Properties

Label 21.6.e
Level $21$
Weight $6$
Character orbit 21.e
Rep. character $\chi_{21}(4,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $14$
Newform subspaces $3$
Sturm bound $16$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 21.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(16\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(21, [\chi])\).

Total New Old
Modular forms 30 14 16
Cusp forms 22 14 8
Eisenstein series 8 0 8

Trace form

\( 14 q + 2 q^{2} - 9 q^{3} - 106 q^{4} + 22 q^{5} + 144 q^{6} + 167 q^{7} - 264 q^{8} - 567 q^{9} - 1182 q^{10} + 466 q^{11} - 288 q^{12} + 2158 q^{13} + 4558 q^{14} + 396 q^{15} - 3034 q^{16} - 1848 q^{17}+ \cdots - 75492 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(21, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
21.6.e.a 21.e 7.c $2$ $3.368$ \(\Q(\sqrt{-3}) \) None 21.6.e.a \(2\) \(9\) \(-11\) \(259\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{2}+9\zeta_{6}q^{3}+28\zeta_{6}q^{4}+\cdots\)
21.6.e.b 21.e 7.c $4$ $3.368$ \(\Q(\sqrt{-3}, \sqrt{-83})\) None 21.6.e.b \(3\) \(18\) \(33\) \(-350\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{1}-\beta _{3})q^{2}-9\beta _{1}q^{3}+(31\beta _{1}+\cdots)q^{4}+\cdots\)
21.6.e.c 21.e 7.c $8$ $3.368$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 21.6.e.c \(-3\) \(-36\) \(0\) \(258\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{1}-\beta _{2})q^{2}+9\beta _{2}q^{3}+(-\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(21, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(21, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 2}\)