997707 + 0.0676841i \(0.978439\pi\)
\(468\) 0 0
\(469\) 7.20294 7.20294i 0.332601 0.332601i
\(470\) 11.2427 11.2427i 0.518589 0.518589i
\(471\) 0 0
\(472\) −10.9980 −0.506225
\(473\) 8.47817 + 8.47817i 0.389827 + 0.389827i
\(474\) 0 0
\(475\) −28.2114 −1.29443
\(476\) 1.50794 + 3.83746i 0.0691162 + 0.175890i
\(477\) 0 0
\(478\) 24.8996i 1.13888i
\(479\) 16.9751 + 16.9751i 0.775613 + 0.775613i 0.979082 0.203468i \(-0.0652214\pi\)
−0.203468 + 0.979082i \(0.565221\pi\)
\(480\) 0 0
\(481\) −6.70181 6.70181i −0.305576 0.305576i
\(482\) −7.66021 + 7.66021i −0.348913 + 0.348913i
\(483\) 0 0
\(484\) 7.59083i 0.345038i
\(485\) 17.9782i 0.816350i
\(486\) 0 0
\(487\) 7.39788 7.39788i 0.335230 0.335230i −0.519339 0.854569i \(-0.673822\pi\)
0.854569 + 0.519339i \(0.173822\pi\)
\(488\) 5.77747 + 5.77747i 0.261534 + 0.261534i
\(489\) 0 0
\(490\) −2.30560 2.30560i −0.104156 0.104156i
\(491\) 17.3434i 0.782699i 0.920242 + 0.391349i \(0.127992\pi\)
−0.920242 + 0.391349i \(0.872008\pi\)
\(492\) 0 0
\(493\) 36.9435 14.5170i 1.66385 0.653814i
\(494\) 28.6202 1.28768
\(495\) 0 0
\(496\) −0.764801 0.764801i −0.0343406 0.0343406i
\(497\) 2.78516 0.124932
\(498\) 0 0
\(499\) 6.44426 6.44426i 0.288485 0.288485i −0.547996 0.836481i \(-0.684609\pi\)
0.836481 + 0.547996i \(0.184609\pi\)
\(500\) 1.45611 1.45611i 0.0651191 0.0651191i
\(501\) 0 0
\(502\) 8.75005i 0.390534i
\(503\) −25.7142 + 25.7142i −1.14654 + 1.14654i −0.159309 + 0.987229i \(0.550927\pi\)
−0.987229 + 0.159309i \(0.949073\pi\)
\(504\) 0 0
\(505\) −31.5435 31.5435i −1.40367 1.40367i
\(506\) −11.9608 −0.531724
\(507\) 0 0
\(508\) 3.77239i 0.167373i
\(509\) 12.1989 0.540709 0.270354 0.962761i \(-0.412859\pi\)
0.270354 + 0.962761i \(0.412859\pi\)
\(510\) 0 0
\(511\) −9.87180 −0.436703
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 22.9937 1.01421
\(515\) 1.25874 + 1.25874i 0.0554668 + 0.0554668i
\(516\) 0 0
\(517\) −6.36646 + 6.36646i −0.279997 + 0.279997i
\(518\) 1.65894i 0.0728899i
\(519\) 0 0
\(520\) −13.1722 + 13.1722i −0.577640 + 0.577640i
\(521\) −1.56576 + 1.56576i −0.0685972 + 0.0685972i −0.740573 0.671976i \(-0.765446\pi\)
0.671976 + 0.740573i \(0.265446\pi\)
\(522\) 0 0
\(523\) −30.1951 −1.32034 −0.660169 0.751117i \(-0.729515\pi\)
−0.660169 + 0.751117i \(0.729515\pi\)
\(524\) −7.76100 7.76100i −0.339041 0.339041i
\(525\) 0 0
\(526\) −7.87376 −0.343312
\(527\) 4.15057 1.63097i 0.180802 0.0710463i
\(528\) 0 0
\(529\) 18.9638i 0.824513i
\(530\) −29.9212 29.9212i −1.29970 1.29970i
\(531\) 0 0
\(532\) 3.54227 + 3.54227i 0.153577 + 0.153577i
\(533\) −46.8009 + 46.8009i −2.02717 + 2.02717i
\(534\) 0 0
\(535\) 12.4752i 0.539349i
\(536\) 10.1865i 0.439990i
\(537\) 0 0
\(538\) 9.05635 9.05635i 0.390447 0.390447i
\(539\) 1.30560 + 1.30560i 0.0562360 + 0.0562360i
\(540\) 0 0
\(541\) −1.33483 1.33483i −0.0573889 0.0573889i 0.677830 0.735219i \(-0.262921\pi\)
−0.735219 + 0.677830i \(0.762921\pi\)
\(542\) 25.4839i 1.09463i
\(543\) 0 0
\(544\) 3.77977 + 1.64722i 0.162056 + 0.0706241i
\(545\) 13.3460 0.571678
\(546\) 0 0
\(547\) 17.4935 + 17.4935i 0.747969 + 0.747969i 0.974097 0.226129i \(-0.0726070\pi\)
−0.226129 + 0.974097i \(0.572607\pi\)
\(548\) −8.64712 −0.369387
\(549\) 0 0
\(550\) −7.35254 + 7.35254i −0.313513 + 0.313513i
\(551\) 34.1017 34.1017i 1.45278 1.45278i
\(552\) 0 0
\(553\) 8.26315i 0.351385i
\(554\) −12.2501 + 12.2501i −0.520456 + 0.520456i
\(555\) 0 0
\(556\) −2.08193 2.08193i −0.0882934 0.0882934i
\(557\) 4.50376 0.190831 0.0954153 0.995438i \(-0.469582\pi\)
0.0954153 + 0.995438i \(0.469582\pi\)
\(558\) 0 0
\(559\) 37.0995i 1.56914i
\(560\) −3.26061 −0.137786
\(561\) 0 0
\(562\) −15.2279 −0.642351
\(563\) 3.34929i 0.141156i −0.997506 0.0705779i \(-0.977516\pi\)
0.997506 0.0705779i \(-0.0224844\pi\)
\(564\) 0 0
\(565\) −10.0560 −0.423060
\(566\) −8.18153 8.18153i −0.343895 0.343895i
\(567\) 0 0
\(568\) 1.96941 1.96941i 0.0826344 0.0826344i
\(569\) 12.5973i 0.528106i −0.964508 0.264053i \(-0.914941\pi\)
0.964508 0.264053i \(-0.0850593\pi\)
\(570\) 0 0
\(571\) −11.6715 + 11.6715i −0.488439 + 0.488439i −0.907813 0.419375i \(-0.862249\pi\)
0.419375 + 0.907813i \(0.362249\pi\)
\(572\) 7.45906 7.45906i 0.311879 0.311879i
\(573\) 0 0
\(574\) −11.5849 −0.483546
\(575\) −25.7959 25.7959i −1.07576 1.07576i
\(576\) 0 0
\(577\) −12.5655 −0.523107 −0.261554 0.965189i \(-0.584235\pi\)
−0.261554 + 0.965189i \(0.584235\pi\)
\(578\) −12.4522 + 11.5733i −0.517945 + 0.481386i
\(579\) 0 0
\(580\) 31.3901i 1.30340i
\(581\) −9.57898 9.57898i −0.397403 0.397403i
\(582\) 0 0
\(583\) 16.9436 + 16.9436i 0.701732 + 0.701732i
\(584\) −6.98042 + 6.98042i −0.288852 + 0.288852i
\(585\) 0 0
\(586\) 11.4033i 0.471065i
\(587\) 29.3030i 1.20946i 0.796429 + 0.604732i \(0.206720\pi\)
−0.796429 + 0.604732i \(0.793280\pi\)
\(588\) 0 0
\(589\) 3.83129 3.83129i 0.157866 0.157866i
\(590\) 25.3570 + 25.3570i 1.04393 + 1.04393i
\(591\) 0 0
\(592\) −1.17305 1.17305i −0.0482121 0.0482121i
\(593\) 39.8483i 1.63637i 0.574953 + 0.818187i \(0.305020\pi\)
−0.574953 + 0.818187i \(0.694980\pi\)
\(594\) 0 0
\(595\) 5.37095 12.3243i 0.220187 0.505249i
\(596\) −6.48200 −0.265513
\(597\) 0 0
\(598\) 26.1696 + 26.1696i 1.07016 + 1.07016i
\(599\) 14.8083 0.605049 0.302525 0.953142i \(-0.402171\pi\)
0.302525 + 0.953142i \(0.402171\pi\)
\(600\) 0 0
\(601\) 2.68294 2.68294i 0.109439 0.109439i −0.650267 0.759706i \(-0.725343\pi\)
0.759706 + 0.650267i \(0.225343\pi\)
\(602\) 4.59175 4.59175i 0.187146 0.187146i
\(603\) 0 0
\(604\) 13.0424i 0.530689i
\(605\) −17.5014 + 17.5014i −0.711533 + 0.711533i
\(606\) 0 0
\(607\) −12.8746 12.8746i −0.522566 0.522566i 0.395780 0.918346i \(-0.370474\pi\)
−0.918346 + 0.395780i \(0.870474\pi\)
\(608\) 5.00953 0.203163
\(609\) 0 0
\(610\) 26.6410i 1.07866i
\(611\) 27.8589 1.12705
\(612\) 0 0
\(613\) 28.5428 1.15283 0.576416 0.817156i \(-0.304451\pi\)
0.576416 + 0.817156i \(0.304451\pi\)
\(614\) 12.3314i 0.497653i
\(615\) 0 0
\(616\) 1.84639 0.0743933
\(617\) 14.8324 + 14.8324i 0.597131 + 0.597131i 0.939548 0.342417i \(-0.111246\pi\)
−0.342417 + 0.939548i \(0.611246\pi\)
\(618\) 0 0
\(619\) 9.95097 9.95097i 0.399963 0.399963i −0.478257 0.878220i \(-0.658731\pi\)
0.878220 + 0.478257i \(0.158731\pi\)
\(620\) 3.52665i 0.141633i
\(621\) 0 0
\(622\) −23.3587 + 23.3587i −0.936599 + 0.936599i
\(623\) −12.4584 + 12.4584i −0.499134 + 0.499134i
\(624\) 0 0
\(625\) 21.4434 0.857735
\(626\) 10.0953 + 10.0953i 0.403490 + 0.403490i
\(627\) 0 0
\(628\) −16.4243 −0.655401
\(629\) 6.36614 2.50159i 0.253835 0.0997447i
\(630\) 0 0
\(631\) 3.61242i 0.143808i −0.997412 0.0719041i \(-0.977092\pi\)
0.997412 0.0719041i \(-0.0229075\pi\)
\(632\) −5.84293 5.84293i −0.232419 0.232419i
\(633\) 0 0
\(634\) 6.57821 + 6.57821i 0.261254 + 0.261254i
\(635\) −8.69762 + 8.69762i −0.345154 + 0.345154i
\(636\) 0 0
\(637\) 5.71315i 0.226363i
\(638\) 17.7754i 0.703733i
\(639\) 0 0
\(640\) −2.30560 + 2.30560i −0.0911367 + 0.0911367i
\(641\) 18.7362 + 18.7362i 0.740036 + 0.740036i 0.972585 0.232549i \(-0.0747064\pi\)
−0.232549 + 0.972585i \(0.574706\pi\)
\(642\) 0 0
\(643\) −19.8197 19.8197i −0.781614 0.781614i 0.198489 0.980103i \(-0.436397\pi\)
−0.980103 + 0.198489i \(0.936397\pi\)
\(644\) 6.47795i 0.255267i
\(645\) 0 0
\(646\) −8.25182 + 18.9349i −0.324663 + 0.744983i
\(647\) 37.8110 1.48650 0.743252 0.669012i \(-0.233282\pi\)
0.743252 + 0.669012i \(0.233282\pi\)
\(648\) 0 0
\(649\) −14.3590 14.3590i −0.563639 0.563639i
\(650\) 32.1739 1.26196
\(651\) 0 0
\(652\) −4.40677 + 4.40677i −0.172583 + 0.172583i
\(653\) 0.561081 0.561081i 0.0219568 0.0219568i −0.696043 0.718000i \(-0.745058\pi\)
0.718000 + 0.696043i \(0.245058\pi\)
\(654\) 0 0
\(655\) 35.7875i 1.39833i
\(656\) −8.19179 + 8.19179i −0.319836 + 0.319836i
\(657\) 0 0
\(658\) 3.44805 + 3.44805i 0.134419 + 0.134419i
\(659\) −22.7898 −0.887766 −0.443883 0.896085i \(-0.646399\pi\)
−0.443883 + 0.896085i \(0.646399\pi\)
\(660\) 0 0
\(661\) 7.14793i 0.278022i 0.990291 + 0.139011i \(0.0443924\pi\)
−0.990291 + 0.139011i \(0.955608\pi\)
\(662\) 7.63186 0.296621
\(663\) 0 0
\(664\) −13.5467 −0.525715
\(665\) 16.3341i 0.633410i
\(666\) 0 0
\(667\) 62.3636 2.41473
\(668\) 11.3979 + 11.3979i 0.440997 + 0.440997i
\(669\) 0 0
\(670\) −23.4860 + 23.4860i −0.907342 + 0.907342i
\(671\) 15.0861i 0.582393i
\(672\) 0 0
\(673\) 12.8708 12.8708i 0.496133 0.496133i −0.414099 0.910232i \(-0.635903\pi\)
0.910232 + 0.414099i \(0.135903\pi\)
\(674\) 2.31022 2.31022i 0.0889862 0.0889862i
\(675\) 0 0
\(676\) −19.6400 −0.755386
\(677\) −4.79047 4.79047i −0.184113 0.184113i 0.609033 0.793145i \(-0.291558\pi\)
−0.793145 + 0.609033i \(0.791558\pi\)
\(678\) 0 0
\(679\) −5.51377 −0.211599
\(680\) −4.91679 12.5125i −0.188550 0.479831i
\(681\) 0 0
\(682\) 1.99704i 0.0764707i
\(683\) 2.41071 + 2.41071i 0.0922431 + 0.0922431i 0.751723 0.659479i \(-0.229223\pi\)
−0.659479 + 0.751723i \(0.729223\pi\)
\(684\) 0 0
\(685\) 19.9368 + 19.9368i 0.761745 + 0.761745i
\(686\) 0.707107 0.707107i 0.0269975 0.0269975i
\(687\) 0 0
\(688\) 6.49371i 0.247571i
\(689\) 74.1432i 2.82463i
\(690\) 0 0
\(691\) 2.25589 2.25589i 0.0858183 0.0858183i −0.662895 0.748713i \(-0.730672\pi\)
0.748713 + 0.662895i \(0.230672\pi\)
\(692\) −10.4886 10.4886i −0.398718 0.398718i
\(693\) 0 0
\(694\) −5.30560 5.30560i −0.201398 0.201398i
\(695\) 9.60017i 0.364155i
\(696\) 0 0
\(697\) −17.4694 44.4568i −0.661700 1.68392i
\(698\) −21.0965 −0.798515
\(699\) 0 0
\(700\) 3.98211 + 3.98211i 0.150510 + 0.150510i
\(701\) −19.8302 −0.748978 −0.374489 0.927231i \(-0.622182\pi\)
−0.374489 + 0.927231i \(0.622182\pi\)
\(702\) 0 0
\(703\) 5.87644 5.87644i 0.221634 0.221634i
\(704\) 1.30560 1.30560i 0.0492065 0.0492065i
\(705\) 0 0
\(706\) 1.42983i 0.0538124i
\(707\) 9.67412 9.67412i 0.363833 0.363833i
\(708\) 0 0
\(709\) −15.3033 15.3033i −0.574727 0.574727i 0.358718 0.933446i \(-0.383214\pi\)
−0.933446 + 0.358718i \(0.883214\pi\)
\(710\) −9.08131 −0.340816
\(711\) 0 0
\(712\) 17.6188i 0.660292i
\(713\) 7.00649 0.262395
\(714\) 0 0
\(715\) −34.3952 −1.28631
\(716\) 5.48452i 0.204966i
\(717\) 0 0
\(718\) −1.53180 −0.0571662
\(719\) 12.6098 + 12.6098i 0.470266 + 0.470266i 0.902001 0.431735i \(-0.142098\pi\)
−0.431735 + 0.902001i \(0.642098\pi\)
\(720\) 0 0
\(721\) −0.386046 + 0.386046i −0.0143771 + 0.0143771i
\(722\) 6.09541i 0.226848i
\(723\) 0 0
\(724\) 5.75711 5.75711i 0.213961 0.213961i
\(725\) 38.3360 38.3360i 1.42376 1.42376i
\(726\) 0 0
\(727\) −32.4589 −1.20383 −0.601916 0.798559i \(-0.705596\pi\)
−0.601916 + 0.798559i \(0.705596\pi\)
\(728\) −4.03980 4.03980i −0.149725 0.149725i
\(729\) 0 0
\(730\) 32.1881 1.19133
\(731\) 24.5447 + 10.6966i 0.907820 + 0.395628i
\(732\) 0 0
\(733\) 50.1810i 1.85348i 0.375708 + 0.926738i \(0.377400\pi\)
−0.375708 + 0.926738i \(0.622600\pi\)
\(734\) 16.7992 + 16.7992i 0.620072 + 0.620072i
\(735\) 0 0
\(736\) 4.58060 + 4.58060i 0.168843 + 0.168843i
\(737\) 13.2995 13.2995i 0.489892 0.489892i
\(738\) 0 0
\(739\) 20.8199i 0.765872i −0.923775 0.382936i \(-0.874913\pi\)
0.923775 0.382936i \(-0.125087\pi\)
\(740\) 5.40917i 0.198845i
\(741\) 0 0
\(742\) 9.17659 9.17659i 0.336883 0.336883i
\(743\) −16.4365 16.4365i −0.602996 0.602996i 0.338110 0.941106i \(-0.390212\pi\)
−0.941106 + 0.338110i \(0.890212\pi\)
\(744\) 0 0
\(745\) 14.9449 + 14.9449i 0.547538 + 0.547538i
\(746\) 28.2473i 1.03421i
\(747\) 0 0
\(748\) 2.78424 + 7.08546i 0.101802 + 0.259070i
\(749\) 3.82603 0.139800
\(750\) 0 0
\(751\) 15.5986 + 15.5986i 0.569202 + 0.569202i 0.931905 0.362703i \(-0.118146\pi\)
−0.362703 + 0.931905i \(0.618146\pi\)
\(752\) 4.87629 0.177820
\(753\) 0 0
\(754\) −38.8915 + 38.8915i −1.41634 + 1.41634i
\(755\) −30.0706 + 30.0706i −1.09438 + 1.09438i
\(756\) 0 0
\(757\) 14.6134i 0.531133i −0.964093 0.265566i \(-0.914441\pi\)
0.964093 0.265566i \(-0.0855589\pi\)
\(758\) −11.1432 + 11.1432i −0.404739 + 0.404739i
\(759\) 0 0
\(760\) −11.5500 11.5500i −0.418961 0.418961i
\(761\) 22.4035 0.812125 0.406063 0.913845i \(-0.366901\pi\)
0.406063 + 0.913845i \(0.366901\pi\)
\(762\) 0 0
\(763\) 4.09309i 0.148180i
\(764\) −24.2852 −0.878607
\(765\) 0 0
\(766\) −32.2696 −1.16595
\(767\) 62.8333i 2.26878i
\(768\) 0 0
\(769\) 4.26500 0.153800 0.0769000 0.997039i \(-0.475498\pi\)
0.0769000 + 0.997039i \(0.475498\pi\)
\(770\) −4.25704 4.25704i −0.153413 0.153413i
\(771\) 0 0
\(772\) −11.3040 + 11.3040i −0.406839 + 0.406839i
\(773\) 29.5875i 1.06419i 0.846685 + 0.532094i \(0.178595\pi\)
−0.846685 + 0.532094i \(0.821405\pi\)
\(774\) 0 0
\(775\) 4.30702 4.30702i 0.154713 0.154713i
\(776\) −3.89882 + 3.89882i −0.139960 + 0.139960i
\(777\) 0 0
\(778\) −35.3387 −1.26695
\(779\) −41.0371 41.0371i −1.47031 1.47031i
\(780\) 0 0
\(781\) 5.14250 0.184013
\(782\) −24.8589 + 9.76834i −0.888952 + 0.349315i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) 37.8678 + 37.8678i 1.35156 + 1.35156i
\(786\) 0 0
\(787\) 22.9911 + 22.9911i 0.819544 + 0.819544i 0.986042 0.166497i \(-0.0532458\pi\)
−0.166497 + 0.986042i \(0.553246\pi\)
\(788\) 1.29953 1.29953i 0.0462937 0.0462937i
\(789\) 0 0
\(790\) 26.9429i 0.958585i
\(791\) 3.08409i 0.109658i
\(792\) 0 0
\(793\) 33.0075 33.0075i 1.17213 1.17213i
\(794\) −8.58575 8.58575i −0.304697 0.304697i
\(795\) 0 0
\(796\) 6.09112 + 6.09112i 0.215894 + 0.215894i
\(797\) 49.3210i 1.74704i −0.486788 0.873520i \(-0.661832\pi\)
0.486788 0.873520i \(-0.338168\pi\)
\(798\) 0 0
\(799\) −8.03233 + 18.4312i −0.284163 + 0.652050i
\(800\) 5.63155 0.199105
\(801\) 0 0
\(802\) 0.915055 + 0.915055i 0.0323117 + 0.0323117i
\(803\) −18.2272 −0.643225
\(804\) 0 0
\(805\) 14.9355 14.9355i 0.526408 0.526408i
\(806\) −4.36942 + 4.36942i −0.153906 + 0.153906i
\(807\) 0 0
\(808\) 13.6813i 0.481305i
\(809\) −4.65408 + 4.65408i −0.163629 + 0.163629i −0.784172 0.620543i \(-0.786912\pi\)
0.620543 + 0.784172i \(0.286912\pi\)
\(810\) 0 0
\(811\) −15.8229 15.8229i −0.555616 0.555616i 0.372440 0.928056i \(-0.378521\pi\)
−0.928056 + 0.372440i \(0.878521\pi\)
\(812\) −9.62707 −0.337844
\(813\) 0 0
\(814\) 3.06306i 0.107360i
\(815\) 20.3205 0.711795
\(816\) 0 0
\(817\) 32.5305 1.13810
\(818\) 6.73985i 0.235653i
\(819\) 0 0
\(820\) 37.7739 1.31912
\(821\) 1.50011 + 1.50011i 0.0523541 + 0.0523541i 0.732799 0.680445i \(-0.238213\pi\)
−0.680445 + 0.732799i \(0.738213\pi\)
\(822\) 0 0
\(823\) 14.8960 14.8960i 0.519243 0.519243i −0.398099 0.917342i \(-0.630330\pi\)
0.917342 + 0.398099i \(0.130330\pi\)
\(824\) 0.545951i 0.0190191i
\(825\) 0 0
\(826\) −7.77677 + 7.77677i −0.270588 + 0.270588i
\(827\) 19.1898 19.1898i 0.667294 0.667294i −0.289795 0.957089i \(-0.593587\pi\)
0.957089 + 0.289795i \(0.0935871\pi\)
\(828\) 0 0
\(829\) −22.5520 −0.783265 −0.391632 0.920122i \(-0.628089\pi\)
−0.391632 + 0.920122i \(0.628089\pi\)
\(830\) 31.2333 + 31.2333i 1.08412 + 1.08412i
\(831\) 0 0
\(832\) −5.71315 −0.198068
\(833\) 3.77977 + 1.64722i 0.130961 + 0.0570729i
\(834\) 0 0
\(835\) 52.5578i 1.81884i
\(836\) 6.54043 + 6.54043i 0.226205 + 0.226205i
\(837\) 0 0
\(838\) −15.2800 15.2800i −0.527839 0.527839i
\(839\) 12.7959 12.7959i 0.441762 0.441762i −0.450842 0.892604i \(-0.648876\pi\)
0.892604 + 0.450842i \(0.148876\pi\)
\(840\) 0 0
\(841\) 63.6805i 2.19588i
\(842\) 23.1022i 0.796155i
\(843\) 0 0
\(844\) 11.4696 11.4696i 0.394798 0.394798i
\(845\) 45.2820 + 45.2820i 1.55775 + 1.55775i
\(846\) 0 0
\(847\) −5.36753 5.36753i −0.184431 0.184431i
\(848\) 12.9777i 0.445655i
\(849\) 0 0
\(850\) −9.27643 + 21.2860i −0.318179 + 0.730103i
\(851\) 10.7466 0.368387
\(852\) 0 0
\(853\) −7.76900 7.76900i −0.266005 0.266005i 0.561483 0.827488i \(-0.310231\pi\)
−0.827488 + 0.561483i \(0.810231\pi\)
\(854\) 8.17058 0.279592
\(855\) 0 0
\(856\) 2.70541 2.70541i 0.0924691 0.0924691i
\(857\) 14.3093 14.3093i 0.488795 0.488795i −0.419131 0.907926i \(-0.637665\pi\)
0.907926 + 0.419131i \(0.137665\pi\)
\(858\) 0 0
\(859\) 57.9569i 1.97746i −0.149696 0.988732i \(-0.547829\pi\)
0.149696 0.988732i \(-0.452171\pi\)
\(860\) −14.9719 + 14.9719i −0.510537 + 0.510537i
\(861\) 0 0
\(862\) −8.55830 8.55830i −0.291497 0.291497i
\(863\) −14.7330 −0.501518 −0.250759 0.968050i \(-0.580680\pi\)
−0.250759 + 0.968050i \(0.580680\pi\)
\(864\) 0 0
\(865\) 48.3651i 1.64446i
\(866\) 9.88742 0.335988
\(867\) 0 0
\(868\) −1.08159 −0.0367116
\(869\) 15.2570i 0.517559i
\(870\) 0 0
\(871\) −58.1970 −1.97193
\(872\) 2.89425 + 2.89425i 0.0980117 + 0.0980117i
\(873\) 0 0
\(874\) −22.9467 + 22.9467i −0.776182 + 0.776182i
\(875\) 2.05925i 0.0696153i
\(876\) 0 0
\(877\) 20.2500 20.2500i 0.683794 0.683794i −0.277059 0.960853i \(-0.589360\pi\)
0.960853 + 0.277059i \(0.0893597\pi\)
\(878\) 4.48946 4.48946i 0.151512 0.151512i
\(879\) 0 0
\(880\) −6.02036 −0.202946
\(881\) −18.4800 18.4800i −0.622607 0.622607i 0.323590 0.946197i \(-0.395110\pi\)
−0.946197 + 0.323590i \(0.895110\pi\)
\(882\) 0 0
\(883\) 31.5159 1.06060 0.530298 0.847811i \(-0.322080\pi\)
0.530298 + 0.847811i \(0.322080\pi\)
\(884\) 9.41083 21.5944i 0.316520 0.726297i
\(885\) 0 0
\(886\) 6.90922i 0.232120i
\(887\) −13.1259 13.1259i −0.440723 0.440723i 0.451532 0.892255i \(-0.350878\pi\)
−0.892255 + 0.451532i \(0.850878\pi\)
\(888\) 0 0
\(889\) −2.66748 2.66748i −0.0894646 0.0894646i
\(890\) 40.6218 40.6218i 1.36165 1.36165i
\(891\) 0 0
\(892\) 14.2184i 0.476066i
\(893\) 24.4279i 0.817449i
\(894\) 0 0
\(895\) −12.6451 + 12.6451i −0.422679 + 0.422679i
\(896\) −0.707107 0.707107i −0.0236228 0.0236228i
\(897\) 0 0
\(898\) −22.2387 22.2387i −0.742116 0.742116i
\(899\) 10.4126i 0.347278i
\(900\) 0 0
\(901\) 49.0525 + 21.3771i 1.63418 + 0.712174i
\(902\) −21.3904 −0.712221
\(903\) 0 0
\(904\) −2.18078 2.18078i −0.0725318 0.0725318i
\(905\) −26.5472 −0.882458
\(906\) 0 0
\(907\) 27.2074 27.2074i 0.903408 0.903408i −0.0923216 0.995729i \(-0.529429\pi\)
0.995729 + 0.0923216i \(0.0294288\pi\)
\(908\) −12.4143 + 12.4143i −0.411984 + 0.411984i
\(909\) 0 0
\(910\) 18.6283i 0.617523i
\(911\) −1.27720 + 1.27720i −0.0423156 + 0.0423156i −0.727948 0.685632i \(-0.759526\pi\)
0.685632 + 0.727948i \(0.259526\pi\)
\(912\) 0 0
\(913\) −17.6866 17.6866i −0.585340 0.585340i
\(914\) 39.8882 1.31938
\(915\) 0 0
\(916\) 7.48179i 0.247205i
\(917\) −10.9757 −0.362450
\(918\) 0 0
\(919\) 9.80140 0.323318 0.161659 0.986847i \(-0.448315\pi\)
0.161659 + 0.986847i \(0.448315\pi\)
\(920\) 21.1220i 0.696373i
\(921\) 0 0
\(922\) 6.78516 0.223457
\(923\) −11.2515 11.2515i −0.370348 0.370348i
\(924\) 0 0
\(925\) 6.60610 6.60610i 0.217207 0.217207i
\(926\) 27.7289i 0.911227i
\(927\) 0 0
\(928\) −6.80737 + 6.80737i −0.223463 + 0.223463i
\(929\) −11.0678 + 11.0678i −0.363124 + 0.363124i −0.864962 0.501838i \(-0.832658\pi\)
0.501838 + 0.864962i \(0.332658\pi\)
\(930\) 0 0
\(931\) 5.00953 0.164181
\(932\) 12.7751 + 12.7751i 0.418463 + 0.418463i
\(933\) 0 0
\(934\) 2.92533 0.0957198
\(935\) 9.91688 22.7556i 0.324317 0.744187i
\(936\) 0 0
\(937\) 48.1706i 1.57366i 0.617167 + 0.786832i \(0.288280\pi\)
−0.617167 + 0.786832i \(0.711720\pi\)
\(938\) −7.20294 7.20294i −0.235184 0.235184i
\(939\) 0 0
\(940\) −11.2427 11.2427i −0.366698 0.366698i
\(941\) −11.7802 + 11.7802i −0.384024 + 0.384024i −0.872549 0.488526i \(-0.837535\pi\)
0.488526 + 0.872549i \(0.337535\pi\)
\(942\) 0 0
\(943\) 75.0467i 2.44386i
\(944\) 10.9980i 0.357955i
\(945\) 0 0
\(946\) 8.47817 8.47817i 0.275649 0.275649i
\(947\) −34.6747 34.6747i −1.12678 1.12678i −0.990698 0.136079i \(-0.956550\pi\)
−0.136079 0.990698i \(-0.543450\pi\)
\(948\) 0 0
\(949\) 39.8801 + 39.8801i 1.29456 + 1.29456i
\(950\) 28.2114i 0.915300i
\(951\) 0 0
\(952\) 3.83746 1.50794i 0.124373 0.0488725i
\(953\) −4.64325 −0.150409 −0.0752047 0.997168i \(-0.523961\pi\)
−0.0752047 + 0.997168i \(0.523961\pi\)
\(954\) 0 0
\(955\) 55.9918 + 55.9918i 1.81185 + 1.81185i
\(956\) −24.8996 −0.805311
\(957\) 0 0
\(958\) 16.9751 16.9751i 0.548441 0.548441i
\(959\) −6.11444 + 6.11444i −0.197446 + 0.197446i
\(960\) 0 0
\(961\) 29.8302i 0.962263i
\(962\) −6.70181 + 6.70181i −0.216075 + 0.216075i
\(963\) 0 0
\(964\) 7.66021 + 7.66021i 0.246719 + 0.246719i
\(965\) 52.1248 1.67796
\(966\) 0 0
\(967\) 6.82813i 0.219578i −0.993955 0.109789i \(-0.964983\pi\)
0.993955 0.109789i \(-0.0350175\pi\)
\(968\) −7.59083 −0.243979
\(969\) 0 0
\(970\) 17.9782 0.577246
\(971\) 31.0144i 0.995301i −0.867378 0.497650i \(-0.834196\pi\)
0.867378 0.497650i \(-0.165804\pi\)
\(972\) 0 0
\(973\) −2.94429 −0.0943896
\(974\) −7.39788 7.39788i −0.237043 0.237043i
\(975\) 0 0
\(976\) 5.77747 5.77747i 0.184932 0.184932i
\(977\) 17.3520i 0.555138i 0.960706 + 0.277569i \(0.0895287\pi\)
−0.960706 + 0.277569i \(0.910471\pi\)
\(978\) 0 0
\(979\) −23.0030 + 23.0030i −0.735180 + 0.735180i
\(980\) −2.30560 + 2.30560i −0.0736496 + 0.0736496i
\(981\) 0 0
\(982\) 17.3434 0.553452
\(983\) −37.3167 37.3167i −1.19022 1.19022i −0.977006 0.213210i \(-0.931608\pi\)
−0.213210 0.977006i \(-0.568392\pi\)
\(984\) 0 0
\(985\) −5.99237 −0.190933
\(986\) −14.5170 36.9435i −0.462316 1.17652i
\(987\) 0 0
\(988\) 28.6202i 0.910529i
\(989\) 29.7451 + 29.7451i 0.945839 + 0.945839i
\(990\) 0 0
\(991\) 3.71089 + 3.71089i 0.117880 + 0.117880i 0.763586 0.645706i \(-0.223437\pi\)
−0.645706 + 0.763586i \(0.723437\pi\)
\(992\) −0.764801 + 0.764801i −0.0242825 + 0.0242825i
\(993\) 0 0
\(994\) 2.78516i 0.0883399i
\(995\) 28.0874i 0.890429i
\(996\) 0 0
\(997\) 5.23392 5.23392i 0.165760 0.165760i −0.619353 0.785113i \(-0.712605\pi\)
0.785113 + 0.619353i \(0.212605\pi\)
\(998\) −6.44426 6.44426i −0.203989 0.203989i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2142.2.p.g.1135.5 12
3.2 odd 2 714.2.m.d.421.4 12
17.4 even 4 inner 2142.2.p.g.1891.5 12
51.38 odd 4 714.2.m.d.463.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
714.2.m.d.421.4 12 3.2 odd 2
714.2.m.d.463.4 yes 12 51.38 odd 4
2142.2.p.g.1135.5 12 1.1 even 1 trivial
2142.2.p.g.1891.5 12 17.4 even 4 inner