Properties

Label 2112.2.m.f.1121.1
Level $2112$
Weight $2$
Character 2112.1121
Analytic conductor $16.864$
Analytic rank $0$
Dimension $8$
CM discriminant -11
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2112,2,Mod(1121,2112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2112.1121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2112.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-12,0,0,0,-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,44,0,0,0, 0,0,0,0,-22,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(39)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8644049069\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.303595776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1121.1
Root \(-0.396143 + 1.68614i\) of defining polynomial
Character \(\chi\) \(=\) 2112.1121
Dual form 2112.2.m.f.1121.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26217 - 1.18614i) q^{3} -4.37228 q^{5} +(0.186141 + 2.99422i) q^{9} +3.31662 q^{11} +(5.51856 + 5.18614i) q^{15} +1.62772i q^{23} +14.1168 q^{25} +(3.31662 - 4.00000i) q^{27} +0.644810 q^{31} +(-4.18614 - 3.93398i) q^{33} -11.0371i q^{37} +(-0.813859 - 13.0916i) q^{45} +12.0000i q^{47} +7.00000 q^{49} -6.00000 q^{53} -14.5012 q^{55} -11.3321 q^{59} +15.1168i q^{67} +(1.93070 - 2.05446i) q^{69} -15.8614i q^{71} +(-17.8178 - 16.7446i) q^{75} +(-8.93070 + 1.11469i) q^{81} -16.0858i q^{89} +(-0.813859 - 0.764836i) q^{93} -17.1168 q^{97} +(0.617359 + 9.93070i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{5} - 10 q^{9} + 44 q^{25} - 22 q^{33} - 18 q^{45} + 56 q^{49} - 48 q^{53} - 42 q^{69} - 14 q^{81} - 18 q^{93} - 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2112\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(1409\) \(1729\) \(2047\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.26217 1.18614i −0.728714 0.684819i
\(4\) 0 0
\(5\) −4.37228 −1.95534 −0.977672 0.210138i \(-0.932609\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0.186141 + 2.99422i 0.0620469 + 0.998073i
\(10\) 0 0
\(11\) 3.31662 1.00000
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 5.51856 + 5.18614i 1.42489 + 1.33906i
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.62772i 0.339403i 0.985496 + 0.169701i \(0.0542803\pi\)
−0.985496 + 0.169701i \(0.945720\pi\)
\(24\) 0 0
\(25\) 14.1168 2.82337
\(26\) 0 0
\(27\) 3.31662 4.00000i 0.638285 0.769800i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0.644810 0.115811 0.0579057 0.998322i \(-0.481558\pi\)
0.0579057 + 0.998322i \(0.481558\pi\)
\(32\) 0 0
\(33\) −4.18614 3.93398i −0.728714 0.684819i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.0371i 1.81449i −0.420602 0.907245i \(-0.638181\pi\)
0.420602 0.907245i \(-0.361819\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −0.813859 13.0916i −0.121323 1.95158i
\(46\) 0 0
\(47\) 12.0000i 1.75038i 0.483779 + 0.875190i \(0.339264\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −14.5012 −1.95534
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.3321 −1.47531 −0.737655 0.675178i \(-0.764067\pi\)
−0.737655 + 0.675178i \(0.764067\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 15.1168i 1.84682i 0.383819 + 0.923408i \(0.374609\pi\)
−0.383819 + 0.923408i \(0.625391\pi\)
\(68\) 0 0
\(69\) 1.93070 2.05446i 0.232429 0.247327i
\(70\) 0 0
\(71\) 15.8614i 1.88240i −0.337846 0.941201i \(-0.609698\pi\)
0.337846 0.941201i \(-0.390302\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) −17.8178 16.7446i −2.05743 1.93350i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −8.93070 + 1.11469i −0.992300 + 0.123855i
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.0858i 1.70509i −0.522654 0.852545i \(-0.675058\pi\)
0.522654 0.852545i \(-0.324942\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.813859 0.764836i −0.0843933 0.0793098i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −17.1168 −1.73795 −0.868976 0.494854i \(-0.835222\pi\)
−0.868976 + 0.494854i \(0.835222\pi\)
\(98\) 0 0
\(99\) 0.617359 + 9.93070i 0.0620469 + 0.998073i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −19.8997 −1.96078 −0.980390 0.197066i \(-0.936859\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −13.0916 + 13.9307i −1.24260 + 1.32224i
\(112\) 0 0
\(113\) 19.8448i 1.86685i −0.358778 0.933423i \(-0.616806\pi\)
0.358778 0.933423i \(-0.383194\pi\)
\(114\) 0 0
\(115\) 7.11684i 0.663649i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −39.8614 −3.56531
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −14.5012 + 17.4891i −1.24807 + 1.50522i
\(136\) 0 0
\(137\) 14.2063i 1.21372i −0.794808 0.606861i \(-0.792428\pi\)
0.794808 0.606861i \(-0.207572\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 14.2337 15.1460i 1.19869 1.27553i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −8.83518 8.30298i −0.728714 0.684819i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.81929 −0.226451
\(156\) 0 0
\(157\) 24.8935i 1.98672i 0.115050 + 0.993360i \(0.463297\pi\)
−0.115050 + 0.993360i \(0.536703\pi\)
\(158\) 0 0
\(159\) 7.57301 + 7.11684i 0.600579 + 0.564402i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 16.0000i 1.25322i −0.779334 0.626608i \(-0.784443\pi\)
0.779334 0.626608i \(-0.215557\pi\)
\(164\) 0 0
\(165\) 18.3030 + 17.2005i 1.42489 + 1.33906i
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 14.3030 + 13.4414i 1.07508 + 1.01032i
\(178\) 0 0
\(179\) 26.4781 1.97907 0.989533 0.144308i \(-0.0460955\pi\)
0.989533 + 0.144308i \(0.0460955\pi\)
\(180\) 0 0
\(181\) 16.6757i 1.23949i −0.784801 0.619747i \(-0.787235\pi\)
0.784801 0.619747i \(-0.212765\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 48.2574i 3.54795i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.6060i 0.912136i −0.889945 0.456068i \(-0.849257\pi\)
0.889945 0.456068i \(-0.150743\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 19.8997 1.41066 0.705328 0.708881i \(-0.250800\pi\)
0.705328 + 0.708881i \(0.250800\pi\)
\(200\) 0 0
\(201\) 17.9307 19.0800i 1.26473 1.34580i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.87375 + 0.302985i −0.338749 + 0.0210589i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) −18.8139 + 20.0198i −1.28910 + 1.37173i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −15.7908 −1.05743 −0.528716 0.848799i \(-0.677326\pi\)
−0.528716 + 0.848799i \(0.677326\pi\)
\(224\) 0 0
\(225\) 2.62772 + 42.2689i 0.175181 + 2.81793i
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 19.2549i 1.27240i −0.771523 0.636201i \(-0.780505\pi\)
0.771523 0.636201i \(-0.219495\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 52.4674i 3.42259i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 12.5942 + 9.18614i 0.807921 + 0.589291i
\(244\) 0 0
\(245\) −30.6060 −1.95534
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −15.0911 −0.952543 −0.476272 0.879298i \(-0.658012\pi\)
−0.476272 + 0.879298i \(0.658012\pi\)
\(252\) 0 0
\(253\) 5.39853i 0.339403i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 26.5330i 1.65508i −0.561405 0.827541i \(-0.689739\pi\)
0.561405 0.827541i \(-0.310261\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 26.2337 1.61152
\(266\) 0 0
\(267\) −19.0800 + 20.3030i −1.16768 + 1.24252i
\(268\) 0 0
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 46.8203 2.82337
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0.120025 + 1.93070i 0.00718573 + 0.115588i
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 21.6043 + 20.3030i 1.26647 + 1.19018i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 49.5470 2.88474
\(296\) 0 0
\(297\) 11.0000 13.2665i 0.638285 0.769800i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 25.1168 + 23.6039i 1.42885 + 1.34278i
\(310\) 0 0
\(311\) 12.0000i 0.680458i 0.940343 + 0.340229i \(0.110505\pi\)
−0.940343 + 0.340229i \(0.889495\pi\)
\(312\) 0 0
\(313\) −35.3505 −1.99813 −0.999065 0.0432311i \(-0.986235\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.60597 −0.371028 −0.185514 0.982642i \(-0.559395\pi\)
−0.185514 + 0.982642i \(0.559395\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.88316i 0.488262i −0.969742 0.244131i \(-0.921497\pi\)
0.969742 0.244131i \(-0.0785028\pi\)
\(332\) 0 0
\(333\) 33.0475 2.05446i 1.81099 0.112583i
\(334\) 0 0
\(335\) 66.0951i 3.61116i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) −23.5388 + 25.0475i −1.27845 + 1.36040i
\(340\) 0 0
\(341\) 2.13859 0.115811
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −8.44158 + 8.98266i −0.454479 + 0.483610i
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.4472i 0.556049i −0.960574 0.278024i \(-0.910320\pi\)
0.960574 0.278024i \(-0.0896796\pi\)
\(354\) 0 0
\(355\) 69.3505i 3.68074i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −13.8839 13.0475i −0.728714 0.684819i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 27.0680 1.41294 0.706469 0.707744i \(-0.250287\pi\)
0.706469 + 0.707744i \(0.250287\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 50.3118 + 47.2812i 2.59809 + 2.44159i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 13.3505i 0.685771i 0.939377 + 0.342885i \(0.111404\pi\)
−0.939377 + 0.342885i \(0.888596\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 22.3723i 1.14317i −0.820543 0.571585i \(-0.806329\pi\)
0.820543 0.571585i \(-0.193671\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −24.0951 −1.22167 −0.610835 0.791758i \(-0.709166\pi\)
−0.610835 + 0.791758i \(0.709166\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 39.7995i 1.99748i −0.0501886 0.998740i \(-0.515982\pi\)
0.0501886 0.998740i \(-0.484018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.5330i 1.32499i −0.749064 0.662497i \(-0.769497\pi\)
0.749064 0.662497i \(-0.230503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 39.0475 4.87375i 1.94029 0.242178i
\(406\) 0 0
\(407\) 36.6060i 1.81449i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) −16.8506 + 17.9307i −0.831180 + 0.884456i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −33.1662 −1.62028 −0.810139 0.586238i \(-0.800608\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(420\) 0 0
\(421\) 39.7995i 1.93971i −0.243685 0.969854i \(-0.578356\pi\)
0.243685 0.969854i \(-0.421644\pi\)
\(422\) 0 0
\(423\) −35.9306 + 2.23369i −1.74701 + 0.108606i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −11.3505 −0.545472 −0.272736 0.962089i \(-0.587929\pi\)
−0.272736 + 0.962089i \(0.587929\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 1.30298 + 20.9595i 0.0620469 + 0.998073i
\(442\) 0 0
\(443\) 0.0549029 0.00260851 0.00130426 0.999999i \(-0.499585\pi\)
0.00130426 + 0.999999i \(0.499585\pi\)
\(444\) 0 0
\(445\) 70.3316i 3.33404i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 25.4834i 1.20264i 0.799009 + 0.601319i \(0.205358\pi\)
−0.799009 + 0.601319i \(0.794642\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −11.9220 −0.554061 −0.277031 0.960861i \(-0.589350\pi\)
−0.277031 + 0.960861i \(0.589350\pi\)
\(464\) 0 0
\(465\) 3.55842 + 3.34408i 0.165018 + 0.155078i
\(466\) 0 0
\(467\) −18.9600 −0.877363 −0.438682 0.898642i \(-0.644554\pi\)
−0.438682 + 0.898642i \(0.644554\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 29.5272 31.4198i 1.36054 1.44775i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.11684 17.9653i −0.0511368 0.822575i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 74.8397 3.39829
\(486\) 0 0
\(487\) 42.2140 1.91290 0.956450 0.291896i \(-0.0942860\pi\)
0.956450 + 0.291896i \(0.0942860\pi\)
\(488\) 0 0
\(489\) −18.9783 + 20.1947i −0.858226 + 0.913236i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −2.69927 43.4198i −0.121323 1.95158i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 40.0000i 1.79065i 0.445418 + 0.895323i \(0.353055\pi\)
−0.445418 + 0.895323i \(0.646945\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 16.4082 + 15.4198i 0.728714 + 0.684819i
\(508\) 0 0
\(509\) 19.6277 0.869983 0.434992 0.900434i \(-0.356751\pi\)
0.434992 + 0.900434i \(0.356751\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 87.0073 3.83400
\(516\) 0 0
\(517\) 39.7995i 1.75038i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.56768i 0.375357i 0.982231 + 0.187678i \(0.0600963\pi\)
−0.982231 + 0.187678i \(0.939904\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 20.3505 0.884806
\(530\) 0 0
\(531\) −2.10936 33.9307i −0.0915384 1.47247i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −33.4198 31.4067i −1.44217 1.35530i
\(538\) 0 0
\(539\) 23.2164 1.00000
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) −19.7797 + 21.0475i −0.848829 + 0.903237i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 57.2400 60.9090i 2.42970 2.58544i
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 86.7672i 3.65033i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) −14.9525 + 15.9109i −0.624648 + 0.664686i
\(574\) 0 0
\(575\) 22.9783i 0.958259i
\(576\) 0 0
\(577\) −14.8832 −0.619594 −0.309797 0.950803i \(-0.600261\pi\)
−0.309797 + 0.950803i \(0.600261\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −19.8997 −0.824163
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.63325 0.273784 0.136892 0.990586i \(-0.456289\pi\)
0.136892 + 0.990586i \(0.456289\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −25.1168 23.6039i −1.02796 0.966043i
\(598\) 0 0
\(599\) 36.0000i 1.47092i −0.677568 0.735460i \(-0.736966\pi\)
0.677568 0.735460i \(-0.263034\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −45.2632 + 2.81386i −1.84326 + 0.114589i
\(604\) 0 0
\(605\) −48.0951 −1.95534
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26.5330i 1.06818i 0.845428 + 0.534089i \(0.179345\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) 43.5842i 1.75180i −0.482495 0.875899i \(-0.660269\pi\)
0.482495 0.875899i \(-0.339731\pi\)
\(620\) 0 0
\(621\) 6.51087 + 5.39853i 0.261272 + 0.216636i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 103.701 4.14804
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −30.9369 −1.23158 −0.615789 0.787911i \(-0.711162\pi\)
−0.615789 + 0.787911i \(0.711162\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 47.4925 2.95245i 1.87878 0.116797i
\(640\) 0 0
\(641\) 27.3630i 1.08077i 0.841417 + 0.540386i \(0.181722\pi\)
−0.841417 + 0.540386i \(0.818278\pi\)
\(642\) 0 0
\(643\) 5.35053i 0.211004i −0.994419 0.105502i \(-0.966355\pi\)
0.994419 0.105502i \(-0.0336450\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 50.8397i 1.99871i 0.0358667 + 0.999357i \(0.488581\pi\)
−0.0358667 + 0.999357i \(0.511419\pi\)
\(648\) 0 0
\(649\) −37.5842 −1.47531
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −28.3723 −1.11029 −0.555147 0.831753i \(-0.687338\pi\)
−0.555147 + 0.831753i \(0.687338\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 13.6164i 0.529615i −0.964301 0.264807i \(-0.914692\pi\)
0.964301 0.264807i \(-0.0853084\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 19.9307 + 18.7302i 0.770566 + 0.724150i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 46.8203 56.4674i 1.80211 2.17343i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −46.4327 −1.77670 −0.888350 0.459167i \(-0.848148\pi\)
−0.888350 + 0.459167i \(0.848148\pi\)
\(684\) 0 0
\(685\) 62.1138i 2.37325i
\(686\) 0 0
\(687\) −22.8391 + 24.3030i −0.871365 + 0.927217i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 51.5842i 1.96236i 0.193105 + 0.981178i \(0.438144\pi\)
−0.193105 + 0.981178i \(0.561856\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −62.2337 + 66.2227i −2.34386 + 2.49409i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 41.3292i 1.55215i 0.630641 + 0.776075i \(0.282792\pi\)
−0.630641 + 0.776075i \(0.717208\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.04957i 0.0393067i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 39.8614i 1.48658i −0.668970 0.743290i \(-0.733264\pi\)
0.668970 0.743290i \(-0.266736\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −40.9244 −1.51780 −0.758901 0.651206i \(-0.774263\pi\)
−0.758901 + 0.651206i \(0.774263\pi\)
\(728\) 0 0
\(729\) −5.00000 26.5330i −0.185185 0.982704i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 38.6299 + 36.3030i 1.42489 + 1.33906i
\(736\) 0 0
\(737\) 50.1369i 1.84682i
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 44.7933 1.63453 0.817265 0.576262i \(-0.195489\pi\)
0.817265 + 0.576262i \(0.195489\pi\)
\(752\) 0 0
\(753\) 19.0475 + 17.9002i 0.694131 + 0.652319i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 39.7995i 1.44654i −0.690567 0.723269i \(-0.742639\pi\)
0.690567 0.723269i \(-0.257361\pi\)
\(758\) 0 0
\(759\) 6.40342 6.81386i 0.232429 0.247327i
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −31.4719 + 33.4891i −1.13343 + 1.20608i
\(772\) 0 0
\(773\) −54.0000 −1.94225 −0.971123 0.238581i \(-0.923318\pi\)
−0.971123 + 0.238581i \(0.923318\pi\)
\(774\) 0 0
\(775\) 9.10268 0.326978
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 52.6063i 1.88240i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 108.841i 3.88472i
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −33.1113 31.1168i −1.17434 1.10360i
\(796\) 0 0
\(797\) 50.3288 1.78274 0.891368 0.453279i \(-0.149746\pi\)
0.891368 + 0.453279i \(0.149746\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 48.1644 2.99422i 1.70181 0.105796i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −37.8651 35.5842i −1.33291 1.25262i
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 69.9565i 2.45047i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −57.3601 −1.99945 −0.999723 0.0235383i \(-0.992507\pi\)
−0.999723 + 0.0235383i \(0.992507\pi\)
\(824\) 0 0
\(825\) −59.0951 55.5354i −2.05743 1.93350i
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0.240051i 0.00833731i −0.999991 0.00416865i \(-0.998673\pi\)
0.999991 0.00416865i \(-0.00132693\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2.13859 2.57924i 0.0739206 0.0891516i
\(838\) 0 0
\(839\) 54.0951i 1.86757i −0.357834 0.933785i \(-0.616485\pi\)
0.357834 0.933785i \(-0.383515\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 56.8397 1.95534
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 17.9653 0.615843
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 27.5842i 0.941161i 0.882357 + 0.470581i \(0.155956\pi\)
−0.882357 + 0.470581i \(0.844044\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.0000i 1.22545i 0.790295 + 0.612727i \(0.209928\pi\)
−0.790295 + 0.612727i \(0.790072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 21.4569 + 20.1644i 0.728714 + 0.684819i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −3.18614 51.2516i −0.107835 1.73460i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 57.6550i 1.94245i −0.238171 0.971223i \(-0.576548\pi\)
0.238171 0.971223i \(-0.423452\pi\)
\(882\) 0 0
\(883\) 56.0000i 1.88455i −0.334840 0.942275i \(-0.608682\pi\)
0.334840 0.942275i \(-0.391318\pi\)
\(884\) 0 0
\(885\) −62.5367 58.7697i −2.10215 1.97552i
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −29.6198 + 3.69702i −0.992300 + 0.123855i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −115.770 −3.86975
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 72.9108i 2.42364i
\(906\) 0 0
\(907\) 8.00000i 0.265636i 0.991140 + 0.132818i \(0.0424025\pi\)
−0.991140 + 0.132818i \(0.957597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 60.0000i 1.98789i 0.109885 + 0.993944i \(0.464952\pi\)
−0.109885 + 0.993944i \(0.535048\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 155.809i 5.12298i
\(926\) 0 0
\(927\) −3.70415 59.5842i −0.121660 1.95700i
\(928\) 0 0
\(929\) 53.0660i 1.74104i −0.492134 0.870519i \(-0.663783\pi\)
0.492134 0.870519i \(-0.336217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 14.2337 15.1460i 0.465990 0.495859i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 44.6183 + 41.9307i 1.45606 + 1.36836i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −37.7553 −1.22688 −0.613441 0.789741i \(-0.710215\pi\)
−0.613441 + 0.789741i \(0.710215\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 8.33785 + 7.83561i 0.270373 + 0.254087i
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 55.1168i 1.78354i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.5842 −0.986588
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −60.5292 −1.94247 −0.971237 0.238114i \(-0.923471\pi\)
−0.971237 + 0.238114i \(0.923471\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.80862i 0.153842i 0.997037 + 0.0769208i \(0.0245089\pi\)
−0.997037 + 0.0769208i \(0.975491\pi\)
\(978\) 0 0
\(979\) 53.3505i 1.70509i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 6.09509i 0.194403i −0.995265 0.0972017i \(-0.969011\pi\)
0.995265 0.0972017i \(-0.0309892\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 59.6992 1.89641 0.948205 0.317660i \(-0.102897\pi\)
0.948205 + 0.317660i \(0.102897\pi\)
\(992\) 0 0
\(993\) −10.5367 + 11.2120i −0.334371 + 0.355803i
\(994\) 0 0
\(995\) −87.0073 −2.75832
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) −44.1485 36.6060i −1.39680 1.15816i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2112.2.m.f.1121.1 8
3.2 odd 2 2112.2.m.k.1121.7 yes 8
4.3 odd 2 inner 2112.2.m.f.1121.8 yes 8
8.3 odd 2 2112.2.m.k.1121.1 yes 8
8.5 even 2 2112.2.m.k.1121.8 yes 8
11.10 odd 2 CM 2112.2.m.f.1121.1 8
12.11 even 2 2112.2.m.k.1121.2 yes 8
24.5 odd 2 inner 2112.2.m.f.1121.2 yes 8
24.11 even 2 inner 2112.2.m.f.1121.7 yes 8
33.32 even 2 2112.2.m.k.1121.7 yes 8
44.43 even 2 inner 2112.2.m.f.1121.8 yes 8
88.21 odd 2 2112.2.m.k.1121.8 yes 8
88.43 even 2 2112.2.m.k.1121.1 yes 8
132.131 odd 2 2112.2.m.k.1121.2 yes 8
264.131 odd 2 inner 2112.2.m.f.1121.7 yes 8
264.197 even 2 inner 2112.2.m.f.1121.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2112.2.m.f.1121.1 8 1.1 even 1 trivial
2112.2.m.f.1121.1 8 11.10 odd 2 CM
2112.2.m.f.1121.2 yes 8 24.5 odd 2 inner
2112.2.m.f.1121.2 yes 8 264.197 even 2 inner
2112.2.m.f.1121.7 yes 8 24.11 even 2 inner
2112.2.m.f.1121.7 yes 8 264.131 odd 2 inner
2112.2.m.f.1121.8 yes 8 4.3 odd 2 inner
2112.2.m.f.1121.8 yes 8 44.43 even 2 inner
2112.2.m.k.1121.1 yes 8 8.3 odd 2
2112.2.m.k.1121.1 yes 8 88.43 even 2
2112.2.m.k.1121.2 yes 8 12.11 even 2
2112.2.m.k.1121.2 yes 8 132.131 odd 2
2112.2.m.k.1121.7 yes 8 3.2 odd 2
2112.2.m.k.1121.7 yes 8 33.32 even 2
2112.2.m.k.1121.8 yes 8 8.5 even 2
2112.2.m.k.1121.8 yes 8 88.21 odd 2