Properties

Label 2100.1.cj.a
Level 21002100
Weight 11
Character orbit 2100.cj
Analytic conductor 1.0481.048
Analytic rank 00
Dimension 88
Projective image D6D_{6}
CM discriminant -3
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2100,1,Mod(257,2100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2100, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 3, 10])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2100.257"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2100=223527 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2100.cj (of order 1212, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.048036526531.04803652653
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ12)\Q(\zeta_{12})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.22689450000.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ24q3+ζ243q7+ζ242q9+2ζ249q13ζ244q21ζ243q27+(ζ2481)q31+(ζ247+ζ243)q37++ζ243q97+O(q100) q - \zeta_{24} q^{3} + \zeta_{24}^{3} q^{7} + \zeta_{24}^{2} q^{9} + 2 \zeta_{24}^{9} q^{13} - \zeta_{24}^{4} q^{21} - \zeta_{24}^{3} q^{27} + (\zeta_{24}^{8} - 1) q^{31} + (\zeta_{24}^{7} + \zeta_{24}^{3}) q^{37} + \cdots + \zeta_{24}^{3} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q2112q31+12q61+4q8116q91+O(q100) 8 q - 4 q^{21} - 12 q^{31} + 12 q^{61} + 4 q^{81} - 16 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2100Z)×\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times.

nn 701701 10511051 11771177 15011501
χ(n)\chi(n) 1-1 11 ζ246-\zeta_{24}^{6} ζ248-\zeta_{24}^{8}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
257.1
0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 + 0.258819i
−0.965926 0.258819i
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
0 −0.258819 + 0.965926i 0 0 0 −0.707107 + 0.707107i 0 −0.866025 0.500000i 0
257.2 0 0.258819 0.965926i 0 0 0 0.707107 0.707107i 0 −0.866025 0.500000i 0
593.1 0 −0.965926 0.258819i 0 0 0 0.707107 + 0.707107i 0 0.866025 + 0.500000i 0
593.2 0 0.965926 + 0.258819i 0 0 0 −0.707107 0.707107i 0 0.866025 + 0.500000i 0
857.1 0 −0.965926 + 0.258819i 0 0 0 0.707107 0.707107i 0 0.866025 0.500000i 0
857.2 0 0.965926 0.258819i 0 0 0 −0.707107 + 0.707107i 0 0.866025 0.500000i 0
1193.1 0 −0.258819 0.965926i 0 0 0 −0.707107 0.707107i 0 −0.866025 + 0.500000i 0
1193.2 0 0.258819 + 0.965926i 0 0 0 0.707107 + 0.707107i 0 −0.866025 + 0.500000i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 257.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
5.b even 2 1 inner
5.c odd 4 2 inner
7.d odd 6 1 inner
15.d odd 2 1 inner
15.e even 4 2 inner
21.g even 6 1 inner
35.i odd 6 1 inner
35.k even 12 2 inner
105.p even 6 1 inner
105.w odd 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.1.cj.a 8
3.b odd 2 1 CM 2100.1.cj.a 8
5.b even 2 1 inner 2100.1.cj.a 8
5.c odd 4 2 inner 2100.1.cj.a 8
7.d odd 6 1 inner 2100.1.cj.a 8
15.d odd 2 1 inner 2100.1.cj.a 8
15.e even 4 2 inner 2100.1.cj.a 8
21.g even 6 1 inner 2100.1.cj.a 8
35.i odd 6 1 inner 2100.1.cj.a 8
35.k even 12 2 inner 2100.1.cj.a 8
105.p even 6 1 inner 2100.1.cj.a 8
105.w odd 12 2 inner 2100.1.cj.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.1.cj.a 8 1.a even 1 1 trivial
2100.1.cj.a 8 3.b odd 2 1 CM
2100.1.cj.a 8 5.b even 2 1 inner
2100.1.cj.a 8 5.c odd 4 2 inner
2100.1.cj.a 8 7.d odd 6 1 inner
2100.1.cj.a 8 15.d odd 2 1 inner
2100.1.cj.a 8 15.e even 4 2 inner
2100.1.cj.a 8 21.g even 6 1 inner
2100.1.cj.a 8 35.i odd 6 1 inner
2100.1.cj.a 8 35.k even 12 2 inner
2100.1.cj.a 8 105.p even 6 1 inner
2100.1.cj.a 8 105.w odd 12 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T134+16 T_{13}^{4} + 16 acting on S1new(2100,[χ])S_{1}^{\mathrm{new}}(2100, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8T4+1 T^{8} - T^{4} + 1 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 (T4+16)2 (T^{4} + 16)^{2} Copy content Toggle raw display
1717 T8 T^{8} Copy content Toggle raw display
1919 T8 T^{8} Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 (T2+3T+3)4 (T^{2} + 3 T + 3)^{4} Copy content Toggle raw display
3737 T89T4+81 T^{8} - 9T^{4} + 81 Copy content Toggle raw display
4141 T8 T^{8} Copy content Toggle raw display
4343 (T4+9)2 (T^{4} + 9)^{2} Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 (T23T+3)4 (T^{2} - 3 T + 3)^{4} Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 T8T4+1 T^{8} - T^{4} + 1 Copy content Toggle raw display
7979 (T4T2+1)2 (T^{4} - T^{2} + 1)^{2} Copy content Toggle raw display
8383 T8 T^{8} Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
show more
show less