Properties

Label 213.2.e.a
Level $213$
Weight $2$
Character orbit 213.e
Analytic conductor $1.701$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [213,2,Mod(25,213)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(213, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("213.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 213 = 3 \cdot 71 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 213.e (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.70081356305\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{10}^{3} + 1) q^{2} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + \cdots + 1) q^{3} + ( - \zeta_{10} + 1) q^{4} + ( - 3 \zeta_{10}^{3} + \cdots - 3 \zeta_{10}) q^{5} + ( - \zeta_{10}^{3} - \zeta_{10} + 1) q^{6}+ \cdots + (5 \zeta_{10}^{3} + \cdots + 5 \zeta_{10}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} + q^{3} + 3 q^{4} - 8 q^{5} + 2 q^{6} + 3 q^{7} + 5 q^{8} - q^{9} - 6 q^{10} - 13 q^{11} - 3 q^{12} + 5 q^{13} + q^{14} - 7 q^{15} + 9 q^{16} - 2 q^{18} + 14 q^{19} - 16 q^{20} + 2 q^{21}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/213\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(143\)
\(\chi(n)\) \(-\zeta_{10}^{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
0.809017 + 0.587785i
−0.309017 + 0.951057i
0.809017 0.587785i
−0.309017 0.951057i
1.30902 0.951057i 0.809017 0.587785i 0.190983 0.587785i −0.881966 2.71441i 0.500000 1.53884i 1.30902 0.951057i 0.690983 + 2.12663i 0.309017 0.951057i −3.73607 2.71441i
76.1 0.190983 + 0.587785i −0.309017 0.951057i 1.30902 0.951057i −3.11803 2.26538i 0.500000 0.363271i 0.190983 + 0.587785i 1.80902 + 1.31433i −0.809017 + 0.587785i 0.736068 2.26538i
196.1 1.30902 + 0.951057i 0.809017 + 0.587785i 0.190983 + 0.587785i −0.881966 + 2.71441i 0.500000 + 1.53884i 1.30902 + 0.951057i 0.690983 2.12663i 0.309017 + 0.951057i −3.73607 + 2.71441i
199.1 0.190983 0.587785i −0.309017 + 0.951057i 1.30902 + 0.951057i −3.11803 + 2.26538i 0.500000 + 0.363271i 0.190983 0.587785i 1.80902 1.31433i −0.809017 0.587785i 0.736068 + 2.26538i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
71.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 213.2.e.a 4
3.b odd 2 1 639.2.f.a 4
71.c even 5 1 inner 213.2.e.a 4
213.h odd 10 1 639.2.f.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
213.2.e.a 4 1.a even 1 1 trivial
213.2.e.a 4 71.c even 5 1 inner
639.2.f.a 4 3.b odd 2 1
639.2.f.a 4 213.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 3T_{2}^{3} + 4T_{2}^{2} - 2T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(213, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 8 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$7$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} + 13 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$13$ \( T^{4} - 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 14 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$23$ \( (T^{2} - 2 T - 19)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 16 T^{3} + \cdots + 3481 \) Copy content Toggle raw display
$31$ \( T^{4} + 13 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$37$ \( (T^{2} + 7 T + 11)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 5 T - 25)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{4} + 15 T^{3} + \cdots + 2025 \) Copy content Toggle raw display
$53$ \( T^{4} - 9 T^{3} + \cdots + 17161 \) Copy content Toggle raw display
$59$ \( T^{4} - 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$61$ \( T^{4} + 5 T^{3} + \cdots + 3025 \) Copy content Toggle raw display
$67$ \( T^{4} - 16 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$71$ \( T^{4} + 19 T^{3} + \cdots + 5041 \) Copy content Toggle raw display
$73$ \( T^{4} - 20 T^{3} + \cdots + 3025 \) Copy content Toggle raw display
$79$ \( T^{4} + 27 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$83$ \( T^{4} + 17 T^{3} + \cdots + 5041 \) Copy content Toggle raw display
$89$ \( T^{4} - 14 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$97$ \( (T^{2} - 6 T - 71)^{2} \) Copy content Toggle raw display
show more
show less