Properties

Label 2112.2.m.h.1121.5
Level $2112$
Weight $2$
Character 2112.1121
Analytic conductor $16.864$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2112,2,Mod(1121,2112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2112.1121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2112.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0, 0,0,32,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(39)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8644049069\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1121.5
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 2112.1121
Dual form 2112.2.m.h.1121.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 - 1.00000i) q^{3} -2.44949 q^{5} +4.24264i q^{7} +(1.00000 - 2.82843i) q^{9} +(2.82843 + 1.73205i) q^{11} -4.24264 q^{13} +(-3.46410 + 2.44949i) q^{15} -6.92820 q^{17} +4.89898 q^{19} +(4.24264 + 6.00000i) q^{21} -2.44949i q^{23} +1.00000 q^{25} +(-1.41421 - 5.00000i) q^{27} -6.00000i q^{29} -10.3923 q^{31} +(5.73205 - 0.378937i) q^{33} -10.3923i q^{35} +(-6.00000 + 4.24264i) q^{39} -3.46410 q^{41} -9.79796 q^{43} +(-2.44949 + 6.92820i) q^{45} -2.44949i q^{47} -11.0000 q^{49} +(-9.79796 + 6.92820i) q^{51} +2.44949 q^{53} +(-6.92820 - 4.24264i) q^{55} +(6.92820 - 4.89898i) q^{57} -2.82843 q^{59} +4.24264 q^{61} +(12.0000 + 4.24264i) q^{63} +10.3923 q^{65} +4.00000i q^{67} +(-2.44949 - 3.46410i) q^{69} -7.34847i q^{71} +4.89898i q^{73} +(1.41421 - 1.00000i) q^{75} +(-7.34847 + 12.0000i) q^{77} +12.7279i q^{79} +(-7.00000 - 5.65685i) q^{81} +16.9706 q^{85} +(-6.00000 - 8.48528i) q^{87} +2.82843i q^{89} -18.0000i q^{91} +(-14.6969 + 10.3923i) q^{93} -12.0000 q^{95} -16.0000 q^{97} +(7.72741 - 6.26795i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{9} + 8 q^{25} + 32 q^{33} - 48 q^{39} - 88 q^{49} + 96 q^{63} - 56 q^{81} - 48 q^{87} - 96 q^{95} - 128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2112\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(1409\) \(1729\) \(2047\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421 1.00000i 0.816497 0.577350i
\(4\) 0 0
\(5\) −2.44949 −1.09545 −0.547723 0.836660i \(-0.684505\pi\)
−0.547723 + 0.836660i \(0.684505\pi\)
\(6\) 0 0
\(7\) 4.24264i 1.60357i 0.597614 + 0.801784i \(0.296115\pi\)
−0.597614 + 0.801784i \(0.703885\pi\)
\(8\) 0 0
\(9\) 1.00000 2.82843i 0.333333 0.942809i
\(10\) 0 0
\(11\) 2.82843 + 1.73205i 0.852803 + 0.522233i
\(12\) 0 0
\(13\) −4.24264 −1.17670 −0.588348 0.808608i \(-0.700222\pi\)
−0.588348 + 0.808608i \(0.700222\pi\)
\(14\) 0 0
\(15\) −3.46410 + 2.44949i −0.894427 + 0.632456i
\(16\) 0 0
\(17\) −6.92820 −1.68034 −0.840168 0.542326i \(-0.817544\pi\)
−0.840168 + 0.542326i \(0.817544\pi\)
\(18\) 0 0
\(19\) 4.89898 1.12390 0.561951 0.827170i \(-0.310051\pi\)
0.561951 + 0.827170i \(0.310051\pi\)
\(20\) 0 0
\(21\) 4.24264 + 6.00000i 0.925820 + 1.30931i
\(22\) 0 0
\(23\) 2.44949i 0.510754i −0.966842 0.255377i \(-0.917800\pi\)
0.966842 0.255377i \(-0.0821996\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.41421 5.00000i −0.272166 0.962250i
\(28\) 0 0
\(29\) 6.00000i 1.11417i −0.830455 0.557086i \(-0.811919\pi\)
0.830455 0.557086i \(-0.188081\pi\)
\(30\) 0 0
\(31\) −10.3923 −1.86651 −0.933257 0.359211i \(-0.883046\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 0 0
\(33\) 5.73205 0.378937i 0.997822 0.0659645i
\(34\) 0 0
\(35\) 10.3923i 1.75662i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) −6.00000 + 4.24264i −0.960769 + 0.679366i
\(40\) 0 0
\(41\) −3.46410 −0.541002 −0.270501 0.962720i \(-0.587189\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 0 0
\(43\) −9.79796 −1.49417 −0.747087 0.664726i \(-0.768548\pi\)
−0.747087 + 0.664726i \(0.768548\pi\)
\(44\) 0 0
\(45\) −2.44949 + 6.92820i −0.365148 + 1.03280i
\(46\) 0 0
\(47\) 2.44949i 0.357295i −0.983913 0.178647i \(-0.942828\pi\)
0.983913 0.178647i \(-0.0571721\pi\)
\(48\) 0 0
\(49\) −11.0000 −1.57143
\(50\) 0 0
\(51\) −9.79796 + 6.92820i −1.37199 + 0.970143i
\(52\) 0 0
\(53\) 2.44949 0.336463 0.168232 0.985747i \(-0.446194\pi\)
0.168232 + 0.985747i \(0.446194\pi\)
\(54\) 0 0
\(55\) −6.92820 4.24264i −0.934199 0.572078i
\(56\) 0 0
\(57\) 6.92820 4.89898i 0.917663 0.648886i
\(58\) 0 0
\(59\) −2.82843 −0.368230 −0.184115 0.982905i \(-0.558942\pi\)
−0.184115 + 0.982905i \(0.558942\pi\)
\(60\) 0 0
\(61\) 4.24264 0.543214 0.271607 0.962408i \(-0.412445\pi\)
0.271607 + 0.962408i \(0.412445\pi\)
\(62\) 0 0
\(63\) 12.0000 + 4.24264i 1.51186 + 0.534522i
\(64\) 0 0
\(65\) 10.3923 1.28901
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) −2.44949 3.46410i −0.294884 0.417029i
\(70\) 0 0
\(71\) 7.34847i 0.872103i −0.899922 0.436051i \(-0.856377\pi\)
0.899922 0.436051i \(-0.143623\pi\)
\(72\) 0 0
\(73\) 4.89898i 0.573382i 0.958023 + 0.286691i \(0.0925553\pi\)
−0.958023 + 0.286691i \(0.907445\pi\)
\(74\) 0 0
\(75\) 1.41421 1.00000i 0.163299 0.115470i
\(76\) 0 0
\(77\) −7.34847 + 12.0000i −0.837436 + 1.36753i
\(78\) 0 0
\(79\) 12.7279i 1.43200i 0.698099 + 0.716002i \(0.254030\pi\)
−0.698099 + 0.716002i \(0.745970\pi\)
\(80\) 0 0
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 16.9706 1.84072
\(86\) 0 0
\(87\) −6.00000 8.48528i −0.643268 0.909718i
\(88\) 0 0
\(89\) 2.82843i 0.299813i 0.988700 + 0.149906i \(0.0478972\pi\)
−0.988700 + 0.149906i \(0.952103\pi\)
\(90\) 0 0
\(91\) 18.0000i 1.88691i
\(92\) 0 0
\(93\) −14.6969 + 10.3923i −1.52400 + 1.07763i
\(94\) 0 0
\(95\) −12.0000 −1.23117
\(96\) 0 0
\(97\) −16.0000 −1.62455 −0.812277 0.583272i \(-0.801772\pi\)
−0.812277 + 0.583272i \(0.801772\pi\)
\(98\) 0 0
\(99\) 7.72741 6.26795i 0.776634 0.629953i
\(100\) 0 0
\(101\) 6.00000i 0.597022i 0.954406 + 0.298511i \(0.0964900\pi\)
−0.954406 + 0.298511i \(0.903510\pi\)
\(102\) 0 0
\(103\) −3.46410 −0.341328 −0.170664 0.985329i \(-0.554591\pi\)
−0.170664 + 0.985329i \(0.554591\pi\)
\(104\) 0 0
\(105\) −10.3923 14.6969i −1.01419 1.43427i
\(106\) 0 0
\(107\) 17.3205i 1.67444i −0.546869 0.837218i \(-0.684180\pi\)
0.546869 0.837218i \(-0.315820\pi\)
\(108\) 0 0
\(109\) −4.24264 −0.406371 −0.203186 0.979140i \(-0.565129\pi\)
−0.203186 + 0.979140i \(0.565129\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.1421i 1.33038i 0.746674 + 0.665190i \(0.231650\pi\)
−0.746674 + 0.665190i \(0.768350\pi\)
\(114\) 0 0
\(115\) 6.00000i 0.559503i
\(116\) 0 0
\(117\) −4.24264 + 12.0000i −0.392232 + 1.10940i
\(118\) 0 0
\(119\) 29.3939i 2.69453i
\(120\) 0 0
\(121\) 5.00000 + 9.79796i 0.454545 + 0.890724i
\(122\) 0 0
\(123\) −4.89898 + 3.46410i −0.441726 + 0.312348i
\(124\) 0 0
\(125\) 9.79796 0.876356
\(126\) 0 0
\(127\) 4.24264i 0.376473i −0.982124 0.188237i \(-0.939723\pi\)
0.982124 0.188237i \(-0.0602772\pi\)
\(128\) 0 0
\(129\) −13.8564 + 9.79796i −1.21999 + 0.862662i
\(130\) 0 0
\(131\) 20.7846i 1.81596i 0.419014 + 0.907980i \(0.362376\pi\)
−0.419014 + 0.907980i \(0.637624\pi\)
\(132\) 0 0
\(133\) 20.7846i 1.80225i
\(134\) 0 0
\(135\) 3.46410 + 12.2474i 0.298142 + 1.05409i
\(136\) 0 0
\(137\) 19.7990i 1.69154i −0.533546 0.845771i \(-0.679141\pi\)
0.533546 0.845771i \(-0.320859\pi\)
\(138\) 0 0
\(139\) 9.79796 0.831052 0.415526 0.909581i \(-0.363598\pi\)
0.415526 + 0.909581i \(0.363598\pi\)
\(140\) 0 0
\(141\) −2.44949 3.46410i −0.206284 0.291730i
\(142\) 0 0
\(143\) −12.0000 7.34847i −1.00349 0.614510i
\(144\) 0 0
\(145\) 14.6969i 1.22051i
\(146\) 0 0
\(147\) −15.5563 + 11.0000i −1.28307 + 0.907265i
\(148\) 0 0
\(149\) 18.0000i 1.47462i −0.675556 0.737309i \(-0.736096\pi\)
0.675556 0.737309i \(-0.263904\pi\)
\(150\) 0 0
\(151\) 4.24264i 0.345261i 0.984987 + 0.172631i \(0.0552267\pi\)
−0.984987 + 0.172631i \(0.944773\pi\)
\(152\) 0 0
\(153\) −6.92820 + 19.5959i −0.560112 + 1.58424i
\(154\) 0 0
\(155\) 25.4558 2.04466
\(156\) 0 0
\(157\) 13.8564i 1.10586i 0.833227 + 0.552931i \(0.186491\pi\)
−0.833227 + 0.552931i \(0.813509\pi\)
\(158\) 0 0
\(159\) 3.46410 2.44949i 0.274721 0.194257i
\(160\) 0 0
\(161\) 10.3923 0.819028
\(162\) 0 0
\(163\) 10.0000i 0.783260i 0.920123 + 0.391630i \(0.128089\pi\)
−0.920123 + 0.391630i \(0.871911\pi\)
\(164\) 0 0
\(165\) −14.0406 + 0.928203i −1.09306 + 0.0722605i
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 0 0
\(171\) 4.89898 13.8564i 0.374634 1.05963i
\(172\) 0 0
\(173\) 6.00000i 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 0 0
\(175\) 4.24264i 0.320713i
\(176\) 0 0
\(177\) −4.00000 + 2.82843i −0.300658 + 0.212598i
\(178\) 0 0
\(179\) 2.82843 0.211407 0.105703 0.994398i \(-0.466291\pi\)
0.105703 + 0.994398i \(0.466291\pi\)
\(180\) 0 0
\(181\) 13.8564i 1.02994i 0.857209 + 0.514969i \(0.172197\pi\)
−0.857209 + 0.514969i \(0.827803\pi\)
\(182\) 0 0
\(183\) 6.00000 4.24264i 0.443533 0.313625i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −19.5959 12.0000i −1.43300 0.877527i
\(188\) 0 0
\(189\) 21.2132 6.00000i 1.54303 0.436436i
\(190\) 0 0
\(191\) 17.1464i 1.24067i 0.784336 + 0.620336i \(0.213004\pi\)
−0.784336 + 0.620336i \(0.786996\pi\)
\(192\) 0 0
\(193\) 4.89898i 0.352636i 0.984333 + 0.176318i \(0.0564187\pi\)
−0.984333 + 0.176318i \(0.943581\pi\)
\(194\) 0 0
\(195\) 14.6969 10.3923i 1.05247 0.744208i
\(196\) 0 0
\(197\) 6.00000i 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) 24.2487 1.71895 0.859473 0.511182i \(-0.170792\pi\)
0.859473 + 0.511182i \(0.170792\pi\)
\(200\) 0 0
\(201\) 4.00000 + 5.65685i 0.282138 + 0.399004i
\(202\) 0 0
\(203\) 25.4558 1.78665
\(204\) 0 0
\(205\) 8.48528 0.592638
\(206\) 0 0
\(207\) −6.92820 2.44949i −0.481543 0.170251i
\(208\) 0 0
\(209\) 13.8564 + 8.48528i 0.958468 + 0.586939i
\(210\) 0 0
\(211\) 14.6969 1.01178 0.505889 0.862598i \(-0.331164\pi\)
0.505889 + 0.862598i \(0.331164\pi\)
\(212\) 0 0
\(213\) −7.34847 10.3923i −0.503509 0.712069i
\(214\) 0 0
\(215\) 24.0000 1.63679
\(216\) 0 0
\(217\) 44.0908i 2.99308i
\(218\) 0 0
\(219\) 4.89898 + 6.92820i 0.331042 + 0.468165i
\(220\) 0 0
\(221\) 29.3939 1.97725
\(222\) 0 0
\(223\) 3.46410 0.231973 0.115987 0.993251i \(-0.462997\pi\)
0.115987 + 0.993251i \(0.462997\pi\)
\(224\) 0 0
\(225\) 1.00000 2.82843i 0.0666667 0.188562i
\(226\) 0 0
\(227\) 3.46410i 0.229920i −0.993370 0.114960i \(-0.963326\pi\)
0.993370 0.114960i \(-0.0366741\pi\)
\(228\) 0 0
\(229\) 6.92820i 0.457829i −0.973447 0.228914i \(-0.926482\pi\)
0.973447 0.228914i \(-0.0735176\pi\)
\(230\) 0 0
\(231\) 1.60770 + 24.3190i 0.105779 + 1.60007i
\(232\) 0 0
\(233\) −17.3205 −1.13470 −0.567352 0.823475i \(-0.692032\pi\)
−0.567352 + 0.823475i \(0.692032\pi\)
\(234\) 0 0
\(235\) 6.00000i 0.391397i
\(236\) 0 0
\(237\) 12.7279 + 18.0000i 0.826767 + 1.16923i
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) 4.89898i 0.315571i −0.987473 0.157786i \(-0.949565\pi\)
0.987473 0.157786i \(-0.0504355\pi\)
\(242\) 0 0
\(243\) −15.5563 1.00000i −0.997940 0.0641500i
\(244\) 0 0
\(245\) 26.9444 1.72141
\(246\) 0 0
\(247\) −20.7846 −1.32249
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.65685 −0.357057 −0.178529 0.983935i \(-0.557134\pi\)
−0.178529 + 0.983935i \(0.557134\pi\)
\(252\) 0 0
\(253\) 4.24264 6.92820i 0.266733 0.435572i
\(254\) 0 0
\(255\) 24.0000 16.9706i 1.50294 1.06274i
\(256\) 0 0
\(257\) 2.82843i 0.176432i −0.996101 0.0882162i \(-0.971883\pi\)
0.996101 0.0882162i \(-0.0281166\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −16.9706 6.00000i −1.05045 0.371391i
\(262\) 0 0
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 2.82843 + 4.00000i 0.173097 + 0.244796i
\(268\) 0 0
\(269\) −12.2474 −0.746740 −0.373370 0.927682i \(-0.621798\pi\)
−0.373370 + 0.927682i \(0.621798\pi\)
\(270\) 0 0
\(271\) 12.7279i 0.773166i −0.922255 0.386583i \(-0.873655\pi\)
0.922255 0.386583i \(-0.126345\pi\)
\(272\) 0 0
\(273\) −18.0000 25.4558i −1.08941 1.54066i
\(274\) 0 0
\(275\) 2.82843 + 1.73205i 0.170561 + 0.104447i
\(276\) 0 0
\(277\) −12.7279 −0.764747 −0.382373 0.924008i \(-0.624893\pi\)
−0.382373 + 0.924008i \(0.624893\pi\)
\(278\) 0 0
\(279\) −10.3923 + 29.3939i −0.622171 + 1.75977i
\(280\) 0 0
\(281\) 20.7846 1.23991 0.619953 0.784639i \(-0.287152\pi\)
0.619953 + 0.784639i \(0.287152\pi\)
\(282\) 0 0
\(283\) −14.6969 −0.873642 −0.436821 0.899548i \(-0.643896\pi\)
−0.436821 + 0.899548i \(0.643896\pi\)
\(284\) 0 0
\(285\) −16.9706 + 12.0000i −1.00525 + 0.710819i
\(286\) 0 0
\(287\) 14.6969i 0.867533i
\(288\) 0 0
\(289\) 31.0000 1.82353
\(290\) 0 0
\(291\) −22.6274 + 16.0000i −1.32644 + 0.937937i
\(292\) 0 0
\(293\) 18.0000i 1.05157i 0.850617 + 0.525786i \(0.176229\pi\)
−0.850617 + 0.525786i \(0.823771\pi\)
\(294\) 0 0
\(295\) 6.92820 0.403376
\(296\) 0 0
\(297\) 4.66025 16.5916i 0.270415 0.962744i
\(298\) 0 0
\(299\) 10.3923i 0.601003i
\(300\) 0 0
\(301\) 41.5692i 2.39601i
\(302\) 0 0
\(303\) 6.00000 + 8.48528i 0.344691 + 0.487467i
\(304\) 0 0
\(305\) −10.3923 −0.595062
\(306\) 0 0
\(307\) −9.79796 −0.559199 −0.279600 0.960117i \(-0.590202\pi\)
−0.279600 + 0.960117i \(0.590202\pi\)
\(308\) 0 0
\(309\) −4.89898 + 3.46410i −0.278693 + 0.197066i
\(310\) 0 0
\(311\) 12.2474i 0.694489i 0.937775 + 0.347245i \(0.112883\pi\)
−0.937775 + 0.347245i \(0.887117\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 0 0
\(315\) −29.3939 10.3923i −1.65616 0.585540i
\(316\) 0 0
\(317\) 17.1464 0.963039 0.481520 0.876435i \(-0.340085\pi\)
0.481520 + 0.876435i \(0.340085\pi\)
\(318\) 0 0
\(319\) 10.3923 16.9706i 0.581857 0.950169i
\(320\) 0 0
\(321\) −17.3205 24.4949i −0.966736 1.36717i
\(322\) 0 0
\(323\) −33.9411 −1.88853
\(324\) 0 0
\(325\) −4.24264 −0.235339
\(326\) 0 0
\(327\) −6.00000 + 4.24264i −0.331801 + 0.234619i
\(328\) 0 0
\(329\) 10.3923 0.572946
\(330\) 0 0
\(331\) 14.0000i 0.769510i −0.923019 0.384755i \(-0.874286\pi\)
0.923019 0.384755i \(-0.125714\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.79796i 0.535320i
\(336\) 0 0
\(337\) 4.89898i 0.266864i 0.991058 + 0.133432i \(0.0425998\pi\)
−0.991058 + 0.133432i \(0.957400\pi\)
\(338\) 0 0
\(339\) 14.1421 + 20.0000i 0.768095 + 1.08625i
\(340\) 0 0
\(341\) −29.3939 18.0000i −1.59177 0.974755i
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) 0 0
\(345\) 6.00000 + 8.48528i 0.323029 + 0.456832i
\(346\) 0 0
\(347\) 13.8564i 0.743851i −0.928263 0.371925i \(-0.878698\pi\)
0.928263 0.371925i \(-0.121302\pi\)
\(348\) 0 0
\(349\) −21.2132 −1.13552 −0.567758 0.823195i \(-0.692189\pi\)
−0.567758 + 0.823195i \(0.692189\pi\)
\(350\) 0 0
\(351\) 6.00000 + 21.2132i 0.320256 + 1.13228i
\(352\) 0 0
\(353\) 28.2843i 1.50542i 0.658352 + 0.752710i \(0.271254\pi\)
−0.658352 + 0.752710i \(0.728746\pi\)
\(354\) 0 0
\(355\) 18.0000i 0.955341i
\(356\) 0 0
\(357\) −29.3939 41.5692i −1.55569 2.20008i
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 5.00000 0.263158
\(362\) 0 0
\(363\) 16.8690 + 8.85641i 0.885394 + 0.464841i
\(364\) 0 0
\(365\) 12.0000i 0.628109i
\(366\) 0 0
\(367\) 3.46410 0.180825 0.0904123 0.995904i \(-0.471182\pi\)
0.0904123 + 0.995904i \(0.471182\pi\)
\(368\) 0 0
\(369\) −3.46410 + 9.79796i −0.180334 + 0.510061i
\(370\) 0 0
\(371\) 10.3923i 0.539542i
\(372\) 0 0
\(373\) −4.24264 −0.219676 −0.109838 0.993950i \(-0.535033\pi\)
−0.109838 + 0.993950i \(0.535033\pi\)
\(374\) 0 0
\(375\) 13.8564 9.79796i 0.715542 0.505964i
\(376\) 0 0
\(377\) 25.4558i 1.31104i
\(378\) 0 0
\(379\) 34.0000i 1.74646i −0.487306 0.873231i \(-0.662020\pi\)
0.487306 0.873231i \(-0.337980\pi\)
\(380\) 0 0
\(381\) −4.24264 6.00000i −0.217357 0.307389i
\(382\) 0 0
\(383\) 26.9444i 1.37679i −0.725334 0.688397i \(-0.758315\pi\)
0.725334 0.688397i \(-0.241685\pi\)
\(384\) 0 0
\(385\) 18.0000 29.3939i 0.917365 1.49805i
\(386\) 0 0
\(387\) −9.79796 + 27.7128i −0.498058 + 1.40872i
\(388\) 0 0
\(389\) 22.0454 1.11775 0.558873 0.829253i \(-0.311234\pi\)
0.558873 + 0.829253i \(0.311234\pi\)
\(390\) 0 0
\(391\) 16.9706i 0.858238i
\(392\) 0 0
\(393\) 20.7846 + 29.3939i 1.04844 + 1.48272i
\(394\) 0 0
\(395\) 31.1769i 1.56868i
\(396\) 0 0
\(397\) 34.6410i 1.73858i −0.494300 0.869291i \(-0.664576\pi\)
0.494300 0.869291i \(-0.335424\pi\)
\(398\) 0 0
\(399\) 20.7846 + 29.3939i 1.04053 + 1.47153i
\(400\) 0 0
\(401\) 11.3137i 0.564980i −0.959270 0.282490i \(-0.908840\pi\)
0.959270 0.282490i \(-0.0911603\pi\)
\(402\) 0 0
\(403\) 44.0908 2.19632
\(404\) 0 0
\(405\) 17.1464 + 13.8564i 0.852013 + 0.688530i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 19.5959i 0.968956i 0.874804 + 0.484478i \(0.160990\pi\)
−0.874804 + 0.484478i \(0.839010\pi\)
\(410\) 0 0
\(411\) −19.7990 28.0000i −0.976612 1.38114i
\(412\) 0 0
\(413\) 12.0000i 0.590481i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 13.8564 9.79796i 0.678551 0.479808i
\(418\) 0 0
\(419\) 5.65685 0.276355 0.138178 0.990407i \(-0.455875\pi\)
0.138178 + 0.990407i \(0.455875\pi\)
\(420\) 0 0
\(421\) 13.8564i 0.675320i −0.941268 0.337660i \(-0.890365\pi\)
0.941268 0.337660i \(-0.109635\pi\)
\(422\) 0 0
\(423\) −6.92820 2.44949i −0.336861 0.119098i
\(424\) 0 0
\(425\) −6.92820 −0.336067
\(426\) 0 0
\(427\) 18.0000i 0.871081i
\(428\) 0 0
\(429\) −24.3190 + 1.60770i −1.17413 + 0.0776203i
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 14.6969 + 20.7846i 0.704664 + 0.996546i
\(436\) 0 0
\(437\) 12.0000i 0.574038i
\(438\) 0 0
\(439\) 21.2132i 1.01245i −0.862401 0.506225i \(-0.831040\pi\)
0.862401 0.506225i \(-0.168960\pi\)
\(440\) 0 0
\(441\) −11.0000 + 31.1127i −0.523810 + 1.48156i
\(442\) 0 0
\(443\) −5.65685 −0.268765 −0.134383 0.990930i \(-0.542905\pi\)
−0.134383 + 0.990930i \(0.542905\pi\)
\(444\) 0 0
\(445\) 6.92820i 0.328428i
\(446\) 0 0
\(447\) −18.0000 25.4558i −0.851371 1.20402i
\(448\) 0 0
\(449\) 36.7696i 1.73526i 0.497208 + 0.867631i \(0.334358\pi\)
−0.497208 + 0.867631i \(0.665642\pi\)
\(450\) 0 0
\(451\) −9.79796 6.00000i −0.461368 0.282529i
\(452\) 0 0
\(453\) 4.24264 + 6.00000i 0.199337 + 0.281905i
\(454\) 0 0
\(455\) 44.0908i 2.06701i
\(456\) 0 0
\(457\) 19.5959i 0.916658i 0.888783 + 0.458329i \(0.151552\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(458\) 0 0
\(459\) 9.79796 + 34.6410i 0.457330 + 1.61690i
\(460\) 0 0
\(461\) 6.00000i 0.279448i −0.990190 0.139724i \(-0.955378\pi\)
0.990190 0.139724i \(-0.0446215\pi\)
\(462\) 0 0
\(463\) 24.2487 1.12693 0.563467 0.826139i \(-0.309467\pi\)
0.563467 + 0.826139i \(0.309467\pi\)
\(464\) 0 0
\(465\) 36.0000 25.4558i 1.66946 1.18049i
\(466\) 0 0
\(467\) −5.65685 −0.261768 −0.130884 0.991398i \(-0.541782\pi\)
−0.130884 + 0.991398i \(0.541782\pi\)
\(468\) 0 0
\(469\) −16.9706 −0.783628
\(470\) 0 0
\(471\) 13.8564 + 19.5959i 0.638470 + 0.902932i
\(472\) 0 0
\(473\) −27.7128 16.9706i −1.27424 0.780307i
\(474\) 0 0
\(475\) 4.89898 0.224781
\(476\) 0 0
\(477\) 2.44949 6.92820i 0.112154 0.317221i
\(478\) 0 0
\(479\) −36.0000 −1.64488 −0.822441 0.568850i \(-0.807388\pi\)
−0.822441 + 0.568850i \(0.807388\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 14.6969 10.3923i 0.668734 0.472866i
\(484\) 0 0
\(485\) 39.1918 1.77961
\(486\) 0 0
\(487\) 10.3923 0.470920 0.235460 0.971884i \(-0.424340\pi\)
0.235460 + 0.971884i \(0.424340\pi\)
\(488\) 0 0
\(489\) 10.0000 + 14.1421i 0.452216 + 0.639529i
\(490\) 0 0
\(491\) 17.3205i 0.781664i 0.920462 + 0.390832i \(0.127813\pi\)
−0.920462 + 0.390832i \(0.872187\pi\)
\(492\) 0 0
\(493\) 41.5692i 1.87218i
\(494\) 0 0
\(495\) −18.9282 + 15.3533i −0.850759 + 0.690078i
\(496\) 0 0
\(497\) 31.1769 1.39848
\(498\) 0 0
\(499\) 14.0000i 0.626726i 0.949633 + 0.313363i \(0.101456\pi\)
−0.949633 + 0.313363i \(0.898544\pi\)
\(500\) 0 0
\(501\) −16.9706 + 12.0000i −0.758189 + 0.536120i
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) 14.6969i 0.654005i
\(506\) 0 0
\(507\) 7.07107 5.00000i 0.314037 0.222058i
\(508\) 0 0
\(509\) 2.44949 0.108572 0.0542859 0.998525i \(-0.482712\pi\)
0.0542859 + 0.998525i \(0.482712\pi\)
\(510\) 0 0
\(511\) −20.7846 −0.919457
\(512\) 0 0
\(513\) −6.92820 24.4949i −0.305888 1.08148i
\(514\) 0 0
\(515\) 8.48528 0.373906
\(516\) 0 0
\(517\) 4.24264 6.92820i 0.186591 0.304702i
\(518\) 0 0
\(519\) −6.00000 8.48528i −0.263371 0.372463i
\(520\) 0 0
\(521\) 11.3137i 0.495663i 0.968803 + 0.247831i \(0.0797179\pi\)
−0.968803 + 0.247831i \(0.920282\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 4.24264 + 6.00000i 0.185164 + 0.261861i
\(526\) 0 0
\(527\) 72.0000 3.13637
\(528\) 0 0
\(529\) 17.0000 0.739130
\(530\) 0 0
\(531\) −2.82843 + 8.00000i −0.122743 + 0.347170i
\(532\) 0 0
\(533\) 14.6969 0.636595
\(534\) 0 0
\(535\) 42.4264i 1.83425i
\(536\) 0 0
\(537\) 4.00000 2.82843i 0.172613 0.122056i
\(538\) 0 0
\(539\) −31.1127 19.0526i −1.34012 0.820652i
\(540\) 0 0
\(541\) −4.24264 −0.182405 −0.0912027 0.995832i \(-0.529071\pi\)
−0.0912027 + 0.995832i \(0.529071\pi\)
\(542\) 0 0
\(543\) 13.8564 + 19.5959i 0.594635 + 0.840941i
\(544\) 0 0
\(545\) 10.3923 0.445157
\(546\) 0 0
\(547\) −24.4949 −1.04733 −0.523663 0.851925i \(-0.675435\pi\)
−0.523663 + 0.851925i \(0.675435\pi\)
\(548\) 0 0
\(549\) 4.24264 12.0000i 0.181071 0.512148i
\(550\) 0 0
\(551\) 29.3939i 1.25222i
\(552\) 0 0
\(553\) −54.0000 −2.29631
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.0000i 1.27114i −0.772043 0.635570i \(-0.780765\pi\)
0.772043 0.635570i \(-0.219235\pi\)
\(558\) 0 0
\(559\) 41.5692 1.75819
\(560\) 0 0
\(561\) −39.7128 + 2.62536i −1.67668 + 0.110843i
\(562\) 0 0
\(563\) 3.46410i 0.145994i −0.997332 0.0729972i \(-0.976744\pi\)
0.997332 0.0729972i \(-0.0232564\pi\)
\(564\) 0 0
\(565\) 34.6410i 1.45736i
\(566\) 0 0
\(567\) 24.0000 29.6985i 1.00791 1.24722i
\(568\) 0 0
\(569\) 6.92820 0.290445 0.145223 0.989399i \(-0.453610\pi\)
0.145223 + 0.989399i \(0.453610\pi\)
\(570\) 0 0
\(571\) 19.5959 0.820064 0.410032 0.912071i \(-0.365518\pi\)
0.410032 + 0.912071i \(0.365518\pi\)
\(572\) 0 0
\(573\) 17.1464 + 24.2487i 0.716302 + 1.01300i
\(574\) 0 0
\(575\) 2.44949i 0.102151i
\(576\) 0 0
\(577\) 20.0000 0.832611 0.416305 0.909225i \(-0.363325\pi\)
0.416305 + 0.909225i \(0.363325\pi\)
\(578\) 0 0
\(579\) 4.89898 + 6.92820i 0.203595 + 0.287926i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 6.92820 + 4.24264i 0.286937 + 0.175712i
\(584\) 0 0
\(585\) 10.3923 29.3939i 0.429669 1.21529i
\(586\) 0 0
\(587\) −2.82843 −0.116742 −0.0583708 0.998295i \(-0.518591\pi\)
−0.0583708 + 0.998295i \(0.518591\pi\)
\(588\) 0 0
\(589\) −50.9117 −2.09778
\(590\) 0 0
\(591\) −6.00000 8.48528i −0.246807 0.349038i
\(592\) 0 0
\(593\) −20.7846 −0.853522 −0.426761 0.904365i \(-0.640345\pi\)
−0.426761 + 0.904365i \(0.640345\pi\)
\(594\) 0 0
\(595\) 72.0000i 2.95171i
\(596\) 0 0
\(597\) 34.2929 24.2487i 1.40351 0.992434i
\(598\) 0 0
\(599\) 22.0454i 0.900751i 0.892839 + 0.450375i \(0.148710\pi\)
−0.892839 + 0.450375i \(0.851290\pi\)
\(600\) 0 0
\(601\) 4.89898i 0.199834i 0.994996 + 0.0999168i \(0.0318577\pi\)
−0.994996 + 0.0999168i \(0.968142\pi\)
\(602\) 0 0
\(603\) 11.3137 + 4.00000i 0.460730 + 0.162893i
\(604\) 0 0
\(605\) −12.2474 24.0000i −0.497930 0.975739i
\(606\) 0 0
\(607\) 38.1838i 1.54983i 0.632065 + 0.774916i \(0.282208\pi\)
−0.632065 + 0.774916i \(0.717792\pi\)
\(608\) 0 0
\(609\) 36.0000 25.4558i 1.45879 1.03152i
\(610\) 0 0
\(611\) 10.3923i 0.420428i
\(612\) 0 0
\(613\) 38.1838 1.54223 0.771114 0.636697i \(-0.219700\pi\)
0.771114 + 0.636697i \(0.219700\pi\)
\(614\) 0 0
\(615\) 12.0000 8.48528i 0.483887 0.342160i
\(616\) 0 0
\(617\) 14.1421i 0.569341i −0.958625 0.284670i \(-0.908116\pi\)
0.958625 0.284670i \(-0.0918842\pi\)
\(618\) 0 0
\(619\) 20.0000i 0.803868i 0.915669 + 0.401934i \(0.131662\pi\)
−0.915669 + 0.401934i \(0.868338\pi\)
\(620\) 0 0
\(621\) −12.2474 + 3.46410i −0.491473 + 0.139010i
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 28.0812 1.85641i 1.12146 0.0741377i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −24.2487 −0.965326 −0.482663 0.875806i \(-0.660330\pi\)
−0.482663 + 0.875806i \(0.660330\pi\)
\(632\) 0 0
\(633\) 20.7846 14.6969i 0.826114 0.584151i
\(634\) 0 0
\(635\) 10.3923i 0.412406i
\(636\) 0 0
\(637\) 46.6690 1.84909
\(638\) 0 0
\(639\) −20.7846 7.34847i −0.822226 0.290701i
\(640\) 0 0
\(641\) 22.6274i 0.893729i 0.894602 + 0.446865i \(0.147459\pi\)
−0.894602 + 0.446865i \(0.852541\pi\)
\(642\) 0 0
\(643\) 4.00000i 0.157745i −0.996885 0.0788723i \(-0.974868\pi\)
0.996885 0.0788723i \(-0.0251319\pi\)
\(644\) 0 0
\(645\) 33.9411 24.0000i 1.33643 0.944999i
\(646\) 0 0
\(647\) 26.9444i 1.05929i −0.848218 0.529647i \(-0.822325\pi\)
0.848218 0.529647i \(-0.177675\pi\)
\(648\) 0 0
\(649\) −8.00000 4.89898i −0.314027 0.192302i
\(650\) 0 0
\(651\) −44.0908 62.3538i −1.72806 2.44384i
\(652\) 0 0
\(653\) −22.0454 −0.862703 −0.431352 0.902184i \(-0.641963\pi\)
−0.431352 + 0.902184i \(0.641963\pi\)
\(654\) 0 0
\(655\) 50.9117i 1.98928i
\(656\) 0 0
\(657\) 13.8564 + 4.89898i 0.540590 + 0.191127i
\(658\) 0 0
\(659\) 31.1769i 1.21448i −0.794518 0.607240i \(-0.792277\pi\)
0.794518 0.607240i \(-0.207723\pi\)
\(660\) 0 0
\(661\) 20.7846i 0.808428i 0.914665 + 0.404214i \(0.132455\pi\)
−0.914665 + 0.404214i \(0.867545\pi\)
\(662\) 0 0
\(663\) 41.5692 29.3939i 1.61441 1.14156i
\(664\) 0 0
\(665\) 50.9117i 1.97427i
\(666\) 0 0
\(667\) −14.6969 −0.569068
\(668\) 0 0
\(669\) 4.89898 3.46410i 0.189405 0.133930i
\(670\) 0 0
\(671\) 12.0000 + 7.34847i 0.463255 + 0.283685i
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −1.41421 5.00000i −0.0544331 0.192450i
\(676\) 0 0
\(677\) 42.0000i 1.61419i 0.590421 + 0.807096i \(0.298962\pi\)
−0.590421 + 0.807096i \(0.701038\pi\)
\(678\) 0 0
\(679\) 67.8823i 2.60508i
\(680\) 0 0
\(681\) −3.46410 4.89898i −0.132745 0.187729i
\(682\) 0 0
\(683\) 45.2548 1.73163 0.865814 0.500366i \(-0.166801\pi\)
0.865814 + 0.500366i \(0.166801\pi\)
\(684\) 0 0
\(685\) 48.4974i 1.85299i
\(686\) 0 0
\(687\) −6.92820 9.79796i −0.264327 0.373815i
\(688\) 0 0
\(689\) −10.3923 −0.395915
\(690\) 0 0
\(691\) 4.00000i 0.152167i −0.997101 0.0760836i \(-0.975758\pi\)
0.997101 0.0760836i \(-0.0242416\pi\)
\(692\) 0 0
\(693\) 26.5927 + 32.7846i 1.01017 + 1.24538i
\(694\) 0 0
\(695\) −24.0000 −0.910372
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 0 0
\(699\) −24.4949 + 17.3205i −0.926482 + 0.655122i
\(700\) 0 0
\(701\) 42.0000i 1.58632i 0.609015 + 0.793159i \(0.291565\pi\)
−0.609015 + 0.793159i \(0.708435\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 6.00000 + 8.48528i 0.225973 + 0.319574i
\(706\) 0 0
\(707\) −25.4558 −0.957366
\(708\) 0 0
\(709\) 34.6410i 1.30097i −0.759519 0.650485i \(-0.774566\pi\)
0.759519 0.650485i \(-0.225434\pi\)
\(710\) 0 0
\(711\) 36.0000 + 12.7279i 1.35011 + 0.477334i
\(712\) 0 0
\(713\) 25.4558i 0.953329i
\(714\) 0 0
\(715\) 29.3939 + 18.0000i 1.09927 + 0.673162i
\(716\) 0 0
\(717\) −16.9706 + 12.0000i −0.633777 + 0.448148i
\(718\) 0 0
\(719\) 41.6413i 1.55296i 0.630142 + 0.776480i \(0.282997\pi\)
−0.630142 + 0.776480i \(0.717003\pi\)
\(720\) 0 0
\(721\) 14.6969i 0.547343i
\(722\) 0 0
\(723\) −4.89898 6.92820i −0.182195 0.257663i
\(724\) 0 0
\(725\) 6.00000i 0.222834i
\(726\) 0 0
\(727\) 31.1769 1.15629 0.578144 0.815935i \(-0.303777\pi\)
0.578144 + 0.815935i \(0.303777\pi\)
\(728\) 0 0
\(729\) −23.0000 + 14.1421i −0.851852 + 0.523783i
\(730\) 0 0
\(731\) 67.8823 2.51072
\(732\) 0 0
\(733\) −21.2132 −0.783528 −0.391764 0.920066i \(-0.628135\pi\)
−0.391764 + 0.920066i \(0.628135\pi\)
\(734\) 0 0
\(735\) 38.1051 26.9444i 1.40553 0.993859i
\(736\) 0 0
\(737\) −6.92820 + 11.3137i −0.255204 + 0.416746i
\(738\) 0 0
\(739\) 34.2929 1.26148 0.630742 0.775993i \(-0.282751\pi\)
0.630742 + 0.775993i \(0.282751\pi\)
\(740\) 0 0
\(741\) −29.3939 + 20.7846i −1.07981 + 0.763542i
\(742\) 0 0
\(743\) −36.0000 −1.32071 −0.660356 0.750953i \(-0.729595\pi\)
−0.660356 + 0.750953i \(0.729595\pi\)
\(744\) 0 0
\(745\) 44.0908i 1.61536i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 73.4847 2.68507
\(750\) 0 0
\(751\) −31.1769 −1.13766 −0.568831 0.822455i \(-0.692604\pi\)
−0.568831 + 0.822455i \(0.692604\pi\)
\(752\) 0 0
\(753\) −8.00000 + 5.65685i −0.291536 + 0.206147i
\(754\) 0 0
\(755\) 10.3923i 0.378215i
\(756\) 0 0
\(757\) 27.7128i 1.00724i 0.863925 + 0.503620i \(0.167999\pi\)
−0.863925 + 0.503620i \(0.832001\pi\)
\(758\) 0 0
\(759\) −0.928203 14.0406i −0.0336916 0.509641i
\(760\) 0 0
\(761\) 20.7846 0.753442 0.376721 0.926327i \(-0.377052\pi\)
0.376721 + 0.926327i \(0.377052\pi\)
\(762\) 0 0
\(763\) 18.0000i 0.651644i
\(764\) 0 0
\(765\) 16.9706 48.0000i 0.613572 1.73544i
\(766\) 0 0
\(767\) 12.0000 0.433295
\(768\) 0 0
\(769\) 14.6969i 0.529985i −0.964250 0.264993i \(-0.914630\pi\)
0.964250 0.264993i \(-0.0853695\pi\)
\(770\) 0 0
\(771\) −2.82843 4.00000i −0.101863 0.144056i
\(772\) 0 0
\(773\) 7.34847 0.264306 0.132153 0.991229i \(-0.457811\pi\)
0.132153 + 0.991229i \(0.457811\pi\)
\(774\) 0 0
\(775\) −10.3923 −0.373303
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.9706 −0.608034
\(780\) 0 0
\(781\) 12.7279 20.7846i 0.455441 0.743732i
\(782\) 0 0
\(783\) −30.0000 + 8.48528i −1.07211 + 0.303239i
\(784\) 0 0
\(785\) 33.9411i 1.21141i
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) −33.9411 + 24.0000i −1.20834 + 0.854423i
\(790\) 0 0
\(791\) −60.0000 −2.13335
\(792\) 0 0
\(793\) −18.0000 −0.639199
\(794\) 0 0
\(795\) −8.48528 + 6.00000i −0.300942 + 0.212798i
\(796\) 0 0
\(797\) −36.7423 −1.30148 −0.650740 0.759300i \(-0.725541\pi\)
−0.650740 + 0.759300i \(0.725541\pi\)
\(798\) 0 0
\(799\) 16.9706i 0.600375i
\(800\) 0 0
\(801\) 8.00000 + 2.82843i 0.282666 + 0.0999376i
\(802\) 0 0
\(803\) −8.48528 + 13.8564i −0.299439 + 0.488982i
\(804\) 0 0
\(805\) −25.4558 −0.897201
\(806\) 0 0
\(807\) −17.3205 + 12.2474i −0.609711 + 0.431131i
\(808\) 0 0
\(809\) −24.2487 −0.852539 −0.426270 0.904596i \(-0.640173\pi\)
−0.426270 + 0.904596i \(0.640173\pi\)
\(810\) 0 0
\(811\) −19.5959 −0.688106 −0.344053 0.938950i \(-0.611800\pi\)
−0.344053 + 0.938950i \(0.611800\pi\)
\(812\) 0 0
\(813\) −12.7279 18.0000i −0.446388 0.631288i
\(814\) 0 0
\(815\) 24.4949i 0.858019i
\(816\) 0 0
\(817\) −48.0000 −1.67931
\(818\) 0 0
\(819\) −50.9117 18.0000i −1.77900 0.628971i
\(820\) 0 0
\(821\) 30.0000i 1.04701i −0.852023 0.523504i \(-0.824625\pi\)
0.852023 0.523504i \(-0.175375\pi\)
\(822\) 0 0
\(823\) 24.2487 0.845257 0.422628 0.906303i \(-0.361108\pi\)
0.422628 + 0.906303i \(0.361108\pi\)
\(824\) 0 0
\(825\) 5.73205 0.378937i 0.199564 0.0131929i
\(826\) 0 0
\(827\) 20.7846i 0.722752i 0.932420 + 0.361376i \(0.117693\pi\)
−0.932420 + 0.361376i \(0.882307\pi\)
\(828\) 0 0
\(829\) 13.8564i 0.481253i −0.970618 0.240626i \(-0.922647\pi\)
0.970618 0.240626i \(-0.0773529\pi\)
\(830\) 0 0
\(831\) −18.0000 + 12.7279i −0.624413 + 0.441527i
\(832\) 0 0
\(833\) 76.2102 2.64053
\(834\) 0 0
\(835\) 29.3939 1.01722
\(836\) 0 0
\(837\) 14.6969 + 51.9615i 0.508001 + 1.79605i
\(838\) 0 0
\(839\) 12.2474i 0.422829i −0.977397 0.211414i \(-0.932193\pi\)
0.977397 0.211414i \(-0.0678070\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 29.3939 20.7846i 1.01238 0.715860i
\(844\) 0 0
\(845\) −12.2474 −0.421325
\(846\) 0 0
\(847\) −41.5692 + 21.2132i −1.42834 + 0.728894i
\(848\) 0 0
\(849\) −20.7846 + 14.6969i −0.713326 + 0.504398i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 55.1543 1.88845 0.944224 0.329304i \(-0.106814\pi\)
0.944224 + 0.329304i \(0.106814\pi\)
\(854\) 0 0
\(855\) −12.0000 + 33.9411i −0.410391 + 1.16076i
\(856\) 0 0
\(857\) −51.9615 −1.77497 −0.887486 0.460835i \(-0.847550\pi\)
−0.887486 + 0.460835i \(0.847550\pi\)
\(858\) 0 0
\(859\) 14.0000i 0.477674i 0.971060 + 0.238837i \(0.0767661\pi\)
−0.971060 + 0.238837i \(0.923234\pi\)
\(860\) 0 0
\(861\) −14.6969 20.7846i −0.500870 0.708338i
\(862\) 0 0
\(863\) 36.7423i 1.25072i 0.780335 + 0.625362i \(0.215049\pi\)
−0.780335 + 0.625362i \(0.784951\pi\)
\(864\) 0 0
\(865\) 14.6969i 0.499711i
\(866\) 0 0
\(867\) 43.8406 31.0000i 1.48891 1.05282i
\(868\) 0 0
\(869\) −22.0454 + 36.0000i −0.747839 + 1.22122i
\(870\) 0 0
\(871\) 16.9706i 0.575026i
\(872\) 0 0
\(873\) −16.0000 + 45.2548i −0.541518 + 1.53164i
\(874\) 0 0
\(875\) 41.5692i 1.40530i
\(876\) 0 0
\(877\) 4.24264 0.143264 0.0716319 0.997431i \(-0.477179\pi\)
0.0716319 + 0.997431i \(0.477179\pi\)
\(878\) 0 0
\(879\) 18.0000 + 25.4558i 0.607125 + 0.858604i
\(880\) 0 0
\(881\) 22.6274i 0.762337i −0.924506 0.381169i \(-0.875522\pi\)
0.924506 0.381169i \(-0.124478\pi\)
\(882\) 0 0
\(883\) 52.0000i 1.74994i −0.484178 0.874970i \(-0.660881\pi\)
0.484178 0.874970i \(-0.339119\pi\)
\(884\) 0 0
\(885\) 9.79796 6.92820i 0.329355 0.232889i
\(886\) 0 0
\(887\) −12.0000 −0.402921 −0.201460 0.979497i \(-0.564569\pi\)
−0.201460 + 0.979497i \(0.564569\pi\)
\(888\) 0 0
\(889\) 18.0000 0.603701
\(890\) 0 0
\(891\) −10.0010 28.1244i −0.335047 0.942201i
\(892\) 0 0
\(893\) 12.0000i 0.401565i
\(894\) 0 0
\(895\) −6.92820 −0.231584
\(896\) 0 0
\(897\) 10.3923 + 14.6969i 0.346989 + 0.490716i
\(898\) 0 0
\(899\) 62.3538i 2.07962i
\(900\) 0 0
\(901\) −16.9706 −0.565371
\(902\) 0 0
\(903\) −41.5692 58.7878i −1.38334 1.95633i
\(904\) 0 0
\(905\) 33.9411i 1.12824i
\(906\) 0 0
\(907\) 20.0000i 0.664089i −0.943264 0.332045i \(-0.892262\pi\)
0.943264 0.332045i \(-0.107738\pi\)
\(908\) 0 0
\(909\) 16.9706 + 6.00000i 0.562878 + 0.199007i
\(910\) 0 0
\(911\) 12.2474i 0.405776i −0.979202 0.202888i \(-0.934967\pi\)
0.979202 0.202888i \(-0.0650327\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −14.6969 + 10.3923i −0.485866 + 0.343559i
\(916\) 0 0
\(917\) −88.1816 −2.91201
\(918\) 0 0
\(919\) 55.1543i 1.81937i 0.415295 + 0.909687i \(0.363678\pi\)
−0.415295 + 0.909687i \(0.636322\pi\)
\(920\) 0 0
\(921\) −13.8564 + 9.79796i −0.456584 + 0.322854i
\(922\) 0 0
\(923\) 31.1769i 1.02620i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −3.46410 + 9.79796i −0.113776 + 0.321807i
\(928\) 0 0
\(929\) 36.7696i 1.20637i 0.797601 + 0.603185i \(0.206102\pi\)
−0.797601 + 0.603185i \(0.793898\pi\)
\(930\) 0 0
\(931\) −53.8888 −1.76613
\(932\) 0 0
\(933\) 12.2474 + 17.3205i 0.400963 + 0.567048i
\(934\) 0 0
\(935\) 48.0000 + 29.3939i 1.56977 + 0.961283i
\(936\) 0 0
\(937\) 29.3939i 0.960256i 0.877198 + 0.480128i \(0.159410\pi\)
−0.877198 + 0.480128i \(0.840590\pi\)
\(938\) 0 0
\(939\) 14.1421 10.0000i 0.461511 0.326338i
\(940\) 0 0
\(941\) 42.0000i 1.36916i 0.728937 + 0.684580i \(0.240015\pi\)
−0.728937 + 0.684580i \(0.759985\pi\)
\(942\) 0 0
\(943\) 8.48528i 0.276319i
\(944\) 0 0
\(945\) −51.9615 + 14.6969i −1.69031 + 0.478091i
\(946\) 0 0
\(947\) −2.82843 −0.0919115 −0.0459558 0.998943i \(-0.514633\pi\)
−0.0459558 + 0.998943i \(0.514633\pi\)
\(948\) 0 0
\(949\) 20.7846i 0.674697i
\(950\) 0 0
\(951\) 24.2487 17.1464i 0.786318 0.556011i
\(952\) 0 0
\(953\) 3.46410 0.112213 0.0561066 0.998425i \(-0.482131\pi\)
0.0561066 + 0.998425i \(0.482131\pi\)
\(954\) 0 0
\(955\) 42.0000i 1.35909i
\(956\) 0 0
\(957\) −2.27362 34.3923i −0.0734958 1.11175i
\(958\) 0 0
\(959\) 84.0000 2.71250
\(960\) 0 0
\(961\) 77.0000 2.48387
\(962\) 0 0
\(963\) −48.9898 17.3205i −1.57867 0.558146i
\(964\) 0 0
\(965\) 12.0000i 0.386294i
\(966\) 0 0
\(967\) 12.7279i 0.409302i 0.978835 + 0.204651i \(0.0656060\pi\)
−0.978835 + 0.204651i \(0.934394\pi\)
\(968\) 0 0
\(969\) −48.0000 + 33.9411i −1.54198 + 1.09035i
\(970\) 0 0
\(971\) −22.6274 −0.726148 −0.363074 0.931760i \(-0.618273\pi\)
−0.363074 + 0.931760i \(0.618273\pi\)
\(972\) 0 0
\(973\) 41.5692i 1.33265i
\(974\) 0 0
\(975\) −6.00000 + 4.24264i −0.192154 + 0.135873i
\(976\) 0 0
\(977\) 39.5980i 1.26685i 0.773803 + 0.633426i \(0.218352\pi\)
−0.773803 + 0.633426i \(0.781648\pi\)
\(978\) 0 0
\(979\) −4.89898 + 8.00000i −0.156572 + 0.255681i
\(980\) 0 0
\(981\) −4.24264 + 12.0000i −0.135457 + 0.383131i
\(982\) 0 0
\(983\) 7.34847i 0.234380i −0.993110 0.117190i \(-0.962611\pi\)
0.993110 0.117190i \(-0.0373886\pi\)
\(984\) 0 0
\(985\) 14.6969i 0.468283i
\(986\) 0 0
\(987\) 14.6969 10.3923i 0.467809 0.330791i
\(988\) 0 0
\(989\) 24.0000i 0.763156i
\(990\) 0 0
\(991\) 31.1769 0.990367 0.495184 0.868788i \(-0.335101\pi\)
0.495184 + 0.868788i \(0.335101\pi\)
\(992\) 0 0
\(993\) −14.0000 19.7990i −0.444277 0.628302i
\(994\) 0 0
\(995\) −59.3970 −1.88301
\(996\) 0 0
\(997\) −29.6985 −0.940560 −0.470280 0.882517i \(-0.655847\pi\)
−0.470280 + 0.882517i \(0.655847\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2112.2.m.h.1121.5 yes 8
3.2 odd 2 2112.2.m.i.1121.2 yes 8
4.3 odd 2 2112.2.m.i.1121.3 yes 8
8.3 odd 2 2112.2.m.i.1121.6 yes 8
8.5 even 2 inner 2112.2.m.h.1121.4 yes 8
11.10 odd 2 2112.2.m.i.1121.5 yes 8
12.11 even 2 inner 2112.2.m.h.1121.8 yes 8
24.5 odd 2 2112.2.m.i.1121.7 yes 8
24.11 even 2 inner 2112.2.m.h.1121.1 8
33.32 even 2 inner 2112.2.m.h.1121.2 yes 8
44.43 even 2 inner 2112.2.m.h.1121.3 yes 8
88.21 odd 2 2112.2.m.i.1121.4 yes 8
88.43 even 2 inner 2112.2.m.h.1121.6 yes 8
132.131 odd 2 2112.2.m.i.1121.8 yes 8
264.131 odd 2 2112.2.m.i.1121.1 yes 8
264.197 even 2 inner 2112.2.m.h.1121.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2112.2.m.h.1121.1 8 24.11 even 2 inner
2112.2.m.h.1121.2 yes 8 33.32 even 2 inner
2112.2.m.h.1121.3 yes 8 44.43 even 2 inner
2112.2.m.h.1121.4 yes 8 8.5 even 2 inner
2112.2.m.h.1121.5 yes 8 1.1 even 1 trivial
2112.2.m.h.1121.6 yes 8 88.43 even 2 inner
2112.2.m.h.1121.7 yes 8 264.197 even 2 inner
2112.2.m.h.1121.8 yes 8 12.11 even 2 inner
2112.2.m.i.1121.1 yes 8 264.131 odd 2
2112.2.m.i.1121.2 yes 8 3.2 odd 2
2112.2.m.i.1121.3 yes 8 4.3 odd 2
2112.2.m.i.1121.4 yes 8 88.21 odd 2
2112.2.m.i.1121.5 yes 8 11.10 odd 2
2112.2.m.i.1121.6 yes 8 8.3 odd 2
2112.2.m.i.1121.7 yes 8 24.5 odd 2
2112.2.m.i.1121.8 yes 8 132.131 odd 2