Properties

Label 210.2.a
Level $210$
Weight $2$
Character orbit 210.a
Rep. character $\chi_{210}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $5$
Sturm bound $96$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 210.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(96\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(11\), \(17\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(210))\).

Total New Old
Modular forms 56 5 51
Cusp forms 41 5 36
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(1\)\(1\)\(0\)\(1\)\(1\)\(0\)\(0\)\(0\)\(0\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(5\)\(0\)\(5\)\(4\)\(0\)\(4\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(4\)\(0\)\(4\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(4\)\(0\)\(4\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(4\)\(0\)\(4\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(4\)\(1\)\(3\)\(3\)\(1\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(4\)\(0\)\(4\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(5\)\(0\)\(5\)\(4\)\(0\)\(4\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(3\)\(1\)\(2\)\(2\)\(1\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(3\)\(1\)\(2\)\(2\)\(1\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(5\)\(1\)\(4\)\(4\)\(1\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)\(1\)\(0\)\(1\)
Plus space\(+\)\(26\)\(1\)\(25\)\(19\)\(1\)\(18\)\(7\)\(0\)\(7\)
Minus space\(-\)\(30\)\(4\)\(26\)\(22\)\(4\)\(18\)\(8\)\(0\)\(8\)

Trace form

\( 5 q + q^{2} + q^{3} + 5 q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + 5 q^{9} + q^{10} - 4 q^{11} + q^{12} - 2 q^{13} + q^{14} + q^{15} + 5 q^{16} - 14 q^{17} + q^{18} + 4 q^{19} + q^{20} + q^{21}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(210))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 7
210.2.a.a 210.a 1.a $1$ $1.677$ \(\Q\) None 210.2.a.a \(-1\) \(-1\) \(-1\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
210.2.a.b 210.a 1.a $1$ $1.677$ \(\Q\) None 210.2.a.b \(-1\) \(1\) \(1\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
210.2.a.c 210.a 1.a $1$ $1.677$ \(\Q\) None 210.2.a.c \(1\) \(-1\) \(1\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
210.2.a.d 210.a 1.a $1$ $1.677$ \(\Q\) None 210.2.a.d \(1\) \(1\) \(-1\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\)
210.2.a.e 210.a 1.a $1$ $1.677$ \(\Q\) None 210.2.a.e \(1\) \(1\) \(1\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(210))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(210)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 2}\)