Properties

Label 213.2.e.a.196.1
Level $213$
Weight $2$
Character 213.196
Analytic conductor $1.701$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [213,2,Mod(25,213)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("213.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(213, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 213 = 3 \cdot 71 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 213.e (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.70081356305\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 196.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 213.196
Dual form 213.2.e.a.25.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30902 + 0.951057i) q^{2} +(0.809017 + 0.587785i) q^{3} +(0.190983 + 0.587785i) q^{4} +(-0.881966 + 2.71441i) q^{5} +(0.500000 + 1.53884i) q^{6} +(1.30902 + 0.951057i) q^{7} +(0.690983 - 2.12663i) q^{8} +(0.309017 + 0.951057i) q^{9} +(-3.73607 + 2.71441i) q^{10} +(-4.92705 - 3.57971i) q^{11} +(-0.190983 + 0.587785i) q^{12} +(1.80902 - 1.31433i) q^{13} +(0.809017 + 2.48990i) q^{14} +(-2.30902 + 1.67760i) q^{15} +(3.92705 - 2.85317i) q^{16} +(-0.500000 + 1.53884i) q^{18} +(5.73607 + 4.16750i) q^{19} -1.76393 q^{20} +(0.500000 + 1.53884i) q^{21} +(-3.04508 - 9.37181i) q^{22} -3.47214 q^{23} +(1.80902 - 1.31433i) q^{24} +(-2.54508 - 1.84911i) q^{25} +3.61803 q^{26} +(-0.309017 + 0.951057i) q^{27} +(-0.309017 + 0.951057i) q^{28} +(2.88197 - 8.86978i) q^{29} -4.61803 q^{30} +(-6.04508 - 4.39201i) q^{31} +3.38197 q^{32} +(-1.88197 - 5.79210i) q^{33} +(-3.73607 + 2.71441i) q^{35} +(-0.500000 + 0.363271i) q^{36} -2.38197 q^{37} +(3.54508 + 10.9106i) q^{38} +2.23607 q^{39} +(5.16312 + 3.75123i) q^{40} +3.09017 q^{41} +(-0.809017 + 2.48990i) q^{42} +(-0.118034 + 0.363271i) q^{43} +(1.16312 - 3.57971i) q^{44} -2.85410 q^{45} +(-4.54508 - 3.30220i) q^{46} +(-5.42705 + 3.94298i) q^{47} +4.85410 q^{48} +(-1.35410 - 4.16750i) q^{49} +(-1.57295 - 4.84104i) q^{50} +(1.11803 + 0.812299i) q^{52} +(-3.89919 + 12.0005i) q^{53} +(-1.30902 + 0.951057i) q^{54} +(14.0623 - 10.2169i) q^{55} +(2.92705 - 2.12663i) q^{56} +(2.19098 + 6.74315i) q^{57} +(12.2082 - 8.86978i) q^{58} +(1.80902 - 5.56758i) q^{59} +(-1.42705 - 1.03681i) q^{60} +(-5.16312 + 3.75123i) q^{61} +(-3.73607 - 11.4984i) q^{62} +(-0.500000 + 1.53884i) q^{63} +(-3.42705 - 2.48990i) q^{64} +(1.97214 + 6.06961i) q^{65} +(3.04508 - 9.37181i) q^{66} +(-0.472136 - 1.45309i) q^{67} +(-2.80902 - 2.04087i) q^{69} -7.47214 q^{70} +(-1.95492 + 8.19624i) q^{71} +2.23607 q^{72} +(8.35410 + 6.06961i) q^{73} +(-3.11803 - 2.26538i) q^{74} +(-0.972136 - 2.99193i) q^{75} +(-1.35410 + 4.16750i) q^{76} +(-3.04508 - 9.37181i) q^{77} +(2.92705 + 2.12663i) q^{78} +(-0.600813 + 1.84911i) q^{79} +(4.28115 + 13.1760i) q^{80} +(-0.809017 + 0.587785i) q^{81} +(4.04508 + 2.93893i) q^{82} +(-3.69098 + 11.3597i) q^{83} +(-0.809017 + 0.587785i) q^{84} +(-0.500000 + 0.363271i) q^{86} +(7.54508 - 5.48183i) q^{87} +(-11.0172 + 8.00448i) q^{88} +(-0.972136 + 2.99193i) q^{89} +(-3.73607 - 2.71441i) q^{90} +3.61803 q^{91} +(-0.663119 - 2.04087i) q^{92} +(-2.30902 - 7.10642i) q^{93} -10.8541 q^{94} +(-16.3713 + 11.8945i) q^{95} +(2.73607 + 1.98787i) q^{96} -5.94427 q^{97} +(2.19098 - 6.74315i) q^{98} +(1.88197 - 5.79210i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} + q^{3} + 3 q^{4} - 8 q^{5} + 2 q^{6} + 3 q^{7} + 5 q^{8} - q^{9} - 6 q^{10} - 13 q^{11} - 3 q^{12} + 5 q^{13} + q^{14} - 7 q^{15} + 9 q^{16} - 2 q^{18} + 14 q^{19} - 16 q^{20} + 2 q^{21}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/213\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(143\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30902 + 0.951057i 0.925615 + 0.672499i 0.944915 0.327315i \(-0.106144\pi\)
−0.0193004 + 0.999814i \(0.506144\pi\)
\(3\) 0.809017 + 0.587785i 0.467086 + 0.339358i
\(4\) 0.190983 + 0.587785i 0.0954915 + 0.293893i
\(5\) −0.881966 + 2.71441i −0.394427 + 1.21392i 0.534980 + 0.844865i \(0.320319\pi\)
−0.929407 + 0.369057i \(0.879681\pi\)
\(6\) 0.500000 + 1.53884i 0.204124 + 0.628230i
\(7\) 1.30902 + 0.951057i 0.494762 + 0.359466i 0.807013 0.590534i \(-0.201083\pi\)
−0.312251 + 0.950000i \(0.601083\pi\)
\(8\) 0.690983 2.12663i 0.244299 0.751876i
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) −3.73607 + 2.71441i −1.18145 + 0.858373i
\(11\) −4.92705 3.57971i −1.48556 1.07932i −0.975711 0.219061i \(-0.929701\pi\)
−0.509851 0.860263i \(-0.670299\pi\)
\(12\) −0.190983 + 0.587785i −0.0551320 + 0.169679i
\(13\) 1.80902 1.31433i 0.501731 0.364529i −0.307947 0.951404i \(-0.599642\pi\)
0.809678 + 0.586875i \(0.199642\pi\)
\(14\) 0.809017 + 2.48990i 0.216219 + 0.665453i
\(15\) −2.30902 + 1.67760i −0.596186 + 0.433154i
\(16\) 3.92705 2.85317i 0.981763 0.713292i
\(17\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(18\) −0.500000 + 1.53884i −0.117851 + 0.362708i
\(19\) 5.73607 + 4.16750i 1.31594 + 0.956089i 0.999973 + 0.00732062i \(0.00233025\pi\)
0.315971 + 0.948769i \(0.397670\pi\)
\(20\) −1.76393 −0.394427
\(21\) 0.500000 + 1.53884i 0.109109 + 0.335803i
\(22\) −3.04508 9.37181i −0.649214 1.99808i
\(23\) −3.47214 −0.723990 −0.361995 0.932180i \(-0.617904\pi\)
−0.361995 + 0.932180i \(0.617904\pi\)
\(24\) 1.80902 1.31433i 0.369264 0.268286i
\(25\) −2.54508 1.84911i −0.509017 0.369822i
\(26\) 3.61803 0.709555
\(27\) −0.309017 + 0.951057i −0.0594703 + 0.183031i
\(28\) −0.309017 + 0.951057i −0.0583987 + 0.179733i
\(29\) 2.88197 8.86978i 0.535168 1.64708i −0.208119 0.978104i \(-0.566734\pi\)
0.743287 0.668973i \(-0.233266\pi\)
\(30\) −4.61803 −0.843134
\(31\) −6.04508 4.39201i −1.08573 0.788829i −0.107056 0.994253i \(-0.534143\pi\)
−0.978673 + 0.205424i \(0.934143\pi\)
\(32\) 3.38197 0.597853
\(33\) −1.88197 5.79210i −0.327608 1.00827i
\(34\) 0 0
\(35\) −3.73607 + 2.71441i −0.631511 + 0.458819i
\(36\) −0.500000 + 0.363271i −0.0833333 + 0.0605452i
\(37\) −2.38197 −0.391593 −0.195796 0.980645i \(-0.562729\pi\)
−0.195796 + 0.980645i \(0.562729\pi\)
\(38\) 3.54508 + 10.9106i 0.575089 + 1.76994i
\(39\) 2.23607 0.358057
\(40\) 5.16312 + 3.75123i 0.816361 + 0.593121i
\(41\) 3.09017 0.482603 0.241302 0.970450i \(-0.422426\pi\)
0.241302 + 0.970450i \(0.422426\pi\)
\(42\) −0.809017 + 2.48990i −0.124834 + 0.384200i
\(43\) −0.118034 + 0.363271i −0.0180000 + 0.0553983i −0.959653 0.281187i \(-0.909272\pi\)
0.941653 + 0.336585i \(0.109272\pi\)
\(44\) 1.16312 3.57971i 0.175347 0.539662i
\(45\) −2.85410 −0.425464
\(46\) −4.54508 3.30220i −0.670136 0.486882i
\(47\) −5.42705 + 3.94298i −0.791617 + 0.575143i −0.908443 0.418009i \(-0.862728\pi\)
0.116826 + 0.993152i \(0.462728\pi\)
\(48\) 4.85410 0.700629
\(49\) −1.35410 4.16750i −0.193443 0.595357i
\(50\) −1.57295 4.84104i −0.222449 0.684626i
\(51\) 0 0
\(52\) 1.11803 + 0.812299i 0.155043 + 0.112646i
\(53\) −3.89919 + 12.0005i −0.535595 + 1.64839i 0.206766 + 0.978390i \(0.433706\pi\)
−0.742361 + 0.670000i \(0.766294\pi\)
\(54\) −1.30902 + 0.951057i −0.178135 + 0.129422i
\(55\) 14.0623 10.2169i 1.89616 1.37764i
\(56\) 2.92705 2.12663i 0.391144 0.284182i
\(57\) 2.19098 + 6.74315i 0.290203 + 0.893152i
\(58\) 12.2082 8.86978i 1.60302 1.16466i
\(59\) 1.80902 5.56758i 0.235514 0.724837i −0.761539 0.648119i \(-0.775556\pi\)
0.997053 0.0767182i \(-0.0244442\pi\)
\(60\) −1.42705 1.03681i −0.184231 0.133852i
\(61\) −5.16312 + 3.75123i −0.661070 + 0.480295i −0.867024 0.498266i \(-0.833970\pi\)
0.205954 + 0.978562i \(0.433970\pi\)
\(62\) −3.73607 11.4984i −0.474481 1.46030i
\(63\) −0.500000 + 1.53884i −0.0629941 + 0.193876i
\(64\) −3.42705 2.48990i −0.428381 0.311237i
\(65\) 1.97214 + 6.06961i 0.244613 + 0.752843i
\(66\) 3.04508 9.37181i 0.374824 1.15359i
\(67\) −0.472136 1.45309i −0.0576806 0.177523i 0.918065 0.396430i \(-0.129751\pi\)
−0.975746 + 0.218907i \(0.929751\pi\)
\(68\) 0 0
\(69\) −2.80902 2.04087i −0.338166 0.245692i
\(70\) −7.47214 −0.893091
\(71\) −1.95492 + 8.19624i −0.232006 + 0.972714i
\(72\) 2.23607 0.263523
\(73\) 8.35410 + 6.06961i 0.977774 + 0.710394i 0.957210 0.289394i \(-0.0934539\pi\)
0.0205637 + 0.999789i \(0.493454\pi\)
\(74\) −3.11803 2.26538i −0.362464 0.263346i
\(75\) −0.972136 2.99193i −0.112253 0.345478i
\(76\) −1.35410 + 4.16750i −0.155326 + 0.478045i
\(77\) −3.04508 9.37181i −0.347020 1.06802i
\(78\) 2.92705 + 2.12663i 0.331423 + 0.240793i
\(79\) −0.600813 + 1.84911i −0.0675968 + 0.208041i −0.979149 0.203142i \(-0.934885\pi\)
0.911552 + 0.411184i \(0.134885\pi\)
\(80\) 4.28115 + 13.1760i 0.478647 + 1.47313i
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) 4.04508 + 2.93893i 0.446705 + 0.324550i
\(83\) −3.69098 + 11.3597i −0.405138 + 1.24689i 0.515642 + 0.856804i \(0.327553\pi\)
−0.920780 + 0.390082i \(0.872447\pi\)
\(84\) −0.809017 + 0.587785i −0.0882710 + 0.0641326i
\(85\) 0 0
\(86\) −0.500000 + 0.363271i −0.0539164 + 0.0391725i
\(87\) 7.54508 5.48183i 0.808918 0.587713i
\(88\) −11.0172 + 8.00448i −1.17444 + 0.853280i
\(89\) −0.972136 + 2.99193i −0.103046 + 0.317144i −0.989267 0.146120i \(-0.953322\pi\)
0.886221 + 0.463263i \(0.153322\pi\)
\(90\) −3.73607 2.71441i −0.393816 0.286124i
\(91\) 3.61803 0.379273
\(92\) −0.663119 2.04087i −0.0691349 0.212775i
\(93\) −2.30902 7.10642i −0.239434 0.736902i
\(94\) −10.8541 −1.11952
\(95\) −16.3713 + 11.8945i −1.67966 + 1.22035i
\(96\) 2.73607 + 1.98787i 0.279249 + 0.202886i
\(97\) −5.94427 −0.603549 −0.301775 0.953379i \(-0.597579\pi\)
−0.301775 + 0.953379i \(0.597579\pi\)
\(98\) 2.19098 6.74315i 0.221323 0.681161i
\(99\) 1.88197 5.79210i 0.189145 0.582128i
\(100\) 0.600813 1.84911i 0.0600813 0.184911i
\(101\) 17.5623 1.74751 0.873757 0.486362i \(-0.161676\pi\)
0.873757 + 0.486362i \(0.161676\pi\)
\(102\) 0 0
\(103\) −8.14590 −0.802639 −0.401320 0.915938i \(-0.631448\pi\)
−0.401320 + 0.915938i \(0.631448\pi\)
\(104\) −1.54508 4.75528i −0.151508 0.466294i
\(105\) −4.61803 −0.450674
\(106\) −16.5172 + 12.0005i −1.60429 + 1.16559i
\(107\) 16.3992 11.9147i 1.58537 1.15184i 0.675174 0.737658i \(-0.264068\pi\)
0.910195 0.414180i \(-0.135932\pi\)
\(108\) −0.618034 −0.0594703
\(109\) 0.736068 + 2.26538i 0.0705025 + 0.216984i 0.980099 0.198508i \(-0.0636094\pi\)
−0.909597 + 0.415492i \(0.863609\pi\)
\(110\) 28.1246 2.68158
\(111\) −1.92705 1.40008i −0.182908 0.132890i
\(112\) 7.85410 0.742143
\(113\) −2.63525 + 8.11048i −0.247904 + 0.762970i 0.747241 + 0.664553i \(0.231378\pi\)
−0.995145 + 0.0984171i \(0.968622\pi\)
\(114\) −3.54508 + 10.9106i −0.332028 + 1.02188i
\(115\) 3.06231 9.42481i 0.285561 0.878868i
\(116\) 5.76393 0.535168
\(117\) 1.80902 + 1.31433i 0.167244 + 0.121510i
\(118\) 7.66312 5.56758i 0.705447 0.512537i
\(119\) 0 0
\(120\) 1.97214 + 6.06961i 0.180031 + 0.554077i
\(121\) 8.06231 + 24.8132i 0.732937 + 2.25575i
\(122\) −10.3262 −0.934894
\(123\) 2.50000 + 1.81636i 0.225417 + 0.163775i
\(124\) 1.42705 4.39201i 0.128153 0.394414i
\(125\) −4.28115 + 3.11044i −0.382918 + 0.278206i
\(126\) −2.11803 + 1.53884i −0.188689 + 0.137091i
\(127\) −6.04508 + 4.39201i −0.536415 + 0.389728i −0.822752 0.568401i \(-0.807562\pi\)
0.286337 + 0.958129i \(0.407562\pi\)
\(128\) −4.20820 12.9515i −0.371956 1.14476i
\(129\) −0.309017 + 0.224514i −0.0272074 + 0.0197674i
\(130\) −3.19098 + 9.82084i −0.279868 + 0.861344i
\(131\) −15.0902 10.9637i −1.31843 0.957899i −0.999950 0.00997032i \(-0.996826\pi\)
−0.318484 0.947928i \(-0.603174\pi\)
\(132\) 3.04508 2.21238i 0.265041 0.192563i
\(133\) 3.54508 + 10.9106i 0.307398 + 0.946073i
\(134\) 0.763932 2.35114i 0.0659937 0.203108i
\(135\) −2.30902 1.67760i −0.198729 0.144385i
\(136\) 0 0
\(137\) 1.98278 6.10237i 0.169400 0.521360i −0.829933 0.557863i \(-0.811622\pi\)
0.999334 + 0.0365022i \(0.0116216\pi\)
\(138\) −1.73607 5.34307i −0.147784 0.454832i
\(139\) −2.47214 1.79611i −0.209684 0.152344i 0.477987 0.878367i \(-0.341367\pi\)
−0.687671 + 0.726023i \(0.741367\pi\)
\(140\) −2.30902 1.67760i −0.195148 0.141783i
\(141\) −6.70820 −0.564933
\(142\) −10.3541 + 8.86978i −0.868897 + 0.744335i
\(143\) −13.6180 −1.13880
\(144\) 3.92705 + 2.85317i 0.327254 + 0.237764i
\(145\) 21.5344 + 15.6457i 1.78834 + 1.29930i
\(146\) 5.16312 + 15.8904i 0.427303 + 1.31510i
\(147\) 1.35410 4.16750i 0.111684 0.343729i
\(148\) −0.454915 1.40008i −0.0373938 0.115086i
\(149\) 1.23607 + 0.898056i 0.101263 + 0.0735716i 0.637264 0.770645i \(-0.280066\pi\)
−0.536002 + 0.844217i \(0.680066\pi\)
\(150\) 1.57295 4.84104i 0.128431 0.395269i
\(151\) −1.90983 5.87785i −0.155420 0.478333i 0.842783 0.538253i \(-0.180915\pi\)
−0.998203 + 0.0599200i \(0.980915\pi\)
\(152\) 12.8262 9.31881i 1.04035 0.755855i
\(153\) 0 0
\(154\) 4.92705 15.1639i 0.397033 1.22194i
\(155\) 17.2533 12.5352i 1.38582 1.00686i
\(156\) 0.427051 + 1.31433i 0.0341914 + 0.105230i
\(157\) 13.9721 10.1514i 1.11510 0.810166i 0.131639 0.991298i \(-0.457976\pi\)
0.983459 + 0.181132i \(0.0579760\pi\)
\(158\) −2.54508 + 1.84911i −0.202476 + 0.147107i
\(159\) −10.2082 + 7.41669i −0.809563 + 0.588182i
\(160\) −2.98278 + 9.18005i −0.235809 + 0.725747i
\(161\) −4.54508 3.30220i −0.358203 0.260250i
\(162\) −1.61803 −0.127125
\(163\) −1.47214 4.53077i −0.115307 0.354877i 0.876704 0.481030i \(-0.159737\pi\)
−0.992011 + 0.126153i \(0.959737\pi\)
\(164\) 0.590170 + 1.81636i 0.0460845 + 0.141834i
\(165\) 17.3820 1.35318
\(166\) −15.6353 + 11.3597i −1.21353 + 0.881682i
\(167\) −0.263932 0.191758i −0.0204237 0.0148387i 0.577527 0.816372i \(-0.304018\pi\)
−0.597950 + 0.801533i \(0.704018\pi\)
\(168\) 3.61803 0.279137
\(169\) −2.47214 + 7.60845i −0.190164 + 0.585266i
\(170\) 0 0
\(171\) −2.19098 + 6.74315i −0.167549 + 0.515662i
\(172\) −0.236068 −0.0180000
\(173\) 4.80902 + 3.49396i 0.365623 + 0.265641i 0.755394 0.655271i \(-0.227446\pi\)
−0.389771 + 0.920912i \(0.627446\pi\)
\(174\) 15.0902 1.14398
\(175\) −1.57295 4.84104i −0.118904 0.365948i
\(176\) −29.5623 −2.22834
\(177\) 4.73607 3.44095i 0.355985 0.258638i
\(178\) −4.11803 + 2.99193i −0.308660 + 0.224254i
\(179\) 7.18034 0.536684 0.268342 0.963324i \(-0.413524\pi\)
0.268342 + 0.963324i \(0.413524\pi\)
\(180\) −0.545085 1.67760i −0.0406282 0.125041i
\(181\) 13.7984 1.02563 0.512813 0.858501i \(-0.328604\pi\)
0.512813 + 0.858501i \(0.328604\pi\)
\(182\) 4.73607 + 3.44095i 0.351061 + 0.255061i
\(183\) −6.38197 −0.471769
\(184\) −2.39919 + 7.38394i −0.176870 + 0.544351i
\(185\) 2.10081 6.46564i 0.154455 0.475363i
\(186\) 3.73607 11.4984i 0.273942 0.843106i
\(187\) 0 0
\(188\) −3.35410 2.43690i −0.244623 0.177729i
\(189\) −1.30902 + 0.951057i −0.0952170 + 0.0691792i
\(190\) −32.7426 −2.37540
\(191\) −3.52786 10.8576i −0.255267 0.785632i −0.993777 0.111389i \(-0.964470\pi\)
0.738510 0.674243i \(-0.235530\pi\)
\(192\) −1.30902 4.02874i −0.0944702 0.290749i
\(193\) 8.79837 0.633321 0.316660 0.948539i \(-0.397438\pi\)
0.316660 + 0.948539i \(0.397438\pi\)
\(194\) −7.78115 5.65334i −0.558654 0.405886i
\(195\) −1.97214 + 6.06961i −0.141228 + 0.434654i
\(196\) 2.19098 1.59184i 0.156499 0.113703i
\(197\) −2.19098 + 1.59184i −0.156101 + 0.113414i −0.663094 0.748536i \(-0.730757\pi\)
0.506993 + 0.861950i \(0.330757\pi\)
\(198\) 7.97214 5.79210i 0.566555 0.411626i
\(199\) −4.10081 12.6210i −0.290699 0.894679i −0.984632 0.174640i \(-0.944124\pi\)
0.693933 0.720039i \(-0.255876\pi\)
\(200\) −5.69098 + 4.13474i −0.402413 + 0.292370i
\(201\) 0.472136 1.45309i 0.0333019 0.102493i
\(202\) 22.9894 + 16.7027i 1.61753 + 1.17520i
\(203\) 12.2082 8.86978i 0.856848 0.622536i
\(204\) 0 0
\(205\) −2.72542 + 8.38800i −0.190352 + 0.585843i
\(206\) −10.6631 7.74721i −0.742935 0.539774i
\(207\) −1.07295 3.30220i −0.0745751 0.229519i
\(208\) 3.35410 10.3229i 0.232565 0.715762i
\(209\) −13.3435 41.0669i −0.922986 2.84066i
\(210\) −6.04508 4.39201i −0.417150 0.303078i
\(211\) −15.5623 11.3067i −1.07135 0.778384i −0.0951983 0.995458i \(-0.530349\pi\)
−0.976155 + 0.217075i \(0.930349\pi\)
\(212\) −7.79837 −0.535595
\(213\) −6.39919 + 5.48183i −0.438465 + 0.375608i
\(214\) 32.7984 2.24205
\(215\) −0.881966 0.640786i −0.0601496 0.0437012i
\(216\) 1.80902 + 1.31433i 0.123088 + 0.0894287i
\(217\) −3.73607 11.4984i −0.253621 0.780565i
\(218\) −1.19098 + 3.66547i −0.0806635 + 0.248257i
\(219\) 3.19098 + 9.82084i 0.215627 + 0.663631i
\(220\) 8.69098 + 6.31437i 0.585946 + 0.425715i
\(221\) 0 0
\(222\) −1.19098 3.66547i −0.0799335 0.246010i
\(223\) −4.61803 + 3.35520i −0.309246 + 0.224681i −0.731573 0.681763i \(-0.761214\pi\)
0.422327 + 0.906444i \(0.361214\pi\)
\(224\) 4.42705 + 3.21644i 0.295795 + 0.214907i
\(225\) 0.972136 2.99193i 0.0648091 0.199462i
\(226\) −11.1631 + 8.11048i −0.742560 + 0.539501i
\(227\) −0.954915 2.93893i −0.0633799 0.195063i 0.914352 0.404919i \(-0.132700\pi\)
−0.977732 + 0.209856i \(0.932700\pi\)
\(228\) −3.54508 + 2.57565i −0.234779 + 0.170577i
\(229\) −6.11803 + 4.44501i −0.404291 + 0.293735i −0.771287 0.636488i \(-0.780386\pi\)
0.366995 + 0.930223i \(0.380386\pi\)
\(230\) 12.9721 9.42481i 0.855357 0.621453i
\(231\) 3.04508 9.37181i 0.200352 0.616620i
\(232\) −16.8713 12.2577i −1.10766 0.804760i
\(233\) 5.09017 0.333468 0.166734 0.986002i \(-0.446678\pi\)
0.166734 + 0.986002i \(0.446678\pi\)
\(234\) 1.11803 + 3.44095i 0.0730882 + 0.224942i
\(235\) −5.91641 18.2088i −0.385944 1.18781i
\(236\) 3.61803 0.235514
\(237\) −1.57295 + 1.14281i −0.102174 + 0.0742338i
\(238\) 0 0
\(239\) 19.0902 1.23484 0.617420 0.786634i \(-0.288178\pi\)
0.617420 + 0.786634i \(0.288178\pi\)
\(240\) −4.28115 + 13.1760i −0.276347 + 0.850509i
\(241\) 5.48936 16.8945i 0.353601 1.08827i −0.603216 0.797578i \(-0.706114\pi\)
0.956816 0.290693i \(-0.0938857\pi\)
\(242\) −13.0451 + 40.1486i −0.838570 + 2.58085i
\(243\) −1.00000 −0.0641500
\(244\) −3.19098 2.31838i −0.204282 0.148419i
\(245\) 12.5066 0.799016
\(246\) 1.54508 + 4.75528i 0.0985110 + 0.303186i
\(247\) 15.8541 1.00877
\(248\) −13.5172 + 9.82084i −0.858344 + 0.623624i
\(249\) −9.66312 + 7.02067i −0.612375 + 0.444917i
\(250\) −8.56231 −0.541528
\(251\) −2.20820 6.79615i −0.139381 0.428969i 0.856865 0.515541i \(-0.172409\pi\)
−0.996246 + 0.0865714i \(0.972409\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 17.1074 + 12.4292i 1.07553 + 0.781420i
\(254\) −12.0902 −0.758605
\(255\) 0 0
\(256\) 4.19098 12.8985i 0.261936 0.806157i
\(257\) 1.76393 5.42882i 0.110031 0.338641i −0.880847 0.473401i \(-0.843026\pi\)
0.990878 + 0.134760i \(0.0430263\pi\)
\(258\) −0.618034 −0.0384771
\(259\) −3.11803 2.26538i −0.193745 0.140764i
\(260\) −3.19098 + 2.31838i −0.197896 + 0.143780i
\(261\) 9.32624 0.577280
\(262\) −9.32624 28.7032i −0.576177 1.77329i
\(263\) 5.66312 + 17.4293i 0.349203 + 1.07474i 0.959295 + 0.282406i \(0.0911324\pi\)
−0.610092 + 0.792330i \(0.708868\pi\)
\(264\) −13.6180 −0.838132
\(265\) −29.1353 21.1680i −1.78976 1.30034i
\(266\) −5.73607 + 17.6538i −0.351701 + 1.08242i
\(267\) −2.54508 + 1.84911i −0.155757 + 0.113164i
\(268\) 0.763932 0.555029i 0.0466646 0.0339038i
\(269\) 9.66312 7.02067i 0.589171 0.428058i −0.252848 0.967506i \(-0.581367\pi\)
0.842019 + 0.539448i \(0.181367\pi\)
\(270\) −1.42705 4.39201i −0.0868476 0.267289i
\(271\) −14.1353 + 10.2699i −0.858656 + 0.623850i −0.927519 0.373776i \(-0.878063\pi\)
0.0688633 + 0.997626i \(0.478063\pi\)
\(272\) 0 0
\(273\) 2.92705 + 2.12663i 0.177153 + 0.128709i
\(274\) 8.39919 6.10237i 0.507413 0.368657i
\(275\) 5.92047 + 18.2213i 0.357018 + 1.09879i
\(276\) 0.663119 2.04087i 0.0399151 0.122846i
\(277\) −7.82624 5.68609i −0.470233 0.341644i 0.327299 0.944921i \(-0.393862\pi\)
−0.797532 + 0.603276i \(0.793862\pi\)
\(278\) −1.52786 4.70228i −0.0916352 0.282024i
\(279\) 2.30902 7.10642i 0.138237 0.425450i
\(280\) 3.19098 + 9.82084i 0.190698 + 0.586907i
\(281\) 13.6353 + 9.90659i 0.813411 + 0.590978i 0.914818 0.403867i \(-0.132334\pi\)
−0.101406 + 0.994845i \(0.532334\pi\)
\(282\) −8.78115 6.37988i −0.522910 0.379916i
\(283\) 19.1803 1.14015 0.570076 0.821592i \(-0.306914\pi\)
0.570076 + 0.821592i \(0.306914\pi\)
\(284\) −5.19098 + 0.416272i −0.308028 + 0.0247012i
\(285\) −20.2361 −1.19868
\(286\) −17.8262 12.9515i −1.05409 0.765839i
\(287\) 4.04508 + 2.93893i 0.238774 + 0.173479i
\(288\) 1.04508 + 3.21644i 0.0615822 + 0.189531i
\(289\) −5.25329 + 16.1680i −0.309017 + 0.951057i
\(290\) 13.3090 + 40.9609i 0.781532 + 2.40531i
\(291\) −4.80902 3.49396i −0.281910 0.204819i
\(292\) −1.97214 + 6.06961i −0.115411 + 0.355197i
\(293\) 4.73607 + 14.5761i 0.276684 + 0.851546i 0.988769 + 0.149453i \(0.0477511\pi\)
−0.712085 + 0.702093i \(0.752249\pi\)
\(294\) 5.73607 4.16750i 0.334534 0.243053i
\(295\) 13.5172 + 9.82084i 0.787003 + 0.571791i
\(296\) −1.64590 + 5.06555i −0.0956659 + 0.294429i
\(297\) 4.92705 3.57971i 0.285896 0.207716i
\(298\) 0.763932 + 2.35114i 0.0442534 + 0.136198i
\(299\) −6.28115 + 4.56352i −0.363248 + 0.263915i
\(300\) 1.57295 1.14281i 0.0908143 0.0659804i
\(301\) −0.500000 + 0.363271i −0.0288195 + 0.0209386i
\(302\) 3.09017 9.51057i 0.177819 0.547272i
\(303\) 14.2082 + 10.3229i 0.816240 + 0.593033i
\(304\) 34.4164 1.97392
\(305\) −5.62868 17.3233i −0.322297 0.991929i
\(306\) 0 0
\(307\) 23.1246 1.31979 0.659896 0.751357i \(-0.270600\pi\)
0.659896 + 0.751357i \(0.270600\pi\)
\(308\) 4.92705 3.57971i 0.280745 0.203973i
\(309\) −6.59017 4.78804i −0.374902 0.272382i
\(310\) 34.5066 1.95984
\(311\) −10.8435 + 33.3727i −0.614876 + 1.89239i −0.211419 + 0.977395i \(0.567809\pi\)
−0.403457 + 0.914999i \(0.632191\pi\)
\(312\) 1.54508 4.75528i 0.0874732 0.269215i
\(313\) 4.10081 12.6210i 0.231792 0.713381i −0.765739 0.643151i \(-0.777627\pi\)
0.997531 0.0702301i \(-0.0223734\pi\)
\(314\) 27.9443 1.57699
\(315\) −3.73607 2.71441i −0.210504 0.152940i
\(316\) −1.20163 −0.0675968
\(317\) 5.60739 + 17.2578i 0.314942 + 0.969293i 0.975778 + 0.218763i \(0.0702020\pi\)
−0.660836 + 0.750531i \(0.729798\pi\)
\(318\) −20.4164 −1.14490
\(319\) −45.9508 + 33.3852i −2.57275 + 1.86921i
\(320\) 9.78115 7.10642i 0.546783 0.397261i
\(321\) 20.2705 1.13139
\(322\) −2.80902 8.64527i −0.156540 0.481782i
\(323\) 0 0
\(324\) −0.500000 0.363271i −0.0277778 0.0201817i
\(325\) −7.03444 −0.390201
\(326\) 2.38197 7.33094i 0.131925 0.406023i
\(327\) −0.736068 + 2.26538i −0.0407047 + 0.125276i
\(328\) 2.13525 6.57164i 0.117900 0.362858i
\(329\) −10.8541 −0.598406
\(330\) 22.7533 + 16.5312i 1.25253 + 0.910014i
\(331\) 28.0795 20.4010i 1.54339 1.12134i 0.595226 0.803558i \(-0.297063\pi\)
0.948164 0.317780i \(-0.102937\pi\)
\(332\) −7.38197 −0.405138
\(333\) −0.736068 2.26538i −0.0403363 0.124142i
\(334\) −0.163119 0.502029i −0.00892547 0.0274698i
\(335\) 4.36068 0.238249
\(336\) 6.35410 + 4.61653i 0.346645 + 0.251852i
\(337\) −6.29837 + 19.3844i −0.343094 + 1.05594i 0.619502 + 0.784995i \(0.287335\pi\)
−0.962596 + 0.270940i \(0.912665\pi\)
\(338\) −10.4721 + 7.60845i −0.569609 + 0.413845i
\(339\) −6.89919 + 5.01255i −0.374712 + 0.272244i
\(340\) 0 0
\(341\) 14.0623 + 43.2793i 0.761517 + 2.34371i
\(342\) −9.28115 + 6.74315i −0.501867 + 0.364628i
\(343\) 5.69098 17.5150i 0.307284 0.945724i
\(344\) 0.690983 + 0.502029i 0.0372553 + 0.0270676i
\(345\) 8.01722 5.82485i 0.431633 0.313599i
\(346\) 2.97214 + 9.14729i 0.159783 + 0.491762i
\(347\) 4.23607 13.0373i 0.227404 0.699878i −0.770635 0.637277i \(-0.780061\pi\)
0.998039 0.0626004i \(-0.0199394\pi\)
\(348\) 4.66312 + 3.38795i 0.249969 + 0.181613i
\(349\) 5.12868 + 15.7844i 0.274532 + 0.844922i 0.989343 + 0.145604i \(0.0465127\pi\)
−0.714811 + 0.699318i \(0.753487\pi\)
\(350\) 2.54508 7.83297i 0.136041 0.418690i
\(351\) 0.690983 + 2.12663i 0.0368819 + 0.113511i
\(352\) −16.6631 12.1065i −0.888147 0.645277i
\(353\) −24.2254 17.6008i −1.28939 0.936796i −0.289596 0.957149i \(-0.593521\pi\)
−0.999793 + 0.0203527i \(0.993521\pi\)
\(354\) 9.47214 0.503438
\(355\) −20.5238 12.5352i −1.08929 0.665302i
\(356\) −1.94427 −0.103046
\(357\) 0 0
\(358\) 9.39919 + 6.82891i 0.496762 + 0.360919i
\(359\) −10.1074 31.1074i −0.533448 1.64178i −0.746980 0.664847i \(-0.768497\pi\)
0.213532 0.976936i \(-0.431503\pi\)
\(360\) −1.97214 + 6.06961i −0.103941 + 0.319897i
\(361\) 9.66312 + 29.7400i 0.508585 + 1.56526i
\(362\) 18.0623 + 13.1230i 0.949334 + 0.689731i
\(363\) −8.06231 + 24.8132i −0.423161 + 1.30236i
\(364\) 0.690983 + 2.12663i 0.0362174 + 0.111466i
\(365\) −23.8435 + 17.3233i −1.24802 + 0.906742i
\(366\) −8.35410 6.06961i −0.436676 0.317264i
\(367\) 2.30902 7.10642i 0.120530 0.370952i −0.872530 0.488560i \(-0.837522\pi\)
0.993060 + 0.117607i \(0.0375224\pi\)
\(368\) −13.6353 + 9.90659i −0.710787 + 0.516417i
\(369\) 0.954915 + 2.93893i 0.0497109 + 0.152994i
\(370\) 8.89919 6.46564i 0.462647 0.336133i
\(371\) −16.5172 + 12.0005i −0.857531 + 0.623033i
\(372\) 3.73607 2.71441i 0.193706 0.140736i
\(373\) 0.798374 2.45714i 0.0413382 0.127226i −0.928258 0.371938i \(-0.878693\pi\)
0.969596 + 0.244712i \(0.0786934\pi\)
\(374\) 0 0
\(375\) −5.29180 −0.273267
\(376\) 4.63525 + 14.2658i 0.239045 + 0.735705i
\(377\) −6.44427 19.8334i −0.331897 1.02147i
\(378\) −2.61803 −0.134657
\(379\) −2.09017 + 1.51860i −0.107365 + 0.0780051i −0.640172 0.768231i \(-0.721137\pi\)
0.532807 + 0.846237i \(0.321137\pi\)
\(380\) −10.1180 7.35118i −0.519044 0.377108i
\(381\) −7.47214 −0.382809
\(382\) 5.70820 17.5680i 0.292057 0.898859i
\(383\) 1.54508 4.75528i 0.0789502 0.242984i −0.903790 0.427977i \(-0.859226\pi\)
0.982740 + 0.184993i \(0.0592264\pi\)
\(384\) 4.20820 12.9515i 0.214749 0.660929i
\(385\) 28.1246 1.43336
\(386\) 11.5172 + 8.36775i 0.586211 + 0.425907i
\(387\) −0.381966 −0.0194164
\(388\) −1.13525 3.49396i −0.0576338 0.177379i
\(389\) 4.79837 0.243287 0.121644 0.992574i \(-0.461184\pi\)
0.121644 + 0.992574i \(0.461184\pi\)
\(390\) −8.35410 + 6.06961i −0.423026 + 0.307347i
\(391\) 0 0
\(392\) −9.79837 −0.494893
\(393\) −5.76393 17.7396i −0.290752 0.894842i
\(394\) −4.38197 −0.220760
\(395\) −4.48936 3.26171i −0.225884 0.164114i
\(396\) 3.76393 0.189145
\(397\) 7.38197 22.7194i 0.370490 1.14025i −0.575981 0.817463i \(-0.695380\pi\)
0.946471 0.322789i \(-0.104620\pi\)
\(398\) 6.63525 20.4212i 0.332595 1.02362i
\(399\) −3.54508 + 10.9106i −0.177476 + 0.546216i
\(400\) −15.2705 −0.763525
\(401\) −12.8541 9.33905i −0.641903 0.466370i 0.218600 0.975814i \(-0.429851\pi\)
−0.860504 + 0.509444i \(0.829851\pi\)
\(402\) 2.00000 1.45309i 0.0997509 0.0724733i
\(403\) −16.7082 −0.832295
\(404\) 3.35410 + 10.3229i 0.166873 + 0.513582i
\(405\) −0.881966 2.71441i −0.0438252 0.134880i
\(406\) 24.4164 1.21177
\(407\) 11.7361 + 8.52675i 0.581735 + 0.422655i
\(408\) 0 0
\(409\) 5.70820 4.14725i 0.282253 0.205068i −0.437647 0.899147i \(-0.644188\pi\)
0.719899 + 0.694079i \(0.244188\pi\)
\(410\) −11.5451 + 8.38800i −0.570171 + 0.414254i
\(411\) 5.19098 3.77147i 0.256052 0.186033i
\(412\) −1.55573 4.78804i −0.0766452 0.235890i
\(413\) 7.66312 5.56758i 0.377077 0.273963i
\(414\) 1.73607 5.34307i 0.0853231 0.262597i
\(415\) −27.5795 20.0377i −1.35383 0.983612i
\(416\) 6.11803 4.44501i 0.299961 0.217935i
\(417\) −0.944272 2.90617i −0.0462412 0.142316i
\(418\) 21.5902 66.4477i 1.05601 3.25006i
\(419\) 7.80902 + 5.67358i 0.381495 + 0.277173i 0.761962 0.647622i \(-0.224236\pi\)
−0.380466 + 0.924795i \(0.624236\pi\)
\(420\) −0.881966 2.71441i −0.0430355 0.132450i
\(421\) −11.7705 + 36.2259i −0.573660 + 1.76554i 0.0670394 + 0.997750i \(0.478645\pi\)
−0.640699 + 0.767792i \(0.721355\pi\)
\(422\) −9.61803 29.6013i −0.468199 1.44097i
\(423\) −5.42705 3.94298i −0.263872 0.191714i
\(424\) 22.8262 + 16.5842i 1.10854 + 0.805402i
\(425\) 0 0
\(426\) −13.5902 + 1.08981i −0.658446 + 0.0528017i
\(427\) −10.3262 −0.499722
\(428\) 10.1353 + 7.36369i 0.489906 + 0.355938i
\(429\) −11.0172 8.00448i −0.531916 0.386460i
\(430\) −0.545085 1.67760i −0.0262863 0.0809010i
\(431\) −6.83688 + 21.0418i −0.329321 + 1.01355i 0.640131 + 0.768266i \(0.278880\pi\)
−0.969452 + 0.245280i \(0.921120\pi\)
\(432\) 1.50000 + 4.61653i 0.0721688 + 0.222113i
\(433\) −21.2533 15.4414i −1.02137 0.742067i −0.0548050 0.998497i \(-0.517454\pi\)
−0.966563 + 0.256430i \(0.917454\pi\)
\(434\) 6.04508 18.6049i 0.290173 0.893062i
\(435\) 8.22542 + 25.3153i 0.394379 + 1.21377i
\(436\) −1.19098 + 0.865300i −0.0570377 + 0.0414403i
\(437\) −19.9164 14.4701i −0.952731 0.692200i
\(438\) −5.16312 + 15.8904i −0.246703 + 0.759275i
\(439\) −25.6525 + 18.6376i −1.22433 + 0.889525i −0.996452 0.0841658i \(-0.973177\pi\)
−0.227874 + 0.973691i \(0.573177\pi\)
\(440\) −12.0106 36.9650i −0.572585 1.76224i
\(441\) 3.54508 2.57565i 0.168814 0.122650i
\(442\) 0 0
\(443\) −19.2082 + 13.9556i −0.912609 + 0.663049i −0.941673 0.336528i \(-0.890747\pi\)
0.0290641 + 0.999578i \(0.490747\pi\)
\(444\) 0.454915 1.40008i 0.0215893 0.0664451i
\(445\) −7.26393 5.27756i −0.344343 0.250180i
\(446\) −9.23607 −0.437340
\(447\) 0.472136 + 1.45309i 0.0223313 + 0.0687286i
\(448\) −2.11803 6.51864i −0.100068 0.307977i
\(449\) 19.3262 0.912062 0.456031 0.889964i \(-0.349271\pi\)
0.456031 + 0.889964i \(0.349271\pi\)
\(450\) 4.11803 2.99193i 0.194126 0.141041i
\(451\) −15.2254 11.0619i −0.716937 0.520885i
\(452\) −5.27051 −0.247904
\(453\) 1.90983 5.87785i 0.0897316 0.276166i
\(454\) 1.54508 4.75528i 0.0725144 0.223176i
\(455\) −3.19098 + 9.82084i −0.149596 + 0.460408i
\(456\) 15.8541 0.742436
\(457\) −8.04508 5.84510i −0.376333 0.273422i 0.383499 0.923541i \(-0.374719\pi\)
−0.759832 + 0.650119i \(0.774719\pi\)
\(458\) −12.2361 −0.571754
\(459\) 0 0
\(460\) 6.12461 0.285561
\(461\) 12.7533 9.26581i 0.593980 0.431552i −0.249757 0.968309i \(-0.580351\pi\)
0.843737 + 0.536757i \(0.180351\pi\)
\(462\) 12.8992 9.37181i 0.600124 0.436016i
\(463\) −6.18034 −0.287225 −0.143612 0.989634i \(-0.545872\pi\)
−0.143612 + 0.989634i \(0.545872\pi\)
\(464\) −13.9894 43.0548i −0.649440 1.99877i
\(465\) 21.3262 0.988981
\(466\) 6.66312 + 4.84104i 0.308663 + 0.224257i
\(467\) 37.3262 1.72725 0.863626 0.504133i \(-0.168188\pi\)
0.863626 + 0.504133i \(0.168188\pi\)
\(468\) −0.427051 + 1.31433i −0.0197404 + 0.0607548i
\(469\) 0.763932 2.35114i 0.0352751 0.108566i
\(470\) 9.57295 29.4625i 0.441567 1.35900i
\(471\) 17.2705 0.795783
\(472\) −10.5902 7.69421i −0.487452 0.354155i
\(473\) 1.88197 1.36733i 0.0865329 0.0628698i
\(474\) −3.14590 −0.144496
\(475\) −6.89261 21.2133i −0.316255 0.973332i
\(476\) 0 0
\(477\) −12.6180 −0.577740
\(478\) 24.9894 + 18.1558i 1.14299 + 0.830428i
\(479\) 0.0729490 0.224514i 0.00333313 0.0102583i −0.949376 0.314142i \(-0.898283\pi\)
0.952709 + 0.303883i \(0.0982833\pi\)
\(480\) −7.80902 + 5.67358i −0.356431 + 0.258962i
\(481\) −4.30902 + 3.13068i −0.196474 + 0.142747i
\(482\) 23.2533 16.8945i 1.05916 0.769524i
\(483\) −1.73607 5.34307i −0.0789938 0.243118i
\(484\) −13.0451 + 9.47781i −0.592958 + 0.430810i
\(485\) 5.24265 16.1352i 0.238056 0.732662i
\(486\) −1.30902 0.951057i −0.0593782 0.0431408i
\(487\) −23.1353 + 16.8087i −1.04836 + 0.761677i −0.971900 0.235396i \(-0.924361\pi\)
−0.0764589 + 0.997073i \(0.524361\pi\)
\(488\) 4.40983 + 13.5721i 0.199624 + 0.614378i
\(489\) 1.47214 4.53077i 0.0665723 0.204888i
\(490\) 16.3713 + 11.8945i 0.739581 + 0.537337i
\(491\) −10.7639 33.1280i −0.485769 1.49504i −0.830863 0.556476i \(-0.812153\pi\)
0.345094 0.938568i \(-0.387847\pi\)
\(492\) −0.590170 + 1.81636i −0.0266069 + 0.0818877i
\(493\) 0 0
\(494\) 20.7533 + 15.0781i 0.933735 + 0.678398i
\(495\) 14.0623 + 10.2169i 0.632054 + 0.459214i
\(496\) −36.2705 −1.62859
\(497\) −10.3541 + 8.86978i −0.464445 + 0.397864i
\(498\) −19.3262 −0.866029
\(499\) 1.54508 + 1.12257i 0.0691675 + 0.0502531i 0.621832 0.783151i \(-0.286389\pi\)
−0.552664 + 0.833404i \(0.686389\pi\)
\(500\) −2.64590 1.92236i −0.118328 0.0859704i
\(501\) −0.100813 0.310271i −0.00450400 0.0138619i
\(502\) 3.57295 10.9964i 0.159469 0.490794i
\(503\) 7.17376 + 22.0786i 0.319862 + 0.984435i 0.973707 + 0.227806i \(0.0731551\pi\)
−0.653844 + 0.756629i \(0.726845\pi\)
\(504\) 2.92705 + 2.12663i 0.130381 + 0.0947275i
\(505\) −15.4894 + 47.6713i −0.689267 + 2.12135i
\(506\) 10.5729 + 32.5402i 0.470025 + 1.44659i
\(507\) −6.47214 + 4.70228i −0.287438 + 0.208836i
\(508\) −3.73607 2.71441i −0.165761 0.120433i
\(509\) −5.98278 + 18.4131i −0.265182 + 0.816146i 0.726469 + 0.687199i \(0.241160\pi\)
−0.991651 + 0.128948i \(0.958840\pi\)
\(510\) 0 0
\(511\) 5.16312 + 15.8904i 0.228403 + 0.702952i
\(512\) −4.28115 + 3.11044i −0.189202 + 0.137463i
\(513\) −5.73607 + 4.16750i −0.253254 + 0.184000i
\(514\) 7.47214 5.42882i 0.329582 0.239455i
\(515\) 7.18441 22.1113i 0.316583 0.974341i
\(516\) −0.190983 0.138757i −0.00840756 0.00610845i
\(517\) 40.8541 1.79676
\(518\) −1.92705 5.93085i −0.0846698 0.260587i
\(519\) 1.83688 + 5.65334i 0.0806301 + 0.248154i
\(520\) 14.2705 0.625803
\(521\) −9.51722 + 6.91467i −0.416957 + 0.302937i −0.776412 0.630225i \(-0.782963\pi\)
0.359455 + 0.933162i \(0.382963\pi\)
\(522\) 12.2082 + 8.86978i 0.534339 + 0.388220i
\(523\) 35.3951 1.54772 0.773860 0.633356i \(-0.218323\pi\)
0.773860 + 0.633356i \(0.218323\pi\)
\(524\) 3.56231 10.9637i 0.155620 0.478949i
\(525\) 1.57295 4.84104i 0.0686491 0.211280i
\(526\) −9.16312 + 28.2012i −0.399531 + 1.22963i
\(527\) 0 0
\(528\) −23.9164 17.3763i −1.04083 0.756206i
\(529\) −10.9443 −0.475838
\(530\) −18.0066 55.4185i −0.782156 2.40723i
\(531\) 5.85410 0.254046
\(532\) −5.73607 + 4.16750i −0.248690 + 0.180684i
\(533\) 5.59017 4.06150i 0.242137 0.175923i
\(534\) −5.09017 −0.220273
\(535\) 17.8779 + 55.0225i 0.772929 + 2.37883i
\(536\) −3.41641 −0.147566
\(537\) 5.80902 + 4.22050i 0.250678 + 0.182128i
\(538\) 19.3262 0.833213
\(539\) −8.24671 + 25.3808i −0.355211 + 1.09323i
\(540\) 0.545085 1.67760i 0.0234567 0.0721924i
\(541\) 1.59017 4.89404i 0.0683667 0.210411i −0.911036 0.412326i \(-0.864716\pi\)
0.979403 + 0.201915i \(0.0647164\pi\)
\(542\) −28.2705 −1.21432
\(543\) 11.1631 + 8.11048i 0.479055 + 0.348054i
\(544\) 0 0
\(545\) −6.79837 −0.291210
\(546\) 1.80902 + 5.56758i 0.0774188 + 0.238271i
\(547\) −5.26393 16.2007i −0.225069 0.692693i −0.998285 0.0585488i \(-0.981353\pi\)
0.773215 0.634144i \(-0.218647\pi\)
\(548\) 3.96556 0.169400
\(549\) −5.16312 3.75123i −0.220357 0.160098i
\(550\) −9.57953 + 29.4828i −0.408472 + 1.25715i
\(551\) 53.4959 38.8671i 2.27900 1.65579i
\(552\) −6.28115 + 4.56352i −0.267344 + 0.194237i
\(553\) −2.54508 + 1.84911i −0.108228 + 0.0786323i
\(554\) −4.83688 14.8864i −0.205499 0.632462i
\(555\) 5.50000 3.99598i 0.233462 0.169620i
\(556\) 0.583592 1.79611i 0.0247498 0.0761721i
\(557\) 13.9164 + 10.1109i 0.589657 + 0.428411i 0.842193 0.539177i \(-0.181264\pi\)
−0.252536 + 0.967588i \(0.581264\pi\)
\(558\) 9.78115 7.10642i 0.414069 0.300839i
\(559\) 0.263932 + 0.812299i 0.0111631 + 0.0343566i
\(560\) −6.92705 + 21.3193i −0.292721 + 0.900904i
\(561\) 0 0
\(562\) 8.42705 + 25.9358i 0.355474 + 1.09404i
\(563\) 1.95492 6.01661i 0.0823898 0.253570i −0.901373 0.433044i \(-0.857440\pi\)
0.983763 + 0.179474i \(0.0574395\pi\)
\(564\) −1.28115 3.94298i −0.0539463 0.166030i
\(565\) −19.6910 14.3063i −0.828406 0.601872i
\(566\) 25.1074 + 18.2416i 1.05534 + 0.766751i
\(567\) −1.61803 −0.0679510
\(568\) 16.0795 + 9.82084i 0.674682 + 0.412073i
\(569\) 16.0344 0.672199 0.336099 0.941827i \(-0.390892\pi\)
0.336099 + 0.941827i \(0.390892\pi\)
\(570\) −26.4894 19.2456i −1.10952 0.806111i
\(571\) −24.3262 17.6740i −1.01802 0.739636i −0.0521450 0.998640i \(-0.516606\pi\)
−0.965876 + 0.259004i \(0.916606\pi\)
\(572\) −2.60081 8.00448i −0.108745 0.334684i
\(573\) 3.52786 10.8576i 0.147379 0.453585i
\(574\) 2.50000 + 7.69421i 0.104348 + 0.321150i
\(575\) 8.83688 + 6.42037i 0.368523 + 0.267748i
\(576\) 1.30902 4.02874i 0.0545424 0.167864i
\(577\) 7.22542 + 22.2376i 0.300798 + 0.925762i 0.981212 + 0.192934i \(0.0618002\pi\)
−0.680413 + 0.732828i \(0.738200\pi\)
\(578\) −22.2533 + 16.1680i −0.925615 + 0.672499i
\(579\) 7.11803 + 5.17155i 0.295815 + 0.214922i
\(580\) −5.08359 + 15.6457i −0.211085 + 0.649652i
\(581\) −15.6353 + 11.3597i −0.648660 + 0.471279i
\(582\) −2.97214 9.14729i −0.123199 0.379168i
\(583\) 62.1697 45.1689i 2.57481 1.87071i
\(584\) 18.6803 13.5721i 0.772998 0.561616i
\(585\) −5.16312 + 3.75123i −0.213469 + 0.155094i
\(586\) −7.66312 + 23.5847i −0.316561 + 0.974273i
\(587\) 14.1803 + 10.3026i 0.585285 + 0.425235i 0.840626 0.541617i \(-0.182188\pi\)
−0.255340 + 0.966851i \(0.582188\pi\)
\(588\) 2.70820 0.111684
\(589\) −16.3713 50.3858i −0.674569 2.07611i
\(590\) 8.35410 + 25.7113i 0.343933 + 1.05852i
\(591\) −2.70820 −0.111401
\(592\) −9.35410 + 6.79615i −0.384451 + 0.279320i
\(593\) 23.8992 + 17.3638i 0.981422 + 0.713045i 0.958026 0.286681i \(-0.0925521\pi\)
0.0233960 + 0.999726i \(0.492552\pi\)
\(594\) 9.85410 0.404319
\(595\) 0 0
\(596\) −0.291796 + 0.898056i −0.0119524 + 0.0367858i
\(597\) 4.10081 12.6210i 0.167835 0.516543i
\(598\) −12.5623 −0.513711
\(599\) −8.19098 5.95110i −0.334674 0.243155i 0.407737 0.913099i \(-0.366318\pi\)
−0.742411 + 0.669944i \(0.766318\pi\)
\(600\) −7.03444 −0.287180
\(601\) 1.20163 + 3.69822i 0.0490154 + 0.150854i 0.972568 0.232617i \(-0.0747288\pi\)
−0.923553 + 0.383470i \(0.874729\pi\)
\(602\) −1.00000 −0.0407570
\(603\) 1.23607 0.898056i 0.0503366 0.0365717i
\(604\) 3.09017 2.24514i 0.125737 0.0913534i
\(605\) −74.4640 −3.02739
\(606\) 8.78115 + 27.0256i 0.356710 + 1.09784i
\(607\) 21.0902 0.856024 0.428012 0.903773i \(-0.359214\pi\)
0.428012 + 0.903773i \(0.359214\pi\)
\(608\) 19.3992 + 14.0943i 0.786741 + 0.571601i
\(609\) 15.0902 0.611485
\(610\) 9.10739 28.0297i 0.368747 1.13489i
\(611\) −4.63525 + 14.2658i −0.187522 + 0.577134i
\(612\) 0 0
\(613\) −13.2918 −0.536851 −0.268425 0.963301i \(-0.586503\pi\)
−0.268425 + 0.963301i \(0.586503\pi\)
\(614\) 30.2705 + 21.9928i 1.22162 + 0.887558i
\(615\) −7.13525 + 5.18407i −0.287721 + 0.209042i
\(616\) −22.0344 −0.887793
\(617\) −0.291796 0.898056i −0.0117473 0.0361544i 0.945011 0.327038i \(-0.106051\pi\)
−0.956758 + 0.290884i \(0.906051\pi\)
\(618\) −4.07295 12.5352i −0.163838 0.504242i
\(619\) −28.3607 −1.13991 −0.569956 0.821675i \(-0.693040\pi\)
−0.569956 + 0.821675i \(0.693040\pi\)
\(620\) 10.6631 + 7.74721i 0.428241 + 0.311135i
\(621\) 1.07295 3.30220i 0.0430560 0.132513i
\(622\) −45.9336 + 33.3727i −1.84177 + 1.33812i
\(623\) −4.11803 + 2.99193i −0.164986 + 0.119869i
\(624\) 8.78115 6.37988i 0.351527 0.255400i
\(625\) −9.52786 29.3238i −0.381115 1.17295i
\(626\) 17.3713 12.6210i 0.694298 0.504437i
\(627\) 13.3435 41.0669i 0.532886 1.64006i
\(628\) 8.63525 + 6.27388i 0.344584 + 0.250355i
\(629\) 0 0
\(630\) −2.30902 7.10642i −0.0919934 0.283127i
\(631\) −14.7254 + 45.3202i −0.586210 + 1.80417i 0.00814648 + 0.999967i \(0.497407\pi\)
−0.594356 + 0.804202i \(0.702593\pi\)
\(632\) 3.51722 + 2.55541i 0.139908 + 0.101649i
\(633\) −5.94427 18.2946i −0.236264 0.727145i
\(634\) −9.07295 + 27.9237i −0.360333 + 1.10899i
\(635\) −6.59017 20.2825i −0.261523 0.804885i
\(636\) −6.30902 4.58377i −0.250169 0.181758i
\(637\) −7.92705 5.75934i −0.314081 0.228193i
\(638\) −91.9017 −3.63842
\(639\) −8.39919 + 0.673542i −0.332267 + 0.0266449i
\(640\) 38.8673 1.53636
\(641\) −16.5172 12.0005i −0.652391 0.473990i 0.211694 0.977336i \(-0.432102\pi\)
−0.864085 + 0.503346i \(0.832102\pi\)
\(642\) 26.5344 + 19.2784i 1.04723 + 0.760858i
\(643\) −7.01722 21.5968i −0.276732 0.851694i −0.988756 0.149539i \(-0.952221\pi\)
0.712024 0.702155i \(-0.247779\pi\)
\(644\) 1.07295 3.30220i 0.0422801 0.130125i
\(645\) −0.336881 1.03681i −0.0132647 0.0408245i
\(646\) 0 0
\(647\) −6.85410 + 21.0948i −0.269463 + 0.829320i 0.721169 + 0.692759i \(0.243605\pi\)
−0.990632 + 0.136561i \(0.956395\pi\)
\(648\) 0.690983 + 2.12663i 0.0271444 + 0.0835418i
\(649\) −28.8435 + 20.9560i −1.13220 + 0.822595i
\(650\) −9.20820 6.69015i −0.361175 0.262409i
\(651\) 3.73607 11.4984i 0.146428 0.450659i
\(652\) 2.38197 1.73060i 0.0932850 0.0677755i
\(653\) −12.5344 38.5770i −0.490511 1.50964i −0.823838 0.566825i \(-0.808171\pi\)
0.333327 0.942811i \(-0.391829\pi\)
\(654\) −3.11803 + 2.26538i −0.121925 + 0.0885835i
\(655\) 43.0689 31.2914i 1.68284 1.22266i
\(656\) 12.1353 8.81678i 0.473802 0.344237i
\(657\) −3.19098 + 9.82084i −0.124492 + 0.383147i
\(658\) −14.2082 10.3229i −0.553893 0.402427i
\(659\) −16.6180 −0.647347 −0.323673 0.946169i \(-0.604918\pi\)
−0.323673 + 0.946169i \(0.604918\pi\)
\(660\) 3.31966 + 10.2169i 0.129218 + 0.397691i
\(661\) 7.09017 + 21.8213i 0.275776 + 0.848750i 0.989013 + 0.147828i \(0.0472281\pi\)
−0.713237 + 0.700922i \(0.752772\pi\)
\(662\) 56.1591 2.18268
\(663\) 0 0
\(664\) 21.6074 + 15.6987i 0.838529 + 0.609227i
\(665\) −32.7426 −1.26971
\(666\) 1.19098 3.66547i 0.0461497 0.142034i
\(667\) −10.0066 + 30.7971i −0.387456 + 1.19247i
\(668\) 0.0623059 0.191758i 0.00241069 0.00741933i
\(669\) −5.70820 −0.220692
\(670\) 5.70820 + 4.14725i 0.220527 + 0.160222i
\(671\) 38.8673 1.50045
\(672\) 1.69098 + 5.20431i 0.0652311 + 0.200761i
\(673\) −16.3607 −0.630658 −0.315329 0.948982i \(-0.602115\pi\)
−0.315329 + 0.948982i \(0.602115\pi\)
\(674\) −26.6803 + 19.3844i −1.02769 + 0.746659i
\(675\) 2.54508 1.84911i 0.0979604 0.0711724i
\(676\) −4.94427 −0.190164
\(677\) −8.20163 25.2420i −0.315214 0.970129i −0.975666 0.219261i \(-0.929635\pi\)
0.660452 0.750868i \(-0.270365\pi\)
\(678\) −13.7984 −0.529923
\(679\) −7.78115 5.65334i −0.298613 0.216955i
\(680\) 0 0
\(681\) 0.954915 2.93893i 0.0365924 0.112620i
\(682\) −22.7533 + 70.0274i −0.871268 + 2.68149i
\(683\) −8.24671 + 25.3808i −0.315552 + 0.971168i 0.659975 + 0.751287i \(0.270567\pi\)
−0.975527 + 0.219881i \(0.929433\pi\)
\(684\) −4.38197 −0.167549
\(685\) 14.8156 + 10.7642i 0.566075 + 0.411277i
\(686\) 24.1074 17.5150i 0.920424 0.668728i
\(687\) −7.56231 −0.288520
\(688\) 0.572949 + 1.76336i 0.0218435 + 0.0672273i
\(689\) 8.71885 + 26.8339i 0.332162 + 1.02229i
\(690\) 16.0344 0.610421
\(691\) 38.3885 + 27.8909i 1.46037 + 1.06102i 0.983267 + 0.182173i \(0.0583129\pi\)
0.477102 + 0.878848i \(0.341687\pi\)
\(692\) −1.13525 + 3.49396i −0.0431559 + 0.132820i
\(693\) 7.97214 5.79210i 0.302836 0.220024i
\(694\) 17.9443 13.0373i 0.681155 0.494888i
\(695\) 7.05573 5.12629i 0.267639 0.194451i
\(696\) −6.44427 19.8334i −0.244269 0.751784i
\(697\) 0 0
\(698\) −8.29837 + 25.5398i −0.314098 + 0.966695i
\(699\) 4.11803 + 2.99193i 0.155758 + 0.113165i
\(700\) 2.54508 1.84911i 0.0961952 0.0698899i
\(701\) −7.86068 24.1927i −0.296894 0.913745i −0.982579 0.185847i \(-0.940497\pi\)
0.685685 0.727898i \(-0.259503\pi\)
\(702\) −1.11803 + 3.44095i −0.0421975 + 0.129870i
\(703\) −13.6631 9.92684i −0.515314 0.374398i
\(704\) 7.97214 + 24.5357i 0.300461 + 0.924724i
\(705\) 5.91641 18.2088i 0.222825 0.685784i
\(706\) −14.9721 46.0795i −0.563484 1.73422i
\(707\) 22.9894 + 16.7027i 0.864604 + 0.628171i
\(708\) 2.92705 + 2.12663i 0.110005 + 0.0799235i
\(709\) −16.7082 −0.627490 −0.313745 0.949507i \(-0.601584\pi\)
−0.313745 + 0.949507i \(0.601584\pi\)
\(710\) −14.9443 35.9281i −0.560849 1.34836i
\(711\) −1.94427 −0.0729159
\(712\) 5.69098 + 4.13474i 0.213279 + 0.154956i
\(713\) 20.9894 + 15.2497i 0.786058 + 0.571104i
\(714\) 0 0
\(715\) 12.0106 36.9650i 0.449173 1.38241i
\(716\) 1.37132 + 4.22050i 0.0512487 + 0.157727i
\(717\) 15.4443 + 11.2209i 0.576777 + 0.419053i
\(718\) 16.3541 50.3328i 0.610330 1.87840i
\(719\) −1.70820 5.25731i −0.0637053 0.196065i 0.914138 0.405403i \(-0.132869\pi\)
−0.977843 + 0.209339i \(0.932869\pi\)
\(720\) −11.2082 + 8.14324i −0.417705 + 0.303481i
\(721\) −10.6631 7.74721i −0.397115 0.288521i
\(722\) −15.6353 + 48.1204i −0.581884 + 1.79085i
\(723\) 14.3713 10.4414i 0.534475 0.388319i
\(724\) 2.63525 + 8.11048i 0.0979385 + 0.301424i
\(725\) −23.7361 + 17.2453i −0.881535 + 0.640473i
\(726\) −34.1525 + 24.8132i −1.26752 + 0.920905i
\(727\) 10.2812 7.46969i 0.381307 0.277036i −0.380577 0.924749i \(-0.624275\pi\)
0.761884 + 0.647714i \(0.224275\pi\)
\(728\) 2.50000 7.69421i 0.0926562 0.285166i
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) −47.6869 −1.76497
\(731\) 0 0
\(732\) −1.21885 3.75123i −0.0450499 0.138649i
\(733\) −32.8885 −1.21477 −0.607383 0.794409i \(-0.707781\pi\)
−0.607383 + 0.794409i \(0.707781\pi\)
\(734\) 9.78115 7.10642i 0.361029 0.262303i
\(735\) 10.1180 + 7.35118i 0.373209 + 0.271152i
\(736\) −11.7426 −0.432840
\(737\) −2.87539 + 8.84953i −0.105916 + 0.325977i
\(738\) −1.54508 + 4.75528i −0.0568754 + 0.175044i
\(739\) 14.6525 45.0957i 0.539000 1.65887i −0.195844 0.980635i \(-0.562745\pi\)
0.734844 0.678236i \(-0.237255\pi\)
\(740\) 4.20163 0.154455
\(741\) 12.8262 + 9.31881i 0.471184 + 0.342335i
\(742\) −33.0344 −1.21273
\(743\) −10.2188 31.4504i −0.374893 1.15380i −0.943551 0.331228i \(-0.892537\pi\)
0.568658 0.822574i \(-0.307463\pi\)
\(744\) −16.7082 −0.612552
\(745\) −3.52786 + 2.56314i −0.129251 + 0.0939063i
\(746\) 3.38197 2.45714i 0.123823 0.0899624i
\(747\) −11.9443 −0.437018
\(748\) 0 0
\(749\) 32.7984 1.19843
\(750\) −6.92705 5.03280i −0.252940 0.183772i
\(751\) 39.5967 1.44491 0.722453 0.691420i \(-0.243015\pi\)
0.722453 + 0.691420i \(0.243015\pi\)
\(752\) −10.0623 + 30.9686i −0.366935 + 1.12931i
\(753\) 2.20820 6.79615i 0.0804714 0.247666i
\(754\) 10.4271 32.0912i 0.379731 1.16869i
\(755\) 17.6393 0.641961
\(756\) −0.809017 0.587785i −0.0294237 0.0213775i
\(757\) 37.3607 27.1441i 1.35790 0.986570i 0.359321 0.933214i \(-0.383008\pi\)
0.998576 0.0533561i \(-0.0169918\pi\)
\(758\) −4.18034 −0.151837
\(759\) 6.53444 + 20.1109i 0.237185 + 0.729981i
\(760\) 13.9828 + 43.0346i 0.507209 + 1.56103i
\(761\) 19.0902 0.692018 0.346009 0.938231i \(-0.387537\pi\)
0.346009 + 0.938231i \(0.387537\pi\)
\(762\) −9.78115 7.10642i −0.354334 0.257439i
\(763\) −1.19098 + 3.66547i −0.0431165 + 0.132699i
\(764\) 5.70820 4.14725i 0.206516 0.150042i
\(765\) 0 0
\(766\) 6.54508 4.75528i 0.236484 0.171815i
\(767\) −4.04508 12.4495i −0.146060 0.449525i
\(768\) 10.9721 7.97172i 0.395923 0.287655i
\(769\) −10.9721 + 33.7688i −0.395665 + 1.21773i 0.532777 + 0.846256i \(0.321149\pi\)
−0.928442 + 0.371477i \(0.878851\pi\)
\(770\) 36.8156 + 26.7481i 1.32674 + 0.963934i
\(771\) 4.61803 3.35520i 0.166314 0.120835i
\(772\) 1.68034 + 5.17155i 0.0604768 + 0.186128i
\(773\) 3.52786 10.8576i 0.126888 0.390522i −0.867352 0.497695i \(-0.834180\pi\)
0.994240 + 0.107173i \(0.0341798\pi\)
\(774\) −0.500000 0.363271i −0.0179721 0.0130575i
\(775\) 7.26393 + 22.3561i 0.260928 + 0.803054i
\(776\) −4.10739 + 12.6412i −0.147447 + 0.453794i
\(777\) −1.19098 3.66547i −0.0427263 0.131498i
\(778\) 6.28115 + 4.56352i 0.225190 + 0.163610i
\(779\) 17.7254 + 12.8783i 0.635079 + 0.461412i
\(780\) −3.94427 −0.141228
\(781\) 38.9721 33.3852i 1.39453 1.19462i
\(782\) 0 0
\(783\) 7.54508 + 5.48183i 0.269639 + 0.195904i
\(784\) −17.2082 12.5025i −0.614579 0.446518i
\(785\) 15.2320 + 46.8793i 0.543653 + 1.67319i
\(786\) 9.32624 28.7032i 0.332656 1.02381i
\(787\) 13.1803 + 40.5649i 0.469828 + 1.44598i 0.852807 + 0.522226i \(0.174898\pi\)
−0.382979 + 0.923757i \(0.625102\pi\)
\(788\) −1.35410 0.983813i −0.0482379 0.0350469i
\(789\) −5.66312 + 17.4293i −0.201612 + 0.620499i
\(790\) −2.77458 8.53926i −0.0987150 0.303813i
\(791\) −11.1631 + 8.11048i −0.396915 + 0.288375i
\(792\) −11.0172 8.00448i −0.391480 0.284427i
\(793\) −4.40983 + 13.5721i −0.156598 + 0.481958i
\(794\) 31.2705 22.7194i 1.10975 0.806280i
\(795\) −11.1287 34.2505i −0.394694 1.21474i
\(796\) 6.63525 4.82079i 0.235180 0.170869i
\(797\) 38.0344 27.6336i 1.34725 0.978834i 0.348106 0.937455i \(-0.386825\pi\)
0.999144 0.0413784i \(-0.0131749\pi\)
\(798\) −15.0172 + 10.9106i −0.531604 + 0.386233i
\(799\) 0 0
\(800\) −8.60739 6.25364i −0.304317 0.221099i
\(801\) −3.14590 −0.111155
\(802\) −7.94427 24.4500i −0.280522 0.863358i
\(803\) −19.4336 59.8106i −0.685798 2.11067i
\(804\) 0.944272 0.0333019
\(805\) 12.9721 9.42481i 0.457208 0.332181i
\(806\) −21.8713 15.8904i −0.770384 0.559717i
\(807\) 11.9443 0.420458
\(808\) 12.1353 37.3485i 0.426917 1.31391i
\(809\) −1.28115 + 3.94298i −0.0450429 + 0.138628i −0.971049 0.238881i \(-0.923219\pi\)
0.926006 + 0.377509i \(0.123219\pi\)
\(810\) 1.42705 4.39201i 0.0501415 0.154320i
\(811\) −14.8328 −0.520851 −0.260425 0.965494i \(-0.583863\pi\)
−0.260425 + 0.965494i \(0.583863\pi\)
\(812\) 7.54508 + 5.48183i 0.264781 + 0.192374i
\(813\) −17.4721 −0.612775
\(814\) 7.25329 + 22.3233i 0.254228 + 0.782432i
\(815\) 13.5967 0.476273
\(816\) 0 0
\(817\) −2.19098 + 1.59184i −0.0766528 + 0.0556915i
\(818\) 11.4164 0.399165
\(819\) 1.11803 + 3.44095i 0.0390673 + 0.120237i
\(820\) −5.45085 −0.190352
\(821\) −13.1631 9.56357i −0.459396 0.333771i 0.333898 0.942609i \(-0.391636\pi\)
−0.793294 + 0.608838i \(0.791636\pi\)
\(822\) 10.3820 0.362113
\(823\) 0.0623059 0.191758i 0.00217185 0.00668426i −0.949965 0.312357i \(-0.898881\pi\)
0.952137 + 0.305673i \(0.0988814\pi\)
\(824\) −5.62868 + 17.3233i −0.196084 + 0.603485i
\(825\) −5.92047 + 18.2213i −0.206124 + 0.634386i
\(826\) 15.3262 0.533268
\(827\) 29.0066 + 21.0745i 1.00866 + 0.732833i 0.963927 0.266166i \(-0.0857571\pi\)
0.0447305 + 0.998999i \(0.485757\pi\)
\(828\) 1.73607 1.26133i 0.0603325 0.0438342i
\(829\) 0.124612 0.00432795 0.00216397 0.999998i \(-0.499311\pi\)
0.00216397 + 0.999998i \(0.499311\pi\)
\(830\) −17.0451 52.4594i −0.591644 1.82089i
\(831\) −2.98936 9.20029i −0.103700 0.319155i
\(832\) −9.47214 −0.328387
\(833\) 0 0
\(834\) 1.52786 4.70228i 0.0529056 0.162827i
\(835\) 0.753289 0.547296i 0.0260686 0.0189400i
\(836\) 21.5902 15.6862i 0.746712 0.542518i
\(837\) 6.04508 4.39201i 0.208949 0.151810i
\(838\) 4.82624 + 14.8536i 0.166720 + 0.513110i
\(839\) −38.4615 + 27.9439i −1.32784 + 0.964731i −0.328040 + 0.944664i \(0.606388\pi\)
−0.999799 + 0.0200669i \(0.993612\pi\)
\(840\) −3.19098 + 9.82084i −0.110099 + 0.338851i
\(841\) −46.9058 34.0790i −1.61744 1.17514i
\(842\) −49.8607 + 36.2259i −1.71831 + 1.24843i
\(843\) 5.20820 + 16.0292i 0.179380 + 0.552075i
\(844\) 3.67376 11.3067i 0.126456 0.389192i
\(845\) −18.4721 13.4208i −0.635461 0.461689i
\(846\) −3.35410 10.3229i −0.115316 0.354907i
\(847\) −13.0451 + 40.1486i −0.448234 + 1.37952i
\(848\) 18.9271 + 58.2515i 0.649958 + 2.00036i
\(849\) 15.5172 + 11.2739i 0.532550 + 0.386920i
\(850\) 0 0
\(851\) 8.27051 0.283509
\(852\) −4.44427 2.71441i −0.152258 0.0929942i
\(853\) −5.32624 −0.182367 −0.0911835 0.995834i \(-0.529065\pi\)
−0.0911835 + 0.995834i \(0.529065\pi\)
\(854\) −13.5172 9.82084i −0.462550 0.336062i
\(855\) −16.3713 11.8945i −0.559887 0.406782i
\(856\) −14.0066 43.1078i −0.478735 1.47339i
\(857\) 12.9894 39.9771i 0.443708 1.36559i −0.440187 0.897906i \(-0.645088\pi\)
0.883894 0.467686i \(-0.154912\pi\)
\(858\) −6.80902 20.9560i −0.232456 0.715426i
\(859\) 4.70820 + 3.42071i 0.160642 + 0.116713i 0.665202 0.746663i \(-0.268345\pi\)
−0.504560 + 0.863376i \(0.668345\pi\)
\(860\) 0.208204 0.640786i 0.00709970 0.0218506i
\(861\) 1.54508 + 4.75528i 0.0526564 + 0.162060i
\(862\) −28.9615 + 21.0418i −0.986432 + 0.716685i
\(863\) 34.8156 + 25.2950i 1.18514 + 0.861052i 0.992742 0.120265i \(-0.0383746\pi\)
0.192395 + 0.981318i \(0.438375\pi\)
\(864\) −1.04508 + 3.21644i −0.0355545 + 0.109426i
\(865\) −13.7254 + 9.97210i −0.466678 + 0.339062i
\(866\) −13.1353 40.4262i −0.446354 1.37374i
\(867\) −13.7533 + 9.99235i −0.467086 + 0.339358i
\(868\) 6.04508 4.39201i 0.205184 0.149075i
\(869\) 9.57953 6.95993i 0.324963 0.236100i
\(870\) −13.3090 + 40.9609i −0.451218 + 1.38871i
\(871\) −2.76393 2.00811i −0.0936523 0.0680424i
\(872\) 5.32624 0.180369
\(873\) −1.83688 5.65334i −0.0621690 0.191337i
\(874\) −12.3090 37.8833i −0.416359 1.28142i
\(875\) −8.56231 −0.289459
\(876\) −5.16312 + 3.75123i −0.174446 + 0.126742i
\(877\) −9.63525 7.00042i −0.325359 0.236387i 0.413100 0.910686i \(-0.364446\pi\)
−0.738459 + 0.674298i \(0.764446\pi\)
\(878\) −51.3050 −1.73146
\(879\) −4.73607 + 14.5761i −0.159744 + 0.491640i
\(880\) 26.0729 80.2443i 0.878919 2.70503i
\(881\) 15.2599 46.9650i 0.514118 1.58229i −0.270763 0.962646i \(-0.587276\pi\)
0.784881 0.619646i \(-0.212724\pi\)
\(882\) 7.09017 0.238738
\(883\) −12.5451 9.11454i −0.422176 0.306729i 0.356337 0.934358i \(-0.384026\pi\)
−0.778513 + 0.627629i \(0.784026\pi\)
\(884\) 0 0
\(885\) 5.16312 + 15.8904i 0.173556 + 0.534152i
\(886\) −38.4164 −1.29062
\(887\) −0.236068 + 0.171513i −0.00792639 + 0.00575886i −0.591741 0.806128i \(-0.701559\pi\)
0.583815 + 0.811887i \(0.301559\pi\)
\(888\) −4.30902 + 3.13068i −0.144601 + 0.105059i
\(889\) −12.0902 −0.405491
\(890\) −4.48936 13.8168i −0.150484 0.463141i
\(891\) 6.09017 0.204028
\(892\) −2.85410 2.07363i −0.0955624 0.0694301i
\(893\) −47.5623 −1.59161
\(894\) −0.763932 + 2.35114i −0.0255497 + 0.0786339i
\(895\) −6.33282 + 19.4904i −0.211683 + 0.651492i
\(896\) 6.80902 20.9560i 0.227473 0.700091i
\(897\) −7.76393 −0.259230
\(898\) 25.2984 + 18.3803i 0.844218 + 0.613360i
\(899\) −56.3779 + 40.9609i −1.88031 + 1.36612i
\(900\) 1.94427 0.0648091
\(901\) 0 0
\(902\) −9.40983 28.9605i −0.313313 0.964278i
\(903\) −0.618034 −0.0205669
\(904\) 15.4271 + 11.2084i 0.513096 + 0.372786i
\(905\) −12.1697 + 37.4545i −0.404534 + 1.24503i
\(906\) 8.09017 5.87785i 0.268778 0.195279i
\(907\) −27.4164 + 19.9192i −0.910347 + 0.661406i −0.941103 0.338121i \(-0.890209\pi\)
0.0307557 + 0.999527i \(0.490209\pi\)
\(908\) 1.54508 1.12257i 0.0512754 0.0372538i
\(909\) 5.42705 + 16.7027i 0.180004 + 0.553995i
\(910\) −13.5172 + 9.82084i −0.448092 + 0.325558i
\(911\) −9.34346 + 28.7562i −0.309563 + 0.952736i 0.668372 + 0.743827i \(0.266991\pi\)
−0.977935 + 0.208909i \(0.933009\pi\)
\(912\) 27.8435 + 20.2295i 0.921989 + 0.669864i
\(913\) 58.8500 42.7571i 1.94765 1.41505i
\(914\) −4.97214 15.3027i −0.164464 0.506167i
\(915\) 5.62868 17.3233i 0.186078 0.572690i
\(916\) −3.78115 2.74717i −0.124933 0.0907690i
\(917\) −9.32624 28.7032i −0.307980 0.947863i
\(918\) 0 0
\(919\) −9.69098 29.8258i −0.319676 0.983862i −0.973787 0.227463i \(-0.926957\pi\)
0.654111 0.756399i \(-0.273043\pi\)
\(920\) −17.9271 13.0248i −0.591037 0.429414i
\(921\) 18.7082 + 13.5923i 0.616456 + 0.447882i
\(922\) 25.5066 0.840014
\(923\) 7.23607 + 17.3965i 0.238178 + 0.572614i
\(924\) 6.09017 0.200352
\(925\) 6.06231 + 4.40452i 0.199327 + 0.144820i
\(926\) −8.09017 5.87785i −0.265859 0.193158i
\(927\) −2.51722 7.74721i −0.0826764 0.254452i
\(928\) 9.74671 29.9973i 0.319951 0.984709i
\(929\) −17.1697 52.8429i −0.563319 1.73372i −0.672892 0.739740i \(-0.734948\pi\)
0.109573 0.993979i \(-0.465052\pi\)
\(930\) 27.9164 + 20.2825i 0.915415 + 0.665088i
\(931\) 9.60081 29.5483i 0.314654 0.968405i
\(932\) 0.972136 + 2.99193i 0.0318434 + 0.0980038i
\(933\) −28.3885 + 20.6255i −0.929399 + 0.675248i
\(934\) 48.8607 + 35.4994i 1.59877 + 1.16157i
\(935\) 0 0
\(936\) 4.04508 2.93893i 0.132218 0.0960618i
\(937\) 15.4377 + 47.5123i 0.504327 + 1.55216i 0.801898 + 0.597461i \(0.203824\pi\)
−0.297571 + 0.954700i \(0.596176\pi\)
\(938\) 3.23607 2.35114i 0.105661 0.0767675i
\(939\) 10.7361 7.80021i 0.350358 0.254550i
\(940\) 9.57295 6.95515i 0.312235 0.226852i
\(941\) −3.11803 + 9.59632i −0.101645 + 0.312831i −0.988928 0.148394i \(-0.952590\pi\)
0.887283 + 0.461225i \(0.152590\pi\)
\(942\) 22.6074 + 16.4252i 0.736589 + 0.535163i
\(943\) −10.7295 −0.349400
\(944\) −8.78115 27.0256i −0.285802 0.879609i
\(945\) −1.42705 4.39201i −0.0464220 0.142872i
\(946\) 3.76393 0.122376
\(947\) 10.7984 7.84548i 0.350900 0.254944i −0.398346 0.917235i \(-0.630416\pi\)
0.749246 + 0.662291i \(0.230416\pi\)
\(948\) −0.972136 0.706298i −0.0315735 0.0229395i
\(949\) 23.0902 0.749539
\(950\) 11.1525 34.3238i 0.361834 1.11361i
\(951\) −5.60739 + 17.2578i −0.181832 + 0.559622i
\(952\) 0 0
\(953\) 28.7984 0.932871 0.466435 0.884555i \(-0.345538\pi\)
0.466435 + 0.884555i \(0.345538\pi\)
\(954\) −16.5172 12.0005i −0.534765 0.388529i
\(955\) 32.5836 1.05438
\(956\) 3.64590 + 11.2209i 0.117917 + 0.362911i
\(957\) −56.7984 −1.83603
\(958\) 0.309017 0.224514i 0.00998389 0.00725372i
\(959\) 8.39919 6.10237i 0.271224 0.197056i
\(960\) 12.0902 0.390209
\(961\) 7.67376 + 23.6174i 0.247541 + 0.761852i
\(962\) −8.61803 −0.277857
\(963\) 16.3992 + 11.9147i 0.528456 + 0.383946i
\(964\) 10.9787 0.353601
\(965\) −7.75987 + 23.8824i −0.249799 + 0.768802i
\(966\) 2.80902 8.64527i 0.0903786 0.278157i
\(967\) 4.64590 14.2986i 0.149402 0.459812i −0.848149 0.529758i \(-0.822283\pi\)
0.997551 + 0.0699460i \(0.0222827\pi\)
\(968\) 58.3394 1.87510
\(969\) 0 0
\(970\) 22.2082 16.1352i 0.713062 0.518070i
\(971\) −0.0557281 −0.00178840 −0.000894200 1.00000i \(-0.500285\pi\)
−0.000894200 1.00000i \(0.500285\pi\)
\(972\) −0.190983 0.587785i −0.00612578 0.0188532i
\(973\) −1.52786 4.70228i −0.0489811 0.150748i
\(974\) −46.2705 −1.48260
\(975\) −5.69098 4.13474i −0.182257 0.132418i
\(976\) −9.57295 + 29.4625i −0.306423 + 0.943072i
\(977\) 34.5795 25.1235i 1.10630 0.803772i 0.124221 0.992255i \(-0.460357\pi\)
0.982076 + 0.188483i \(0.0603570\pi\)
\(978\) 6.23607 4.53077i 0.199407 0.144878i
\(979\) 15.5000 11.2614i 0.495382 0.359916i
\(980\) 2.38854 + 7.35118i 0.0762992 + 0.234825i
\(981\) −1.92705 + 1.40008i −0.0615260 + 0.0447013i
\(982\) 17.4164 53.6022i 0.555780 1.71051i
\(983\) 20.7533 + 15.0781i 0.661927 + 0.480918i 0.867313 0.497763i \(-0.165845\pi\)
−0.205386 + 0.978681i \(0.565845\pi\)
\(984\) 5.59017 4.06150i 0.178208 0.129476i
\(985\) −2.38854 7.35118i −0.0761053 0.234228i
\(986\) 0 0
\(987\) −8.78115 6.37988i −0.279507 0.203074i
\(988\) 3.02786 + 9.31881i 0.0963292 + 0.296471i
\(989\) 0.409830 1.26133i 0.0130318 0.0401079i
\(990\) 8.69098 + 26.7481i 0.276218 + 0.850110i
\(991\) −17.9894 13.0700i −0.571451 0.415183i 0.264181 0.964473i \(-0.414898\pi\)
−0.835632 + 0.549290i \(0.814898\pi\)
\(992\) −20.4443 14.8536i −0.649106 0.471603i
\(993\) 34.7082 1.10143
\(994\) −21.9894 + 1.76336i −0.697460 + 0.0559302i
\(995\) 37.8754 1.20073
\(996\) −5.97214 4.33901i −0.189234 0.137487i
\(997\) −5.35410 3.88998i −0.169566 0.123197i 0.499766 0.866161i \(-0.333419\pi\)
−0.669332 + 0.742964i \(0.733419\pi\)
\(998\) 0.954915 + 2.93893i 0.0302273 + 0.0930301i
\(999\) 0.736068 2.26538i 0.0232882 0.0716736i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 213.2.e.a.196.1 yes 4
3.2 odd 2 639.2.f.a.622.1 4
71.25 even 5 inner 213.2.e.a.25.1 4
213.167 odd 10 639.2.f.a.451.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
213.2.e.a.25.1 4 71.25 even 5 inner
213.2.e.a.196.1 yes 4 1.1 even 1 trivial
639.2.f.a.451.1 4 213.167 odd 10
639.2.f.a.622.1 4 3.2 odd 2