Defining parameters
| Level: | \( N \) | \(=\) | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 210.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(11\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(210))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 56 | 5 | 51 |
| Cusp forms | 41 | 5 | 36 |
| Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(1\) | \(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(0\) | \(0\) | \(0\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(5\) | \(0\) | \(5\) | \(4\) | \(0\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(4\) | \(0\) | \(4\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(4\) | \(0\) | \(4\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(4\) | \(0\) | \(4\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(4\) | \(1\) | \(3\) | \(3\) | \(1\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(4\) | \(0\) | \(4\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(5\) | \(0\) | \(5\) | \(4\) | \(0\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(3\) | \(1\) | \(2\) | \(2\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(3\) | \(1\) | \(2\) | \(2\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(5\) | \(1\) | \(4\) | \(4\) | \(1\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(26\) | \(1\) | \(25\) | \(19\) | \(1\) | \(18\) | \(7\) | \(0\) | \(7\) | ||||||
| Minus space | \(-\) | \(30\) | \(4\) | \(26\) | \(22\) | \(4\) | \(18\) | \(8\) | \(0\) | \(8\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(210))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 7 | |||||||
| 210.2.a.a | $1$ | $1.677$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
| 210.2.a.b | $1$ | $1.677$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
| 210.2.a.c | $1$ | $1.677$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
| 210.2.a.d | $1$ | $1.677$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\) | |
| 210.2.a.e | $1$ | $1.677$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(210))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(210)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 2}\)