Properties

Label 2112.2.m
Level $2112$
Weight $2$
Character orbit 2112.m
Rep. character $\chi_{2112}(1121,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $13$
Sturm bound $768$
Trace bound $39$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2112.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 264 \)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(768\)
Trace bound: \(39\)
Distinguishing \(T_p\): \(5\), \(17\), \(167\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2112, [\chi])\).

Total New Old
Modular forms 408 96 312
Cusp forms 360 96 264
Eisenstein series 48 0 48

Trace form

\( 96 q + 96 q^{25} + 24 q^{33} - 96 q^{49} + 48 q^{81} - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2112, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2112.2.m.a 2112.m 264.m $4$ $16.864$ \(\Q(i, \sqrt{11})\) \(\Q(\sqrt{-11}) \) 2112.2.m.a \(0\) \(0\) \(-12\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{1}q^{3}-3q^{5}+(3+\beta _{3})q^{9}+(-2\beta _{1}+\cdots)q^{11}+\cdots\)
2112.2.m.b 2112.m 264.m $4$ $16.864$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-2}) \) 2112.2.m.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta_1 q^{3}+(-\beta_{3}+1)q^{9}+(-2\beta_{2}+\beta_1)q^{11}+\cdots\)
2112.2.m.c 2112.m 264.m $4$ $16.864$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-2}) \) 2112.2.m.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta_1 q^{3}+(-\beta_{3}+1)q^{9}+(-\beta_{2}+2\beta_1)q^{11}+\cdots\)
2112.2.m.d 2112.m 264.m $4$ $16.864$ \(\Q(i, \sqrt{11})\) \(\Q(\sqrt{-11}) \) 2112.2.m.a \(0\) \(0\) \(12\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(\beta _{1}-\beta _{2})q^{3}+3q^{5}+(2-\beta _{3})q^{9}+\cdots\)
2112.2.m.e 2112.m 264.m $8$ $16.864$ \(\Q(\zeta_{24})\) None 2112.2.m.e \(0\) \(0\) \(-16\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{2} q^{3}-2 q^{5}-\beta_1 q^{7}+3 q^{9}+\cdots\)
2112.2.m.f 2112.m 264.m $8$ $16.864$ 8.0.303595776.1 \(\Q(\sqrt{-11}) \) 2112.2.m.f \(0\) \(0\) \(-12\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-\beta _{3}-\beta _{4}-\beta _{5})q^{3}+(-2+\beta _{2}+\cdots)q^{5}+\cdots\)
2112.2.m.g 2112.m 264.m $8$ $16.864$ \(\Q(\zeta_{24})\) None 2112.2.m.g \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2\beta_{3}+\beta_1)q^{3}-q^{5}+(\beta_{6}-\beta_{5})q^{7}+\cdots\)
2112.2.m.h 2112.m 264.m $8$ $16.864$ \(\Q(\zeta_{24})\) None 2112.2.m.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{6}+\beta_1)q^{3}+\beta_{5} q^{5}-3\beta_{3} q^{7}+\cdots\)
2112.2.m.i 2112.m 264.m $8$ $16.864$ \(\Q(\zeta_{24})\) None 2112.2.m.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{6}+\beta_1)q^{3}+\beta_{5} q^{5}-3\beta_{3} q^{7}+\cdots\)
2112.2.m.j 2112.m 264.m $8$ $16.864$ \(\Q(\zeta_{24})\) None 2112.2.m.g \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2\beta_{3}+\beta_1)q^{3}+q^{5}+(\beta_{6}-\beta_{5})q^{7}+\cdots\)
2112.2.m.k 2112.m 264.m $8$ $16.864$ 8.0.303595776.1 \(\Q(\sqrt{-11}) \) 2112.2.m.f \(0\) \(0\) \(12\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{4}q^{3}+(2-\beta _{2}-\beta _{6})q^{5}+(-1-\beta _{6}+\cdots)q^{9}+\cdots\)
2112.2.m.l 2112.m 264.m $8$ $16.864$ \(\Q(\zeta_{24})\) None 2112.2.m.e \(0\) \(0\) \(16\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{2} q^{3}+2 q^{5}+\beta_1 q^{7}+3 q^{9}+\cdots\)
2112.2.m.m 2112.m 264.m $16$ $16.864$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) \(\Q(\sqrt{-66}) \) 2112.2.m.m \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{5}q^{3}+\beta _{10}q^{5}+\beta _{8}q^{7}-3q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2112, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2112, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1056, [\chi])\)\(^{\oplus 2}\)