L(s) = 1 | − 12·31-s + 12·61-s + 81-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯ |
L(s) = 1 | − 12·31-s + 12·61-s + 81-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.074648846\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.074648846\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T^{4} + T^{8} \) |
| 5 | \( 1 \) |
| 7 | \( ( 1 + T^{4} )^{2} \) |
good | 11 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 13 | \( ( 1 + T^{4} )^{4} \) |
| 17 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 19 | \( ( 1 - T^{2} + T^{4} )^{4} \) |
| 23 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 29 | \( ( 1 + T^{2} )^{8} \) |
| 31 | \( ( 1 + T )^{8}( 1 + T + T^{2} )^{4} \) |
| 37 | \( ( 1 + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 41 | \( ( 1 + T^{2} )^{8} \) |
| 43 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 47 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 53 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 59 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 61 | \( ( 1 - T )^{8}( 1 - T + T^{2} )^{4} \) |
| 67 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 71 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 73 | \( ( 1 + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 79 | \( ( 1 + T^{2} )^{4}( 1 - T^{2} + T^{4} )^{2} \) |
| 83 | \( ( 1 + T^{4} )^{4} \) |
| 89 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 97 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.97480310746387872597649415265, −3.97426534813684829724170638642, −3.80151191636721812563174948801, −3.76329922708029081988276305432, −3.56485381761721820845231299097, −3.56154508626485508948789706783, −3.45327380785973644971106557594, −3.21008688704602477792723705882, −3.20010691258553470009044565321, −2.96156606003781770572298266331, −2.71434838345466428875317360185, −2.65531428191338931458688699375, −2.47788830730569797093290159977, −2.39614075720857589713401689299, −2.07361228374567090277296386066, −2.03757011849520878481465676673, −2.01497922518014752785080926093, −1.84530573513515084467263473055, −1.78317008364065344304475895942, −1.59210099542109706442567642959, −1.56723806494348369525921877677, −1.20973692382680506961616251657, −0.77019140704183156745807313154, −0.58972089032508073720877745366, −0.55337398647452010738487467046,
0.55337398647452010738487467046, 0.58972089032508073720877745366, 0.77019140704183156745807313154, 1.20973692382680506961616251657, 1.56723806494348369525921877677, 1.59210099542109706442567642959, 1.78317008364065344304475895942, 1.84530573513515084467263473055, 2.01497922518014752785080926093, 2.03757011849520878481465676673, 2.07361228374567090277296386066, 2.39614075720857589713401689299, 2.47788830730569797093290159977, 2.65531428191338931458688699375, 2.71434838345466428875317360185, 2.96156606003781770572298266331, 3.20010691258553470009044565321, 3.21008688704602477792723705882, 3.45327380785973644971106557594, 3.56154508626485508948789706783, 3.56485381761721820845231299097, 3.76329922708029081988276305432, 3.80151191636721812563174948801, 3.97426534813684829724170638642, 3.97480310746387872597649415265
Plot not available for L-functions of degree greater than 10.