gp: [N,k,chi] = [2100,1,Mod(257,2100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2100, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 6, 3, 10]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2100.257");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 2100 Z ) × \left(\mathbb{Z}/2100\mathbb{Z}\right)^\times ( Z / 2 1 0 0 Z ) × .
n n n
701 701 7 0 1
1051 1051 1 0 5 1
1177 1177 1 1 7 7
1501 1501 1 5 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− ζ 24 6 -\zeta_{24}^{6} − ζ 2 4 6
− ζ 24 8 -\zeta_{24}^{8} − ζ 2 4 8
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 13 4 + 16 T_{13}^{4} + 16 T 1 3 4 + 1 6
T13^4 + 16
acting on S 1 n e w ( 2100 , [ χ ] ) S_{1}^{\mathrm{new}}(2100, [\chi]) S 1 n e w ( 2 1 0 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 − T 4 + 1 T^{8} - T^{4} + 1 T 8 − T 4 + 1
T^8 - T^4 + 1
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
( T 4 + 1 ) 2 (T^{4} + 1)^{2} ( T 4 + 1 ) 2
(T^4 + 1)^2
11 11 1 1
T 8 T^{8} T 8
T^8
13 13 1 3
( T 4 + 16 ) 2 (T^{4} + 16)^{2} ( T 4 + 1 6 ) 2
(T^4 + 16)^2
17 17 1 7
T 8 T^{8} T 8
T^8
19 19 1 9
T 8 T^{8} T 8
T^8
23 23 2 3
T 8 T^{8} T 8
T^8
29 29 2 9
T 8 T^{8} T 8
T^8
31 31 3 1
( T 2 + 3 T + 3 ) 4 (T^{2} + 3 T + 3)^{4} ( T 2 + 3 T + 3 ) 4
(T^2 + 3*T + 3)^4
37 37 3 7
T 8 − 9 T 4 + 81 T^{8} - 9T^{4} + 81 T 8 − 9 T 4 + 8 1
T^8 - 9*T^4 + 81
41 41 4 1
T 8 T^{8} T 8
T^8
43 43 4 3
( T 4 + 9 ) 2 (T^{4} + 9)^{2} ( T 4 + 9 ) 2
(T^4 + 9)^2
47 47 4 7
T 8 T^{8} T 8
T^8
53 53 5 3
T 8 T^{8} T 8
T^8
59 59 5 9
T 8 T^{8} T 8
T^8
61 61 6 1
( T 2 − 3 T + 3 ) 4 (T^{2} - 3 T + 3)^{4} ( T 2 − 3 T + 3 ) 4
(T^2 - 3*T + 3)^4
67 67 6 7
T 8 T^{8} T 8
T^8
71 71 7 1
T 8 T^{8} T 8
T^8
73 73 7 3
T 8 − T 4 + 1 T^{8} - T^{4} + 1 T 8 − T 4 + 1
T^8 - T^4 + 1
79 79 7 9
( T 4 − T 2 + 1 ) 2 (T^{4} - T^{2} + 1)^{2} ( T 4 − T 2 + 1 ) 2
(T^4 - T^2 + 1)^2
83 83 8 3
T 8 T^{8} T 8
T^8
89 89 8 9
T 8 T^{8} T 8
T^8
97 97 9 7
( T 4 + 1 ) 2 (T^{4} + 1)^{2} ( T 4 + 1 ) 2
(T^4 + 1)^2
show more
show less