Newspace parameters
Level: | \( N \) | \(=\) | \( 21 = 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 21.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.36806021607\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{-3}, \sqrt{-83})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{3} - 20x^{2} - 21x + 441 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - x^{3} - 20x^{2} - 21x + 441 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{3} + 20\nu^{2} - 20\nu - 441 ) / 420 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{3} + \nu^{2} + 41\nu ) / 21 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} + 20\nu - 41 ) / 20 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + \beta_{2} - \beta _1 + 1 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{3} + 2\beta_{2} + 61\beta _1 + 62 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 40\beta_{3} - 20\beta_{2} + 20\beta _1 + 103 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).
\(n\) | \(8\) | \(10\) |
\(\chi(n)\) | \(1\) | \(-1 - \beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 |
|
−3.19493 | − | 5.53379i | 4.50000 | − | 7.79423i | −4.41520 | + | 7.64735i | −19.3645 | − | 33.5404i | −57.5088 | −87.5000 | + | 95.6596i | −148.051 | −40.5000 | − | 70.1481i | −123.737 | + | 214.318i | ||||||||||||||||
4.2 | 4.69493 | + | 8.13186i | 4.50000 | − | 7.79423i | −28.0848 | + | 48.6443i | 35.8645 | + | 62.1192i | 84.5088 | −87.5000 | − | 95.6596i | −226.949 | −40.5000 | − | 70.1481i | −336.763 | + | 583.291i | |||||||||||||||||
16.1 | −3.19493 | + | 5.53379i | 4.50000 | + | 7.79423i | −4.41520 | − | 7.64735i | −19.3645 | + | 33.5404i | −57.5088 | −87.5000 | − | 95.6596i | −148.051 | −40.5000 | + | 70.1481i | −123.737 | − | 214.318i | |||||||||||||||||
16.2 | 4.69493 | − | 8.13186i | 4.50000 | + | 7.79423i | −28.0848 | − | 48.6443i | 35.8645 | − | 62.1192i | 84.5088 | −87.5000 | + | 95.6596i | −226.949 | −40.5000 | + | 70.1481i | −336.763 | − | 583.291i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 21.6.e.b | ✓ | 4 |
3.b | odd | 2 | 1 | 63.6.e.c | 4 | ||
4.b | odd | 2 | 1 | 336.6.q.e | 4 | ||
7.b | odd | 2 | 1 | 147.6.e.l | 4 | ||
7.c | even | 3 | 1 | inner | 21.6.e.b | ✓ | 4 |
7.c | even | 3 | 1 | 147.6.a.i | 2 | ||
7.d | odd | 6 | 1 | 147.6.a.k | 2 | ||
7.d | odd | 6 | 1 | 147.6.e.l | 4 | ||
21.g | even | 6 | 1 | 441.6.a.s | 2 | ||
21.h | odd | 6 | 1 | 63.6.e.c | 4 | ||
21.h | odd | 6 | 1 | 441.6.a.t | 2 | ||
28.g | odd | 6 | 1 | 336.6.q.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
21.6.e.b | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
21.6.e.b | ✓ | 4 | 7.c | even | 3 | 1 | inner |
63.6.e.c | 4 | 3.b | odd | 2 | 1 | ||
63.6.e.c | 4 | 21.h | odd | 6 | 1 | ||
147.6.a.i | 2 | 7.c | even | 3 | 1 | ||
147.6.a.k | 2 | 7.d | odd | 6 | 1 | ||
147.6.e.l | 4 | 7.b | odd | 2 | 1 | ||
147.6.e.l | 4 | 7.d | odd | 6 | 1 | ||
336.6.q.e | 4 | 4.b | odd | 2 | 1 | ||
336.6.q.e | 4 | 28.g | odd | 6 | 1 | ||
441.6.a.s | 2 | 21.g | even | 6 | 1 | ||
441.6.a.t | 2 | 21.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} - 3T_{2}^{3} + 69T_{2}^{2} + 180T_{2} + 3600 \)
acting on \(S_{6}^{\mathrm{new}}(21, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - 3 T^{3} + 69 T^{2} + \cdots + 3600 \)
$3$
\( (T^{2} - 9 T + 81)^{2} \)
$5$
\( T^{4} - 33 T^{3} + 3867 T^{2} + \cdots + 7717284 \)
$7$
\( (T^{2} + 175 T + 16807)^{2} \)
$11$
\( T^{4} - 1137 T^{3} + \cdots + 104412996900 \)
$13$
\( (T^{2} - 925 T + 208864)^{2} \)
$17$
\( T^{4} - 324 T^{3} + \cdots + 1788317798400 \)
$19$
\( T^{4} + 2311 T^{3} + \cdots + 1663584040000 \)
$23$
\( T^{4} + 1596 T^{3} + \cdots + 27756881510400 \)
$29$
\( (T^{2} + 2217 T + 1102716)^{2} \)
$31$
\( T^{4} + 4294 T^{3} + \cdots + 10\!\cdots\!25 \)
$37$
\( T^{4} - 19109 T^{3} + \cdots + 20\!\cdots\!96 \)
$41$
\( (T^{2} + 12858 T - 3221280)^{2} \)
$43$
\( (T^{2} + 2771 T - 257902490)^{2} \)
$47$
\( T^{4} - 23160 T^{3} + \cdots + 12\!\cdots\!16 \)
$53$
\( T^{4} - 31653 T^{3} + \cdots + 35\!\cdots\!00 \)
$59$
\( T^{4} + 41097 T^{3} + \cdots + 28\!\cdots\!44 \)
$61$
\( T^{4} + 42052 T^{3} + \cdots + 15\!\cdots\!00 \)
$67$
\( T^{4} + 30763 T^{3} + \cdots + 10\!\cdots\!00 \)
$71$
\( (T^{2} - 102096 T + 2483190108)^{2} \)
$73$
\( T^{4} - 28577 T^{3} + \cdots + 22\!\cdots\!84 \)
$79$
\( T^{4} - 18464 T^{3} + \cdots + 79\!\cdots\!69 \)
$83$
\( (T^{2} - 61179 T + 711231498)^{2} \)
$89$
\( T^{4} + 29322 T^{3} + \cdots + 45\!\cdots\!16 \)
$97$
\( (T^{2} + 9791 T - 40418570)^{2} \)
show more
show less