Properties

Label 21.4.g.a.5.1
Level $21$
Weight $4$
Character 21.5
Analytic conductor $1.239$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 21.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.23904011012\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} - 29 x^{9} + 6 x^{8} - 49 x^{7} + 1564 x^{6} - 441 x^{5} + 486 x^{4} - 21141 x^{3} - 59049 x + 531441\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 5.1
Root \(2.70662 + 1.29391i\) of defining polynomial
Character \(\chi\) \(=\) 21.5
Dual form 21.4.g.a.17.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-3.93653 - 2.27276i) q^{2} +(-2.24112 + 4.68800i) q^{3} +(6.33084 + 10.9653i) q^{4} +(-5.80193 + 10.0492i) q^{5} +(19.4769 - 13.3609i) q^{6} +(-18.4018 - 2.09174i) q^{7} -21.1897i q^{8} +(-16.9548 - 21.0128i) q^{9} +O(q^{10})\) \(q+(-3.93653 - 2.27276i) q^{2} +(-2.24112 + 4.68800i) q^{3} +(6.33084 + 10.9653i) q^{4} +(-5.80193 + 10.0492i) q^{5} +(19.4769 - 13.3609i) q^{6} +(-18.4018 - 2.09174i) q^{7} -21.1897i q^{8} +(-16.9548 - 21.0128i) q^{9} +(45.6790 - 26.3728i) q^{10} +(15.5157 - 8.95800i) q^{11} +(-65.5937 + 5.10435i) q^{12} +62.4185i q^{13} +(67.6850 + 50.0569i) q^{14} +(-34.1081 - 49.7211i) q^{15} +(2.48762 - 4.30868i) q^{16} +(10.7082 + 18.5472i) q^{17} +(18.9860 + 121.251i) q^{18} +(9.50747 + 5.48914i) q^{19} -146.925 q^{20} +(51.0467 - 81.5796i) q^{21} -81.4374 q^{22} +(-59.8367 - 34.5467i) q^{23} +(99.3376 + 47.4888i) q^{24} +(-4.82490 - 8.35697i) q^{25} +(141.862 - 245.712i) q^{26} +(136.506 - 32.3918i) q^{27} +(-93.5619 - 215.024i) q^{28} +265.583i q^{29} +(21.2635 + 273.248i) q^{30} +(8.85795 - 5.11414i) q^{31} +(-166.392 + 96.0665i) q^{32} +(7.22254 + 92.8136i) q^{33} -97.3486i q^{34} +(127.786 - 172.788i) q^{35} +(123.074 - 318.943i) q^{36} +(-20.8257 + 36.0712i) q^{37} +(-24.9510 - 43.2163i) q^{38} +(-292.618 - 139.887i) q^{39} +(212.941 + 122.941i) q^{40} -31.0035 q^{41} +(-386.357 + 205.124i) q^{42} -224.550 q^{43} +(196.455 + 113.423i) q^{44} +(309.533 - 48.4678i) q^{45} +(157.033 + 271.988i) q^{46} +(-81.8595 + 141.785i) q^{47} +(14.6241 + 21.3182i) q^{48} +(334.249 + 76.9836i) q^{49} +43.8633i q^{50} +(-110.948 + 8.63368i) q^{51} +(-684.440 + 395.161i) q^{52} +(456.586 - 263.610i) q^{53} +(-610.977 - 182.733i) q^{54} +207.895i q^{55} +(-44.3235 + 389.928i) q^{56} +(-47.0405 + 32.2692i) q^{57} +(603.606 - 1045.48i) q^{58} +(-205.978 - 356.765i) q^{59} +(329.276 - 688.783i) q^{60} +(223.807 + 129.215i) q^{61} -46.4928 q^{62} +(268.044 + 422.137i) q^{63} +833.541 q^{64} +(-627.258 - 362.148i) q^{65} +(182.511 - 381.779i) q^{66} +(-161.737 - 280.137i) q^{67} +(-135.584 + 234.838i) q^{68} +(296.056 - 203.091i) q^{69} +(-895.738 + 389.756i) q^{70} -45.4199i q^{71} +(-445.255 + 359.267i) q^{72} +(-486.879 + 281.100i) q^{73} +(163.962 - 94.6635i) q^{74} +(49.9907 - 3.89016i) q^{75} +139.004i q^{76} +(-304.254 + 132.388i) q^{77} +(833.969 + 1215.72i) q^{78} +(-144.610 + 250.473i) q^{79} +(28.8660 + 49.9974i) q^{80} +(-154.073 + 712.532i) q^{81} +(122.046 + 70.4635i) q^{82} +448.767 q^{83} +(1217.72 + 43.2763i) q^{84} -248.513 q^{85} +(883.949 + 510.348i) q^{86} +(-1245.05 - 595.204i) q^{87} +(-189.818 - 328.774i) q^{88} +(-280.814 + 486.384i) q^{89} +(-1328.64 - 512.698i) q^{90} +(130.563 - 1148.61i) q^{91} -874.839i q^{92} +(4.12336 + 52.9875i) q^{93} +(644.484 - 372.093i) q^{94} +(-110.323 + 63.6953i) q^{95} +(-77.4553 - 995.343i) q^{96} -214.364i q^{97} +(-1140.82 - 1062.71i) q^{98} +(-451.297 - 174.147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} + 14 q^{4} - 56 q^{7} - 3 q^{9} + O(q^{10}) \) \( 12 q - 3 q^{3} + 14 q^{4} - 56 q^{7} - 3 q^{9} + 30 q^{10} - 192 q^{12} + 6 q^{15} + 134 q^{16} + 66 q^{18} + 300 q^{19} + 357 q^{21} - 268 q^{22} + 414 q^{24} - 42 q^{25} - 602 q^{28} - 822 q^{30} - 930 q^{31} - 855 q^{33} + 852 q^{36} + 764 q^{37} - 426 q^{39} + 2298 q^{40} + 966 q^{42} - 1012 q^{43} + 2367 q^{45} + 608 q^{46} - 336 q^{49} - 1341 q^{51} - 3000 q^{52} - 4158 q^{54} + 270 q^{57} + 2870 q^{58} - 918 q^{60} + 2358 q^{61} + 1071 q^{63} - 548 q^{64} + 2934 q^{66} + 792 q^{67} - 4242 q^{70} - 2712 q^{72} - 2904 q^{73} - 2418 q^{75} + 4296 q^{78} + 1674 q^{79} + 837 q^{81} + 5040 q^{82} + 3864 q^{84} + 348 q^{85} + 1638 q^{87} - 554 q^{88} - 1218 q^{91} - 1479 q^{93} - 1356 q^{94} - 4410 q^{96} - 3354 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).

\(n\) \(8\) \(10\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.93653 2.27276i −1.39177 0.803541i −0.398262 0.917272i \(-0.630386\pi\)
−0.993512 + 0.113731i \(0.963720\pi\)
\(3\) −2.24112 + 4.68800i −0.431304 + 0.902207i
\(4\) 6.33084 + 10.9653i 0.791355 + 1.37067i
\(5\) −5.80193 + 10.0492i −0.518941 + 0.898832i 0.480817 + 0.876821i \(0.340340\pi\)
−0.999758 + 0.0220109i \(0.992993\pi\)
\(6\) 19.4769 13.3609i 1.32524 0.909097i
\(7\) −18.4018 2.09174i −0.993601 0.112944i
\(8\) 21.1897i 0.936463i
\(9\) −16.9548 21.0128i −0.627954 0.778251i
\(10\) 45.6790 26.3728i 1.44450 0.833980i
\(11\) 15.5157 8.95800i 0.425287 0.245540i −0.272050 0.962283i \(-0.587701\pi\)
0.697337 + 0.716743i \(0.254368\pi\)
\(12\) −65.5937 + 5.10435i −1.57794 + 0.122792i
\(13\) 62.4185i 1.33167i 0.746097 + 0.665837i \(0.231925\pi\)
−0.746097 + 0.665837i \(0.768075\pi\)
\(14\) 67.6850 + 50.0569i 1.29211 + 0.955591i
\(15\) −34.1081 49.7211i −0.587111 0.855862i
\(16\) 2.48762 4.30868i 0.0388690 0.0673231i
\(17\) 10.7082 + 18.5472i 0.152772 + 0.264609i 0.932245 0.361826i \(-0.117847\pi\)
−0.779474 + 0.626435i \(0.784513\pi\)
\(18\) 18.9860 + 121.251i 0.248613 + 1.58773i
\(19\) 9.50747 + 5.48914i 0.114798 + 0.0662787i 0.556300 0.830982i \(-0.312221\pi\)
−0.441502 + 0.897261i \(0.645554\pi\)
\(20\) −146.925 −1.64267
\(21\) 51.0467 81.5796i 0.530443 0.847721i
\(22\) −81.4374 −0.789205
\(23\) −59.8367 34.5467i −0.542470 0.313195i 0.203609 0.979052i \(-0.434733\pi\)
−0.746079 + 0.665857i \(0.768066\pi\)
\(24\) 99.3376 + 47.4888i 0.844883 + 0.403900i
\(25\) −4.82490 8.35697i −0.0385992 0.0668557i
\(26\) 141.862 245.712i 1.07005 1.85339i
\(27\) 136.506 32.3918i 0.972982 0.230881i
\(28\) −93.5619 215.024i −0.631484 1.45128i
\(29\) 265.583i 1.70061i 0.526294 + 0.850303i \(0.323581\pi\)
−0.526294 + 0.850303i \(0.676419\pi\)
\(30\) 21.2635 + 273.248i 0.129406 + 1.66293i
\(31\) 8.85795 5.11414i 0.0513205 0.0296299i −0.474120 0.880460i \(-0.657234\pi\)
0.525441 + 0.850830i \(0.323900\pi\)
\(32\) −166.392 + 96.0665i −0.919195 + 0.530697i
\(33\) 7.22254 + 92.8136i 0.0380995 + 0.489599i
\(34\) 97.3486i 0.491034i
\(35\) 127.786 172.788i 0.617138 0.834470i
\(36\) 123.074 318.943i 0.569788 1.47659i
\(37\) −20.8257 + 36.0712i −0.0925331 + 0.160272i −0.908576 0.417719i \(-0.862830\pi\)
0.816043 + 0.577991i \(0.196163\pi\)
\(38\) −24.9510 43.2163i −0.106515 0.184490i
\(39\) −292.618 139.887i −1.20145 0.574356i
\(40\) 212.941 + 122.941i 0.841723 + 0.485969i
\(41\) −31.0035 −0.118096 −0.0590480 0.998255i \(-0.518807\pi\)
−0.0590480 + 0.998255i \(0.518807\pi\)
\(42\) −386.357 + 205.124i −1.41943 + 0.753603i
\(43\) −224.550 −0.796363 −0.398181 0.917307i \(-0.630359\pi\)
−0.398181 + 0.917307i \(0.630359\pi\)
\(44\) 196.455 + 113.423i 0.673107 + 0.388618i
\(45\) 309.533 48.4678i 1.02539 0.160559i
\(46\) 157.033 + 271.988i 0.503330 + 0.871793i
\(47\) −81.8595 + 141.785i −0.254052 + 0.440031i −0.964638 0.263580i \(-0.915097\pi\)
0.710586 + 0.703611i \(0.248430\pi\)
\(48\) 14.6241 + 21.3182i 0.0439750 + 0.0641046i
\(49\) 334.249 + 76.9836i 0.974487 + 0.224442i
\(50\) 43.8633i 0.124064i
\(51\) −110.948 + 8.63368i −0.304623 + 0.0237050i
\(52\) −684.440 + 395.161i −1.82528 + 1.05383i
\(53\) 456.586 263.610i 1.18334 0.683200i 0.226553 0.973999i \(-0.427254\pi\)
0.956784 + 0.290799i \(0.0939211\pi\)
\(54\) −610.977 182.733i −1.53969 0.460496i
\(55\) 207.895i 0.509682i
\(56\) −44.3235 + 389.928i −0.105768 + 0.930471i
\(57\) −47.0405 + 32.2692i −0.109310 + 0.0749853i
\(58\) 603.606 1045.48i 1.36651 2.36686i
\(59\) −205.978 356.765i −0.454510 0.787234i 0.544150 0.838988i \(-0.316852\pi\)
−0.998660 + 0.0517537i \(0.983519\pi\)
\(60\) 329.276 688.783i 0.708488 1.48202i
\(61\) 223.807 + 129.215i 0.469764 + 0.271218i 0.716141 0.697956i \(-0.245907\pi\)
−0.246377 + 0.969174i \(0.579240\pi\)
\(62\) −46.4928 −0.0952352
\(63\) 268.044 + 422.137i 0.536037 + 0.844194i
\(64\) 833.541 1.62801
\(65\) −627.258 362.148i −1.19695 0.691060i
\(66\) 182.511 381.779i 0.340387 0.712026i
\(67\) −161.737 280.137i −0.294915 0.510808i 0.680050 0.733166i \(-0.261958\pi\)
−0.974965 + 0.222357i \(0.928625\pi\)
\(68\) −135.584 + 234.838i −0.241794 + 0.418799i
\(69\) 296.056 203.091i 0.516536 0.354338i
\(70\) −895.738 + 389.756i −1.52945 + 0.665497i
\(71\) 45.4199i 0.0759205i −0.999279 0.0379603i \(-0.987914\pi\)
0.999279 0.0379603i \(-0.0120860\pi\)
\(72\) −445.255 + 359.267i −0.728803 + 0.588056i
\(73\) −486.879 + 281.100i −0.780615 + 0.450688i −0.836648 0.547741i \(-0.815488\pi\)
0.0560334 + 0.998429i \(0.482155\pi\)
\(74\) 163.962 94.6635i 0.257570 0.148708i
\(75\) 49.9907 3.89016i 0.0769657 0.00598929i
\(76\) 139.004i 0.209800i
\(77\) −304.254 + 132.388i −0.450298 + 0.195935i
\(78\) 833.969 + 1215.72i 1.21062 + 1.76478i
\(79\) −144.610 + 250.473i −0.205949 + 0.356714i −0.950435 0.310925i \(-0.899361\pi\)
0.744486 + 0.667638i \(0.232695\pi\)
\(80\) 28.8660 + 49.9974i 0.0403415 + 0.0698735i
\(81\) −154.073 + 712.532i −0.211348 + 0.977411i
\(82\) 122.046 + 70.4635i 0.164363 + 0.0948950i
\(83\) 448.767 0.593477 0.296738 0.954959i \(-0.404101\pi\)
0.296738 + 0.954959i \(0.404101\pi\)
\(84\) 1217.72 + 43.2763i 1.58171 + 0.0562123i
\(85\) −248.513 −0.317118
\(86\) 883.949 + 510.348i 1.10836 + 0.639910i
\(87\) −1245.05 595.204i −1.53430 0.733478i
\(88\) −189.818 328.774i −0.229939 0.398266i
\(89\) −280.814 + 486.384i −0.334452 + 0.579288i −0.983379 0.181562i \(-0.941885\pi\)
0.648927 + 0.760850i \(0.275218\pi\)
\(90\) −1328.64 512.698i −1.55612 0.600479i
\(91\) 130.563 1148.61i 0.150404 1.32315i
\(92\) 874.839i 0.991394i
\(93\) 4.12336 + 52.9875i 0.00459756 + 0.0590811i
\(94\) 644.484 372.093i 0.707165 0.408282i
\(95\) −110.323 + 63.6953i −0.119147 + 0.0687895i
\(96\) −77.4553 995.343i −0.0823463 1.05820i
\(97\) 214.364i 0.224385i −0.993686 0.112192i \(-0.964213\pi\)
0.993686 0.112192i \(-0.0357873\pi\)
\(98\) −1140.82 1062.71i −1.17592 1.09541i
\(99\) −451.297 174.147i −0.458152 0.176793i
\(100\) 61.0913 105.813i 0.0610913 0.105813i
\(101\) 858.845 + 1487.56i 0.846122 + 1.46553i 0.884644 + 0.466268i \(0.154402\pi\)
−0.0385219 + 0.999258i \(0.512265\pi\)
\(102\) 456.370 + 218.170i 0.443014 + 0.211785i
\(103\) 1002.61 + 578.855i 0.959123 + 0.553750i 0.895903 0.444250i \(-0.146530\pi\)
0.0632200 + 0.998000i \(0.479863\pi\)
\(104\) 1322.63 1.24706
\(105\) 523.644 + 986.300i 0.486690 + 0.916696i
\(106\) −2396.48 −2.19592
\(107\) 1054.64 + 608.897i 0.952859 + 0.550134i 0.893968 0.448131i \(-0.147910\pi\)
0.0588912 + 0.998264i \(0.481243\pi\)
\(108\) 1219.38 + 1291.76i 1.08644 + 1.15093i
\(109\) −649.132 1124.33i −0.570418 0.987992i −0.996523 0.0833189i \(-0.973448\pi\)
0.426105 0.904674i \(-0.359885\pi\)
\(110\) 472.494 818.384i 0.409551 0.709362i
\(111\) −122.429 178.471i −0.104689 0.152610i
\(112\) −54.7892 + 74.0838i −0.0462240 + 0.0625024i
\(113\) 1437.86i 1.19701i −0.801118 0.598506i \(-0.795761\pi\)
0.801118 0.598506i \(-0.204239\pi\)
\(114\) 258.517 20.1172i 0.212389 0.0165276i
\(115\) 694.337 400.876i 0.563019 0.325059i
\(116\) −2912.21 + 1681.37i −2.33096 + 1.34578i
\(117\) 1311.58 1058.29i 1.03638 0.836230i
\(118\) 1872.55i 1.46087i
\(119\) −158.254 363.699i −0.121908 0.280170i
\(120\) −1053.58 + 722.741i −0.801483 + 0.549808i
\(121\) −505.009 + 874.701i −0.379420 + 0.657175i
\(122\) −587.350 1017.32i −0.435870 0.754949i
\(123\) 69.4827 145.345i 0.0509353 0.106547i
\(124\) 112.157 + 64.7536i 0.0812254 + 0.0468955i
\(125\) −1338.51 −0.957759
\(126\) −95.7483 2270.95i −0.0676979 1.60565i
\(127\) 2686.32 1.87695 0.938475 0.345347i \(-0.112239\pi\)
0.938475 + 0.345347i \(0.112239\pi\)
\(128\) −1950.12 1125.90i −1.34663 0.777474i
\(129\) 503.244 1052.69i 0.343474 0.718484i
\(130\) 1646.15 + 2851.21i 1.11059 + 1.92360i
\(131\) −801.637 + 1388.48i −0.534651 + 0.926043i 0.464529 + 0.885558i \(0.346224\pi\)
−0.999180 + 0.0404852i \(0.987110\pi\)
\(132\) −972.008 + 666.786i −0.640928 + 0.439669i
\(133\) −163.472 120.897i −0.106578 0.0788203i
\(134\) 1470.36i 0.947906i
\(135\) −466.484 + 1559.71i −0.297396 + 0.994361i
\(136\) 393.010 226.904i 0.247796 0.143065i
\(137\) 2007.90 1159.26i 1.25216 0.722938i 0.280626 0.959817i \(-0.409458\pi\)
0.971539 + 0.236879i \(0.0761246\pi\)
\(138\) −1627.01 + 126.610i −1.00363 + 0.0780998i
\(139\) 1841.57i 1.12374i −0.827225 0.561871i \(-0.810082\pi\)
0.827225 0.561871i \(-0.189918\pi\)
\(140\) 2703.67 + 307.329i 1.63216 + 0.185529i
\(141\) −481.230 701.514i −0.287425 0.418994i
\(142\) −103.228 + 178.797i −0.0610052 + 0.105664i
\(143\) 559.144 + 968.466i 0.326979 + 0.566344i
\(144\) −132.714 + 20.7809i −0.0768022 + 0.0120260i
\(145\) −2668.91 1540.90i −1.52856 0.882514i
\(146\) 2555.48 1.44858
\(147\) −1109.99 + 1394.43i −0.622793 + 0.782386i
\(148\) −527.377 −0.292906
\(149\) −1126.68 650.488i −0.619470 0.357651i 0.157193 0.987568i \(-0.449756\pi\)
−0.776663 + 0.629917i \(0.783089\pi\)
\(150\) −205.631 98.3029i −0.111931 0.0535093i
\(151\) 1308.24 + 2265.94i 0.705055 + 1.22119i 0.966672 + 0.256020i \(0.0824112\pi\)
−0.261616 + 0.965172i \(0.584255\pi\)
\(152\) 116.314 201.461i 0.0620676 0.107504i
\(153\) 208.172 539.472i 0.109998 0.285057i
\(154\) 1498.59 + 170.346i 0.784155 + 0.0891356i
\(155\) 118.688i 0.0615046i
\(156\) −318.606 4094.26i −0.163518 2.10130i
\(157\) −809.876 + 467.582i −0.411689 + 0.237689i −0.691515 0.722362i \(-0.743056\pi\)
0.279826 + 0.960051i \(0.409723\pi\)
\(158\) 1138.53 657.329i 0.573268 0.330976i
\(159\) 212.540 + 2731.26i 0.106010 + 1.36228i
\(160\) 2229.49i 1.10160i
\(161\) 1028.84 + 760.883i 0.503625 + 0.372460i
\(162\) 2225.92 2454.74i 1.07954 1.19051i
\(163\) 259.079 448.738i 0.124495 0.215631i −0.797041 0.603926i \(-0.793602\pi\)
0.921535 + 0.388295i \(0.126936\pi\)
\(164\) −196.278 339.964i −0.0934559 0.161870i
\(165\) −974.612 465.918i −0.459839 0.219828i
\(166\) −1766.58 1019.94i −0.825985 0.476883i
\(167\) −3767.97 −1.74595 −0.872977 0.487761i \(-0.837814\pi\)
−0.872977 + 0.487761i \(0.837814\pi\)
\(168\) −1728.65 1081.67i −0.793859 0.496740i
\(169\) −1699.06 −0.773356
\(170\) 978.280 + 564.810i 0.441357 + 0.254817i
\(171\) −45.8548 292.845i −0.0205064 0.130962i
\(172\) −1421.59 2462.27i −0.630206 1.09155i
\(173\) 1196.53 2072.45i 0.525841 0.910783i −0.473706 0.880683i \(-0.657084\pi\)
0.999547 0.0301000i \(-0.00958257\pi\)
\(174\) 3548.44 + 5172.74i 1.54602 + 2.25371i
\(175\) 71.3059 + 163.875i 0.0308013 + 0.0707875i
\(176\) 89.1363i 0.0381756i
\(177\) 2134.14 166.074i 0.906280 0.0705246i
\(178\) 2210.87 1276.44i 0.930963 0.537492i
\(179\) 554.381 320.072i 0.231488 0.133650i −0.379770 0.925081i \(-0.623997\pi\)
0.611258 + 0.791431i \(0.290664\pi\)
\(180\) 2491.07 + 3087.29i 1.03152 + 1.27841i
\(181\) 4204.05i 1.72643i 0.504833 + 0.863217i \(0.331554\pi\)
−0.504833 + 0.863217i \(0.668446\pi\)
\(182\) −3124.48 + 4224.79i −1.27254 + 1.72067i
\(183\) −1107.34 + 759.623i −0.447306 + 0.306847i
\(184\) −732.036 + 1267.92i −0.293296 + 0.508003i
\(185\) −241.659 418.565i −0.0960384 0.166343i
\(186\) 104.196 217.958i 0.0410753 0.0859219i
\(187\) 332.291 + 191.848i 0.129944 + 0.0750231i
\(188\) −2072.96 −0.804181
\(189\) −2579.70 + 310.531i −0.992833 + 0.119512i
\(190\) 579.056 0.221101
\(191\) −1261.85 728.530i −0.478033 0.275993i 0.241563 0.970385i \(-0.422340\pi\)
−0.719597 + 0.694392i \(0.755673\pi\)
\(192\) −1868.07 + 3907.64i −0.702167 + 1.46880i
\(193\) −914.633 1584.19i −0.341123 0.590842i 0.643519 0.765430i \(-0.277474\pi\)
−0.984642 + 0.174588i \(0.944141\pi\)
\(194\) −487.196 + 843.849i −0.180302 + 0.312293i
\(195\) 3103.51 2128.97i 1.13973 0.781840i
\(196\) 1271.93 + 4152.53i 0.463531 + 1.51331i
\(197\) 661.168i 0.239118i 0.992827 + 0.119559i \(0.0381481\pi\)
−0.992827 + 0.119559i \(0.961852\pi\)
\(198\) 1380.75 + 1711.22i 0.495584 + 0.614199i
\(199\) −1687.99 + 974.564i −0.601300 + 0.347161i −0.769553 0.638583i \(-0.779521\pi\)
0.168253 + 0.985744i \(0.446188\pi\)
\(200\) −177.082 + 102.238i −0.0626079 + 0.0361467i
\(201\) 1675.76 130.403i 0.588053 0.0457609i
\(202\) 7807.78i 2.71957i
\(203\) 555.532 4887.20i 0.192073 1.68972i
\(204\) −797.063 1161.92i −0.273557 0.398777i
\(205\) 179.880 311.562i 0.0612849 0.106148i
\(206\) −2631.19 4557.36i −0.889921 1.54139i
\(207\) 288.594 + 1843.06i 0.0969017 + 0.618850i
\(208\) 268.941 + 155.273i 0.0896525 + 0.0517609i
\(209\) 196.687 0.0650963
\(210\) 180.279 5072.72i 0.0592401 1.66691i
\(211\) 3341.96 1.09038 0.545189 0.838313i \(-0.316458\pi\)
0.545189 + 0.838313i \(0.316458\pi\)
\(212\) 5781.14 + 3337.74i 1.87288 + 1.08131i
\(213\) 212.929 + 101.792i 0.0684960 + 0.0327448i
\(214\) −2767.75 4793.88i −0.884109 1.53132i
\(215\) 1302.83 2256.56i 0.413265 0.715796i
\(216\) −686.373 2892.52i −0.216212 0.911162i
\(217\) −173.699 + 75.5805i −0.0543386 + 0.0236440i
\(218\) 5901.27i 1.83342i
\(219\) −226.642 2912.47i −0.0699316 0.898659i
\(220\) −2279.64 + 1316.15i −0.698605 + 0.403340i
\(221\) −1157.68 + 668.390i −0.352372 + 0.203442i
\(222\) 76.3241 + 980.807i 0.0230745 + 0.296520i
\(223\) 2143.28i 0.643608i 0.946806 + 0.321804i \(0.104289\pi\)
−0.946806 + 0.321804i \(0.895711\pi\)
\(224\) 3262.85 1419.74i 0.973252 0.423484i
\(225\) −93.7981 + 243.075i −0.0277920 + 0.0720221i
\(226\) −3267.90 + 5660.17i −0.961848 + 1.66597i
\(227\) 1284.55 + 2224.91i 0.375589 + 0.650540i 0.990415 0.138123i \(-0.0441070\pi\)
−0.614826 + 0.788663i \(0.710774\pi\)
\(228\) −651.649 311.524i −0.189283 0.0904876i
\(229\) 91.0827 + 52.5866i 0.0262835 + 0.0151748i 0.513084 0.858338i \(-0.328503\pi\)
−0.486801 + 0.873513i \(0.661836\pi\)
\(230\) −3644.37 −1.04479
\(231\) 61.2350 1723.04i 0.0174414 0.490770i
\(232\) 5627.64 1.59255
\(233\) 2273.94 + 1312.86i 0.639360 + 0.369135i 0.784368 0.620296i \(-0.212987\pi\)
−0.145008 + 0.989431i \(0.546321\pi\)
\(234\) −7568.32 + 1185.08i −2.11435 + 0.331072i
\(235\) −949.887 1645.25i −0.263676 0.456700i
\(236\) 2608.03 4517.24i 0.719358 1.24596i
\(237\) −850.127 1239.27i −0.233003 0.339660i
\(238\) −203.628 + 1791.38i −0.0554591 + 0.487892i
\(239\) 6080.85i 1.64576i 0.568212 + 0.822882i \(0.307635\pi\)
−0.568212 + 0.822882i \(0.692365\pi\)
\(240\) −299.080 + 23.2737i −0.0804397 + 0.00625963i
\(241\) 4008.74 2314.45i 1.07147 0.618616i 0.142891 0.989738i \(-0.454360\pi\)
0.928584 + 0.371122i \(0.121027\pi\)
\(242\) 3975.96 2295.52i 1.05613 0.609759i
\(243\) −2995.06 2319.17i −0.790671 0.612241i
\(244\) 3272.17i 0.858521i
\(245\) −2712.92 + 2912.30i −0.707437 + 0.759428i
\(246\) −603.853 + 414.236i −0.156505 + 0.107361i
\(247\) −342.624 + 593.442i −0.0882617 + 0.152874i
\(248\) −108.367 187.698i −0.0277473 0.0480597i
\(249\) −1005.74 + 2103.82i −0.255969 + 0.535439i
\(250\) 5269.08 + 3042.10i 1.33298 + 0.769598i
\(251\) 5967.85 1.50075 0.750373 0.661015i \(-0.229874\pi\)
0.750373 + 0.661015i \(0.229874\pi\)
\(252\) −2931.93 + 5611.67i −0.732914 + 1.40279i
\(253\) −1237.88 −0.307607
\(254\) −10574.8 6105.36i −2.61229 1.50821i
\(255\) 556.948 1165.03i 0.136774 0.286106i
\(256\) 1783.64 + 3089.36i 0.435460 + 0.754239i
\(257\) −2819.70 + 4883.86i −0.684389 + 1.18540i 0.289239 + 0.957257i \(0.406598\pi\)
−0.973628 + 0.228140i \(0.926736\pi\)
\(258\) −4373.55 + 3000.20i −1.05537 + 0.723971i
\(259\) 458.681 620.211i 0.110043 0.148796i
\(260\) 9170.80i 2.18750i
\(261\) 5580.64 4502.90i 1.32350 1.06790i
\(262\) 6311.33 3643.85i 1.48823 0.859228i
\(263\) −3018.63 + 1742.81i −0.707745 + 0.408617i −0.810226 0.586118i \(-0.800655\pi\)
0.102480 + 0.994735i \(0.467322\pi\)
\(264\) 1966.70 153.044i 0.458492 0.0356788i
\(265\) 6117.79i 1.41816i
\(266\) 368.744 + 847.448i 0.0849968 + 0.195340i
\(267\) −1650.83 2406.50i −0.378387 0.551594i
\(268\) 2047.86 3547.00i 0.466766 0.808462i
\(269\) −1897.28 3286.18i −0.430033 0.744839i 0.566842 0.823826i \(-0.308165\pi\)
−0.996876 + 0.0789869i \(0.974831\pi\)
\(270\) 5381.17 5079.65i 1.21292 1.14495i
\(271\) −6458.49 3728.81i −1.44769 0.835827i −0.449351 0.893356i \(-0.648345\pi\)
−0.998344 + 0.0575288i \(0.981678\pi\)
\(272\) 106.552 0.0237524
\(273\) 5092.07 + 3186.25i 1.12889 + 0.706377i
\(274\) −10538.9 −2.32364
\(275\) −149.723 86.4428i −0.0328315 0.0189553i
\(276\) 4101.25 + 1960.62i 0.894443 + 0.427592i
\(277\) 1707.75 + 2957.90i 0.370428 + 0.641600i 0.989631 0.143631i \(-0.0458777\pi\)
−0.619203 + 0.785231i \(0.712544\pi\)
\(278\) −4185.45 + 7249.41i −0.902973 + 1.56399i
\(279\) −257.646 99.4210i −0.0552863 0.0213340i
\(280\) −3661.32 2707.76i −0.781450 0.577927i
\(281\) 2762.14i 0.586390i −0.956053 0.293195i \(-0.905281\pi\)
0.956053 0.293195i \(-0.0947185\pi\)
\(282\) 300.007 + 3855.25i 0.0633516 + 0.814102i
\(283\) −4767.64 + 2752.60i −1.00144 + 0.578181i −0.908674 0.417507i \(-0.862904\pi\)
−0.0927647 + 0.995688i \(0.529570\pi\)
\(284\) 498.045 287.546i 0.104062 0.0600801i
\(285\) −51.3554 659.946i −0.0106738 0.137164i
\(286\) 5083.19i 1.05096i
\(287\) 570.519 + 64.8515i 0.117340 + 0.0133382i
\(288\) 4839.76 + 1867.57i 0.990227 + 0.382110i
\(289\) 2227.17 3857.57i 0.453322 0.785176i
\(290\) 7004.16 + 12131.6i 1.41827 + 2.45652i
\(291\) 1004.94 + 480.415i 0.202442 + 0.0967781i
\(292\) −6164.71 3559.20i −1.23549 0.713309i
\(293\) 4101.08 0.817705 0.408853 0.912600i \(-0.365929\pi\)
0.408853 + 0.912600i \(0.365929\pi\)
\(294\) 7538.72 2966.48i 1.49547 0.588465i
\(295\) 4780.29 0.943455
\(296\) 764.339 + 441.291i 0.150089 + 0.0866538i
\(297\) 1827.82 1725.40i 0.357106 0.337097i
\(298\) 2956.80 + 5121.33i 0.574774 + 0.995539i
\(299\) 2156.35 3734.91i 0.417074 0.722393i
\(300\) 359.140 + 523.537i 0.0691165 + 0.100755i
\(301\) 4132.12 + 469.702i 0.791267 + 0.0899441i
\(302\) 11893.3i 2.26616i
\(303\) −8898.48 + 692.459i −1.68714 + 0.131290i
\(304\) 47.3019 27.3098i 0.00892418 0.00515238i
\(305\) −2597.03 + 1499.40i −0.487560 + 0.281493i
\(306\) −2045.56 + 1650.52i −0.382147 + 0.308346i
\(307\) 8281.42i 1.53956i −0.638308 0.769781i \(-0.720365\pi\)
0.638308 0.769781i \(-0.279635\pi\)
\(308\) −3377.86 2498.12i −0.624908 0.462155i
\(309\) −4960.63 + 3402.94i −0.913270 + 0.626493i
\(310\) 269.748 467.217i 0.0494215 0.0856005i
\(311\) −3435.52 5950.50i −0.626401 1.08496i −0.988268 0.152728i \(-0.951194\pi\)
0.361868 0.932230i \(-0.382139\pi\)
\(312\) −2964.18 + 6200.50i −0.537864 + 1.12511i
\(313\) −2922.40 1687.25i −0.527743 0.304693i 0.212354 0.977193i \(-0.431887\pi\)
−0.740097 + 0.672500i \(0.765220\pi\)
\(314\) 4250.80 0.763970
\(315\) −5797.33 + 244.428i −1.03696 + 0.0437205i
\(316\) −3662.02 −0.651914
\(317\) 2052.28 + 1184.88i 0.363620 + 0.209936i 0.670667 0.741758i \(-0.266008\pi\)
−0.307048 + 0.951694i \(0.599341\pi\)
\(318\) 5370.81 11234.7i 0.947107 1.98117i
\(319\) 2379.09 + 4120.71i 0.417566 + 0.723246i
\(320\) −4836.15 + 8376.46i −0.844840 + 1.46331i
\(321\) −5218.09 + 3579.55i −0.907306 + 0.622401i
\(322\) −2320.74 5333.53i −0.401646 0.923063i
\(323\) 235.116i 0.0405021i
\(324\) −8788.57 + 2821.47i −1.50696 + 0.483791i
\(325\) 521.629 301.163i 0.0890300 0.0514015i
\(326\) −2039.74 + 1177.65i −0.346536 + 0.200073i
\(327\) 6725.64 523.374i 1.13740 0.0885096i
\(328\) 656.957i 0.110593i
\(329\) 1802.94 2437.86i 0.302125 0.408521i
\(330\) 2777.67 + 4049.15i 0.463351 + 0.675450i
\(331\) −1901.80 + 3294.02i −0.315808 + 0.546996i −0.979609 0.200913i \(-0.935609\pi\)
0.663801 + 0.747910i \(0.268942\pi\)
\(332\) 2841.07 + 4920.88i 0.469651 + 0.813459i
\(333\) 1111.05 173.972i 0.182838 0.0286295i
\(334\) 14832.7 + 8563.68i 2.42997 + 1.40295i
\(335\) 3753.55 0.612175
\(336\) −224.516 422.883i −0.0364534 0.0686612i
\(337\) −592.955 −0.0958466 −0.0479233 0.998851i \(-0.515260\pi\)
−0.0479233 + 0.998851i \(0.515260\pi\)
\(338\) 6688.41 + 3861.56i 1.07634 + 0.621423i
\(339\) 6740.69 + 3222.42i 1.07995 + 0.516276i
\(340\) −1573.30 2725.03i −0.250953 0.434664i
\(341\) 91.6249 158.699i 0.0145506 0.0252024i
\(342\) −485.058 + 1257.01i −0.0766927 + 0.198747i
\(343\) −5989.74 2115.80i −0.942903 0.333068i
\(344\) 4758.16i 0.745764i
\(345\) 323.213 + 4153.46i 0.0504383 + 0.648159i
\(346\) −9420.35 + 5438.84i −1.46370 + 0.845069i
\(347\) −4137.14 + 2388.58i −0.640039 + 0.369527i −0.784630 0.619965i \(-0.787147\pi\)
0.144590 + 0.989492i \(0.453814\pi\)
\(348\) −1355.63 17420.6i −0.208820 2.68345i
\(349\) 7358.26i 1.12859i 0.825573 + 0.564296i \(0.190852\pi\)
−0.825573 + 0.564296i \(0.809148\pi\)
\(350\) 91.7507 807.161i 0.0140122 0.123270i
\(351\) 2021.84 + 8520.47i 0.307459 + 1.29569i
\(352\) −1721.13 + 2981.08i −0.260615 + 0.451398i
\(353\) 1652.78 + 2862.69i 0.249202 + 0.431631i 0.963305 0.268410i \(-0.0864982\pi\)
−0.714102 + 0.700041i \(0.753165\pi\)
\(354\) −8778.54 4196.62i −1.31801 0.630078i
\(355\) 456.436 + 263.524i 0.0682398 + 0.0393982i
\(356\) −7111.16 −1.05868
\(357\) 2059.69 + 73.1991i 0.305351 + 0.0108518i
\(358\) −2909.78 −0.429572
\(359\) −359.154 207.358i −0.0528006 0.0304845i 0.473367 0.880865i \(-0.343038\pi\)
−0.526168 + 0.850381i \(0.676372\pi\)
\(360\) −1027.02 6558.92i −0.150357 0.960237i
\(361\) −3369.24 5835.69i −0.491214 0.850808i
\(362\) 9554.78 16549.4i 1.38726 2.40281i
\(363\) −2968.81 4327.79i −0.429263 0.625758i
\(364\) 13421.5 5839.99i 1.93263 0.840930i
\(365\) 6523.69i 0.935522i
\(366\) 6085.52 473.561i 0.869113 0.0676323i
\(367\) −65.9242 + 38.0613i −0.00937661 + 0.00541359i −0.504681 0.863306i \(-0.668390\pi\)
0.495304 + 0.868720i \(0.335057\pi\)
\(368\) −297.702 + 171.878i −0.0421706 + 0.0243472i
\(369\) 525.657 + 651.470i 0.0741588 + 0.0919083i
\(370\) 2196.93i 0.308683i
\(371\) −8953.38 + 3895.82i −1.25293 + 0.545178i
\(372\) −554.921 + 380.669i −0.0773423 + 0.0530559i
\(373\) 6150.49 10653.0i 0.853781 1.47879i −0.0239900 0.999712i \(-0.507637\pi\)
0.877771 0.479080i \(-0.159030\pi\)
\(374\) −872.048 1510.43i −0.120568 0.208830i
\(375\) 2999.76 6274.93i 0.413085 0.864096i
\(376\) 3004.38 + 1734.58i 0.412072 + 0.237910i
\(377\) −16577.3 −2.26465
\(378\) 10860.8 + 4640.61i 1.47783 + 0.631448i
\(379\) −1429.02 −0.193678 −0.0968389 0.995300i \(-0.530873\pi\)
−0.0968389 + 0.995300i \(0.530873\pi\)
\(380\) −1396.88 806.490i −0.188575 0.108874i
\(381\) −6020.38 + 12593.5i −0.809536 + 1.69340i
\(382\) 3311.54 + 5735.76i 0.443543 + 0.768239i
\(383\) 2555.45 4426.17i 0.340933 0.590513i −0.643673 0.765300i \(-0.722590\pi\)
0.984606 + 0.174787i \(0.0559237\pi\)
\(384\) 9648.70 6618.89i 1.28225 0.879606i
\(385\) 434.863 3825.63i 0.0575654 0.506421i
\(386\) 8314.95i 1.09642i
\(387\) 3807.19 + 4718.42i 0.500079 + 0.619770i
\(388\) 2350.57 1357.10i 0.307557 0.177568i
\(389\) 6339.84 3660.31i 0.826331 0.477083i −0.0262636 0.999655i \(-0.508361\pi\)
0.852595 + 0.522572i \(0.175028\pi\)
\(390\) −17055.7 + 1327.24i −2.21448 + 0.172326i
\(391\) 1479.73i 0.191390i
\(392\) 1631.26 7082.65i 0.210182 0.912572i
\(393\) −4712.61 6869.82i −0.604885 0.881772i
\(394\) 1502.67 2602.71i 0.192141 0.332798i
\(395\) −1678.04 2906.45i −0.213750 0.370227i
\(396\) −947.507 6051.13i −0.120237 0.767880i
\(397\) 7516.61 + 4339.72i 0.950247 + 0.548625i 0.893158 0.449744i \(-0.148485\pi\)
0.0570893 + 0.998369i \(0.481818\pi\)
\(398\) 8859.79 1.11583
\(399\) 933.127 495.414i 0.117080 0.0621597i
\(400\) −48.0100 −0.00600125
\(401\) 8447.68 + 4877.27i 1.05201 + 0.607379i 0.923212 0.384291i \(-0.125554\pi\)
0.128800 + 0.991671i \(0.458887\pi\)
\(402\) −6893.03 3295.25i −0.855207 0.408836i
\(403\) 319.217 + 552.899i 0.0394573 + 0.0683421i
\(404\) −10874.4 + 18835.1i −1.33917 + 2.31950i
\(405\) −6266.49 5682.38i −0.768851 0.697185i
\(406\) −13294.3 + 17976.0i −1.62508 + 2.19737i
\(407\) 746.226i 0.0908822i
\(408\) 182.945 + 2350.95i 0.0221989 + 0.285268i
\(409\) 2935.32 1694.71i 0.354871 0.204885i −0.311958 0.950096i \(-0.600985\pi\)
0.666828 + 0.745211i \(0.267651\pi\)
\(410\) −1416.21 + 817.649i −0.170589 + 0.0984897i
\(411\) 934.676 + 12011.1i 0.112176 + 1.44152i
\(412\) 14658.5i 1.75285i
\(413\) 3044.10 + 6995.95i 0.362689 + 0.833531i
\(414\) 3052.78 7911.18i 0.362406 0.939163i
\(415\) −2603.72 + 4509.77i −0.307979 + 0.533436i
\(416\) −5996.32 10385.9i −0.706716 1.22407i
\(417\) 8633.30 + 4127.19i 1.01385 + 0.484675i
\(418\) −774.264 447.021i −0.0905992 0.0523075i
\(419\) 12777.4 1.48977 0.744887 0.667191i \(-0.232504\pi\)
0.744887 + 0.667191i \(0.232504\pi\)
\(420\) −7500.01 + 11986.0i −0.871340 + 1.39252i
\(421\) 11005.4 1.27404 0.637020 0.770848i \(-0.280167\pi\)
0.637020 + 0.770848i \(0.280167\pi\)
\(422\) −13155.7 7595.46i −1.51756 0.876164i
\(423\) 4367.20 683.831i 0.501987 0.0786029i
\(424\) −5585.82 9674.93i −0.639791 1.10815i
\(425\) 103.332 178.976i 0.0117937 0.0204273i
\(426\) −606.853 884.641i −0.0690191 0.100613i
\(427\) −3848.17 2845.94i −0.436126 0.322540i
\(428\) 15419.3i 1.74140i
\(429\) −5793.28 + 450.820i −0.651987 + 0.0507361i
\(430\) −10257.2 + 5922.01i −1.15034 + 0.664151i
\(431\) 3279.13 1893.21i 0.366474 0.211584i −0.305443 0.952210i \(-0.598805\pi\)
0.671917 + 0.740627i \(0.265471\pi\)
\(432\) 200.008 668.737i 0.0222752 0.0744783i
\(433\) 3191.67i 0.354230i −0.984190 0.177115i \(-0.943323\pi\)
0.984190 0.177115i \(-0.0566765\pi\)
\(434\) 855.548 + 97.2510i 0.0946259 + 0.0107562i
\(435\) 13205.1 9058.53i 1.45548 0.998444i
\(436\) 8219.10 14235.9i 0.902806 1.56371i
\(437\) −379.264 656.904i −0.0415163 0.0719084i
\(438\) −5727.15 + 11980.1i −0.624780 + 1.30692i
\(439\) −2872.90 1658.67i −0.312337 0.180328i 0.335635 0.941992i \(-0.391049\pi\)
−0.647972 + 0.761664i \(0.724383\pi\)
\(440\) 4405.24 0.477299
\(441\) −4049.47 8328.74i −0.437261 0.899335i
\(442\) 6076.35 0.653897
\(443\) −9266.95 5350.27i −0.993873 0.573813i −0.0874435 0.996169i \(-0.527870\pi\)
−0.906430 + 0.422356i \(0.861203\pi\)
\(444\) 1181.92 2472.35i 0.126332 0.264262i
\(445\) −3258.53 5643.94i −0.347122 0.601232i
\(446\) 4871.15 8437.07i 0.517165 0.895756i
\(447\) 5574.51 3824.05i 0.589855 0.404634i
\(448\) −15338.6 1743.55i −1.61759 0.183873i
\(449\) 4017.92i 0.422310i −0.977453 0.211155i \(-0.932278\pi\)
0.977453 0.211155i \(-0.0677225\pi\)
\(450\) 921.688 743.691i 0.0965529 0.0779065i
\(451\) −481.042 + 277.729i −0.0502248 + 0.0289973i
\(452\) 15766.6 9102.86i 1.64071 0.947262i
\(453\) −13554.7 + 1054.79i −1.40586 + 0.109401i
\(454\) 11677.9i 1.20720i
\(455\) 10785.1 + 7976.22i 1.11124 + 0.821826i
\(456\) 683.777 + 996.777i 0.0702210 + 0.102365i
\(457\) −4584.83 + 7941.15i −0.469298 + 0.812848i −0.999384 0.0350961i \(-0.988826\pi\)
0.530086 + 0.847944i \(0.322160\pi\)
\(458\) −239.033 414.018i −0.0243871 0.0422397i
\(459\) 2062.51 + 2184.93i 0.209737 + 0.222187i
\(460\) 8791.47 + 5075.76i 0.891097 + 0.514475i
\(461\) −1289.80 −0.130308 −0.0651542 0.997875i \(-0.520754\pi\)
−0.0651542 + 0.997875i \(0.520754\pi\)
\(462\) −4157.11 + 6643.63i −0.418628 + 0.669025i
\(463\) 6976.52 0.700273 0.350137 0.936699i \(-0.386135\pi\)
0.350137 + 0.936699i \(0.386135\pi\)
\(464\) 1144.31 + 660.670i 0.114490 + 0.0661009i
\(465\) −556.408 265.993i −0.0554899 0.0265272i
\(466\) −5967.63 10336.2i −0.593230 1.02750i
\(467\) −3931.83 + 6810.13i −0.389600 + 0.674808i −0.992396 0.123088i \(-0.960720\pi\)
0.602795 + 0.797896i \(0.294054\pi\)
\(468\) 19907.9 + 7682.11i 1.96633 + 0.758772i
\(469\) 2390.27 + 5493.32i 0.235336 + 0.540849i
\(470\) 8635.44i 0.847496i
\(471\) −376.996 4844.61i −0.0368813 0.473944i
\(472\) −7559.75 + 4364.63i −0.737216 + 0.425632i
\(473\) −3484.06 + 2011.52i −0.338683 + 0.195539i
\(474\) 529.983 + 6810.57i 0.0513564 + 0.659958i
\(475\) 105.938i 0.0102332i
\(476\) 2986.20 4037.83i 0.287547 0.388810i
\(477\) −13280.5 5124.69i −1.27478 0.491915i
\(478\) 13820.3 23937.5i 1.32244 2.29053i
\(479\) 1847.13 + 3199.33i 0.176196 + 0.305180i 0.940574 0.339588i \(-0.110288\pi\)
−0.764379 + 0.644767i \(0.776954\pi\)
\(480\) 10451.8 + 4996.55i 0.993873 + 0.475125i
\(481\) −2251.51 1299.91i −0.213430 0.123224i
\(482\) −21040.7 −1.98833
\(483\) −5872.77 + 3117.96i −0.553251 + 0.293731i
\(484\) −12788.5 −1.20103
\(485\) 2154.19 + 1243.72i 0.201684 + 0.116442i
\(486\) 6519.24 + 15936.5i 0.608475 + 1.48744i
\(487\) 526.359 + 911.681i 0.0489766 + 0.0848300i 0.889474 0.456985i \(-0.151071\pi\)
−0.840498 + 0.541815i \(0.817737\pi\)
\(488\) 2738.04 4742.42i 0.253986 0.439917i
\(489\) 1523.06 + 2220.24i 0.140849 + 0.205322i
\(490\) 17298.4 5298.55i 1.59482 0.488498i
\(491\) 2378.40i 0.218607i 0.994008 + 0.109303i \(0.0348620\pi\)
−0.994008 + 0.109303i \(0.965138\pi\)
\(492\) 2033.64 158.253i 0.186348 0.0145012i
\(493\) −4925.81 + 2843.92i −0.449995 + 0.259805i
\(494\) 2697.50 1557.40i 0.245680 0.141844i
\(495\) 4368.45 3524.81i 0.396661 0.320057i
\(496\) 50.8881i 0.00460674i
\(497\) −95.0069 + 835.807i −0.00857474 + 0.0754347i
\(498\) 8740.60 5995.95i 0.786497 0.539528i
\(499\) −9385.74 + 16256.6i −0.842011 + 1.45840i 0.0461818 + 0.998933i \(0.485295\pi\)
−0.888192 + 0.459472i \(0.848039\pi\)
\(500\) −8473.89 14677.2i −0.757928 1.31277i
\(501\) 8444.48 17664.3i 0.753037 1.57521i
\(502\) −23492.6 13563.5i −2.08870 1.20591i
\(503\) −16095.2 −1.42674 −0.713370 0.700788i \(-0.752832\pi\)
−0.713370 + 0.700788i \(0.752832\pi\)
\(504\) 8944.97 5679.78i 0.790557 0.501979i
\(505\) −19931.9 −1.75635
\(506\) 4872.94 + 2813.39i 0.428120 + 0.247175i
\(507\) 3807.81 7965.21i 0.333552 0.697727i
\(508\) 17006.7 + 29456.5i 1.48533 + 2.57267i
\(509\) 1575.31 2728.52i 0.137180 0.237603i −0.789248 0.614074i \(-0.789529\pi\)
0.926428 + 0.376472i \(0.122863\pi\)
\(510\) −4840.28 + 3320.37i −0.420257 + 0.288291i
\(511\) 9547.42 4154.30i 0.826522 0.359639i
\(512\) 1799.30i 0.155310i
\(513\) 1475.63 + 441.335i 0.126999 + 0.0379832i
\(514\) 22199.7 12817.0i 1.90503 1.09987i
\(515\) −11634.1 + 6716.95i −0.995456 + 0.574727i
\(516\) 14729.1 1146.18i 1.25661 0.0977867i
\(517\) 2933.19i 0.249519i
\(518\) −3215.20 + 1399.01i −0.272718 + 0.118666i
\(519\) 7034.08 + 10253.9i 0.594917 + 0.867241i
\(520\) −7673.82 + 13291.4i −0.647152 + 1.12090i
\(521\) −2489.60 4312.12i −0.209350 0.362605i 0.742160 0.670223i \(-0.233802\pi\)
−0.951510 + 0.307618i \(0.900468\pi\)
\(522\) −32202.3 + 5042.36i −2.70011 + 0.422793i
\(523\) 11977.0 + 6914.92i 1.00137 + 0.578142i 0.908654 0.417550i \(-0.137111\pi\)
0.0927181 + 0.995692i \(0.470444\pi\)
\(524\) −20300.1 −1.69240
\(525\) −928.053 32.9820i −0.0771496 0.00274181i
\(526\) 15843.9 1.31336
\(527\) 189.705 + 109.526i 0.0156806 + 0.00905322i
\(528\) 417.871 + 199.765i 0.0344423 + 0.0164653i
\(529\) −3696.55 6402.61i −0.303818 0.526228i
\(530\) 13904.2 24082.9i 1.13955 1.97376i
\(531\) −4004.31 + 10377.0i −0.327254 + 0.848069i
\(532\) 290.760 2557.91i 0.0236956 0.208458i
\(533\) 1935.19i 0.157265i
\(534\) 1029.15 + 13225.2i 0.0834005 + 1.07174i
\(535\) −12237.9 + 7065.56i −0.988955 + 0.570973i
\(536\) −5936.03 + 3427.17i −0.478353 + 0.276177i
\(537\) 258.064 + 3316.26i 0.0207379 + 0.266494i
\(538\) 17248.2i 1.38220i
\(539\) 5875.73 1799.75i 0.469547 0.143823i
\(540\) −20056.0 + 4759.15i −1.59828 + 0.379261i
\(541\) −2658.97 + 4605.48i −0.211309 + 0.365998i −0.952124 0.305711i \(-0.901106\pi\)
0.740815 + 0.671709i \(0.234439\pi\)
\(542\) 16949.3 + 29357.1i 1.34324 + 2.32656i
\(543\) −19708.6 9421.79i −1.55760 0.744618i
\(544\) −3563.52 2057.40i −0.280854 0.162151i
\(545\) 15064.9 1.18405
\(546\) −12803.5 24115.8i −1.00355 1.89022i
\(547\) −9266.96 −0.724363 −0.362181 0.932108i \(-0.617968\pi\)
−0.362181 + 0.932108i \(0.617968\pi\)
\(548\) 25423.4 + 14678.2i 1.98181 + 1.14420i
\(549\) −1079.43 6893.63i −0.0839142 0.535907i
\(550\) 392.927 + 680.569i 0.0304627 + 0.0527629i
\(551\) −1457.82 + 2525.03i −0.112714 + 0.195226i
\(552\) −4303.45 6273.36i −0.331824 0.483717i
\(553\) 3185.01 4306.65i 0.244920 0.331171i
\(554\) 15525.2i 1.19062i
\(555\) 2503.82 194.842i 0.191498 0.0149019i
\(556\) 20193.5 11658.7i 1.54028 0.889279i
\(557\) −125.920 + 72.6999i −0.00957881 + 0.00553033i −0.504782 0.863247i \(-0.668427\pi\)
0.495203 + 0.868777i \(0.335094\pi\)
\(558\) 788.273 + 976.941i 0.0598033 + 0.0741169i
\(559\) 14016.1i 1.06050i
\(560\) −426.603 980.420i −0.0321916 0.0739827i
\(561\) −1644.09 + 1127.83i −0.123732 + 0.0848785i
\(562\) −6277.68 + 10873.3i −0.471188 + 0.816122i
\(563\) 1958.12 + 3391.56i 0.146581 + 0.253885i 0.929962 0.367657i \(-0.119840\pi\)
−0.783381 + 0.621542i \(0.786507\pi\)
\(564\) 4645.75 9718.03i 0.346846 0.725537i
\(565\) 14449.4 + 8342.36i 1.07591 + 0.621178i
\(566\) 25024.0 1.85837
\(567\) 4325.65 12789.6i 0.320388 0.947286i
\(568\) −962.437 −0.0710968
\(569\) −7404.97 4275.26i −0.545576 0.314988i 0.201760 0.979435i \(-0.435334\pi\)
−0.747336 + 0.664447i \(0.768667\pi\)
\(570\) −1297.73 + 2714.61i −0.0953616 + 0.199478i
\(571\) 11956.8 + 20709.8i 0.876318 + 1.51783i 0.855352 + 0.518047i \(0.173341\pi\)
0.0209659 + 0.999780i \(0.493326\pi\)
\(572\) −7079.71 + 12262.4i −0.517513 + 0.896359i
\(573\) 6243.32 4282.84i 0.455180 0.312248i
\(574\) −2098.47 1551.94i −0.152593 0.112852i
\(575\) 666.737i 0.0483563i
\(576\) −14132.5 17515.0i −1.02231 1.26700i
\(577\) 11347.8 6551.66i 0.818745 0.472703i −0.0312386 0.999512i \(-0.509945\pi\)
0.849983 + 0.526809i \(0.176612\pi\)
\(578\) −17534.6 + 10123.6i −1.26184 + 0.728525i
\(579\) 9476.49 737.439i 0.680189 0.0529307i
\(580\) 39020.7i 2.79353i
\(581\) −8258.10 938.706i −0.589679 0.0670294i
\(582\) −2864.10 4175.15i −0.203988 0.297363i
\(583\) 4722.83 8180.18i 0.335506 0.581113i
\(584\) 5956.43 + 10316.8i 0.422053 + 0.731017i
\(585\) 3025.28 + 19320.6i 0.213812 + 1.36548i
\(586\) −16144.0 9320.76i −1.13806 0.657059i
\(587\) 18034.7 1.26809 0.634047 0.773294i \(-0.281392\pi\)
0.634047 + 0.773294i \(0.281392\pi\)
\(588\) −22317.6 3343.51i −1.56524 0.234497i
\(589\) 112.289 0.00785532
\(590\) −18817.7 10864.4i −1.31308 0.758104i
\(591\) −3099.56 1481.76i −0.215734 0.103133i
\(592\) 103.613 + 179.463i 0.00719335 + 0.0124592i
\(593\) 11358.1 19672.8i 0.786547 1.36234i −0.141524 0.989935i \(-0.545200\pi\)
0.928071 0.372404i \(-0.121466\pi\)
\(594\) −11116.7 + 2637.90i −0.767882 + 0.182213i
\(595\) 4573.08 + 519.826i 0.315089 + 0.0358165i
\(596\) 16472.5i 1.13212i
\(597\) −785.759 10097.4i −0.0538677 0.692229i
\(598\) −16977.1 + 9801.73i −1.16094 + 0.670272i
\(599\) 11720.4 6766.78i 0.799471 0.461575i −0.0438153 0.999040i \(-0.513951\pi\)
0.843286 + 0.537465i \(0.180618\pi\)
\(600\) −82.4314 1059.29i −0.00560875 0.0720755i
\(601\) 3667.98i 0.248952i 0.992223 + 0.124476i \(0.0397250\pi\)
−0.992223 + 0.124476i \(0.960275\pi\)
\(602\) −15198.7 11240.3i −1.02899 0.760997i
\(603\) −3144.24 + 8148.20i −0.212344 + 0.550282i
\(604\) −16564.6 + 28690.7i −1.11590 + 1.93279i
\(605\) −5860.05 10149.9i −0.393794 0.682070i
\(606\) 36602.9 + 17498.2i 2.45362 + 1.17296i
\(607\) −6942.92 4008.50i −0.464258 0.268039i 0.249575 0.968355i \(-0.419709\pi\)
−0.713833 + 0.700316i \(0.753042\pi\)
\(608\) −2109.29 −0.140696
\(609\) 21666.2 + 13557.1i 1.44164 + 0.902074i
\(610\) 13631.1 0.904763
\(611\) −8849.99 5109.54i −0.585977 0.338314i
\(612\) 7233.39 1132.63i 0.477766 0.0748103i
\(613\) −4698.26 8137.63i −0.309561 0.536176i 0.668705 0.743528i \(-0.266849\pi\)
−0.978266 + 0.207352i \(0.933515\pi\)
\(614\) −18821.7 + 32600.1i −1.23710 + 2.14272i
\(615\) 1057.47 + 1541.53i 0.0693355 + 0.101074i
\(616\) 2805.27 + 6447.06i 0.183486 + 0.421688i
\(617\) 8906.76i 0.581155i 0.956851 + 0.290578i \(0.0938474\pi\)
−0.956851 + 0.290578i \(0.906153\pi\)
\(618\) 27261.7 2121.44i 1.77448 0.138086i
\(619\) −6091.73 + 3517.06i −0.395553 + 0.228373i −0.684563 0.728953i \(-0.740007\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(620\) −1301.45 + 751.392i −0.0843024 + 0.0486720i
\(621\) −9287.07 2777.60i −0.600124 0.179487i
\(622\) 31232.4i 2.01335i
\(623\) 6184.86 8362.93i 0.397739 0.537807i
\(624\) −1330.65 + 912.811i −0.0853665 + 0.0585604i
\(625\) 8369.05 14495.6i 0.535619 0.927720i
\(626\) 7669.40 + 13283.8i 0.489666 + 0.848127i
\(627\) −440.799 + 922.069i −0.0280763 + 0.0587303i
\(628\) −10254.4 5920.38i −0.651584 0.376192i
\(629\) −892.024 −0.0565458
\(630\) 23376.9 + 12213.7i 1.47834 + 0.772391i
\(631\) −12628.6 −0.796728 −0.398364 0.917227i \(-0.630422\pi\)
−0.398364 + 0.917227i \(0.630422\pi\)
\(632\) 5307.45 + 3064.26i 0.334049 + 0.192863i
\(633\) −7489.74 + 15667.1i −0.470285 + 0.983747i
\(634\) −5385.90 9328.65i −0.337384 0.584366i
\(635\) −15585.9 + 26995.5i −0.974026 + 1.68706i
\(636\) −28603.6 + 19621.7i −1.78334 + 1.22335i
\(637\) −4805.19 + 20863.3i −0.298883 + 1.29770i
\(638\) 21628.4i 1.34213i
\(639\) −954.399 + 770.084i −0.0590852 + 0.0476746i
\(640\) 22629.0 13064.8i 1.39764 0.806926i
\(641\) −8593.58 + 4961.51i −0.529526 + 0.305722i −0.740823 0.671700i \(-0.765564\pi\)
0.211297 + 0.977422i \(0.432231\pi\)
\(642\) 28676.6 2231.55i 1.76289 0.137184i
\(643\) 294.191i 0.0180432i −0.999959 0.00902160i \(-0.997128\pi\)
0.999959 0.00902160i \(-0.00287170\pi\)
\(644\) −1829.94 + 16098.6i −0.111972 + 0.985051i
\(645\) 7658.97 + 11164.9i 0.467553 + 0.681576i
\(646\) 534.360 925.539i 0.0325451 0.0563697i
\(647\) −3859.39 6684.67i −0.234511 0.406184i 0.724620 0.689149i \(-0.242015\pi\)
−0.959130 + 0.282965i \(0.908682\pi\)
\(648\) 15098.4 + 3264.76i 0.915309 + 0.197920i
\(649\) −6391.80 3690.30i −0.386595 0.223201i
\(650\) −2737.88 −0.165213
\(651\) 34.9592 983.688i 0.00210470 0.0592224i
\(652\) 6560.75 0.394078
\(653\) −9846.89 5685.11i −0.590105 0.340697i 0.175034 0.984562i \(-0.443996\pi\)
−0.765139 + 0.643865i \(0.777330\pi\)
\(654\) −27665.2 13225.5i −1.65412 0.790759i
\(655\) −9302.09 16111.7i −0.554905 0.961123i
\(656\) −77.1249 + 133.584i −0.00459028 + 0.00795060i
\(657\) 14161.6 + 5464.70i 0.840938 + 0.324503i
\(658\) −12638.0 + 5499.07i −0.748753 + 0.325800i
\(659\) 19795.1i 1.17012i −0.810990 0.585060i \(-0.801071\pi\)
0.810990 0.585060i \(-0.198929\pi\)
\(660\) −1061.17 13636.6i −0.0625847 0.804248i
\(661\) 26896.6 15528.7i 1.58268 0.913763i 0.588219 0.808702i \(-0.299829\pi\)
0.994466 0.105062i \(-0.0335041\pi\)
\(662\) 14973.0 8644.67i 0.879068 0.507530i
\(663\) −538.901 6925.17i −0.0315674 0.405658i
\(664\) 9509.25i 0.555769i
\(665\) 2163.38 941.337i 0.126154 0.0548924i
\(666\) −4769.08 1840.30i −0.277474 0.107072i
\(667\) 9175.03 15891.6i 0.532621 0.922527i
\(668\) −23854.4 41317.1i −1.38167 2.39312i
\(669\) −10047.7 4803.34i −0.580667 0.277590i
\(670\) −14776.0 8530.91i −0.852008 0.491907i
\(671\) 4630.04 0.266380
\(672\) −656.690 + 18478.1i −0.0376970 + 1.06072i
\(673\) 5340.26 0.305872 0.152936 0.988236i \(-0.451127\pi\)
0.152936 + 0.988236i \(0.451127\pi\)
\(674\) 2334.18 + 1347.64i 0.133397 + 0.0770166i
\(675\) −929.322 984.486i −0.0529920 0.0561376i
\(676\) −10756.5 18630.8i −0.611999 1.06001i
\(677\) −12478.3 + 21613.0i −0.708389 + 1.22697i 0.257066 + 0.966394i \(0.417244\pi\)
−0.965455 + 0.260571i \(0.916089\pi\)
\(678\) −19211.1 28005.1i −1.08820 1.58632i
\(679\) −448.394 + 3944.67i −0.0253428 + 0.222949i
\(680\) 5265.93i 0.296970i
\(681\) −13309.2 + 1035.69i −0.748914 + 0.0582788i
\(682\) −721.368 + 416.482i −0.0405023 + 0.0233840i
\(683\) 9706.83 5604.24i 0.543809 0.313968i −0.202812 0.979218i \(-0.565008\pi\)
0.746621 + 0.665249i \(0.231675\pi\)
\(684\) 2920.85 2356.77i 0.163277 0.131745i
\(685\) 26903.9i 1.50065i
\(686\) 18770.1 + 21942.1i 1.04467 + 1.22122i
\(687\) −450.654 + 309.143i −0.0250269 + 0.0171682i
\(688\) −558.595 + 967.516i −0.0309538 + 0.0536136i
\(689\) 16454.1 + 28499.4i 0.909800 + 1.57582i
\(690\) 8167.47 17084.8i 0.450624 0.942620i
\(691\) −9472.37 5468.88i −0.521485 0.301079i 0.216057 0.976381i \(-0.430680\pi\)
−0.737542 + 0.675301i \(0.764014\pi\)
\(692\) 30300.2 1.66451
\(693\) 7940.39 + 4148.61i 0.435253 + 0.227407i
\(694\) 21714.7 1.18772
\(695\) 18506.4 + 10684.7i 1.01006 + 0.583156i
\(696\) −12612.2 + 26382.4i −0.686875 + 1.43681i
\(697\) −331.992 575.027i −0.0180418 0.0312492i
\(698\) 16723.5 28966.0i 0.906870 1.57074i
\(699\) −11250.9 + 7717.97i −0.608795 + 0.417626i
\(700\) −1345.52 + 1819.36i −0.0726513 + 0.0982363i
\(701\) 27949.3i 1.50589i 0.658082 + 0.752947i \(0.271368\pi\)
−0.658082 + 0.752947i \(0.728632\pi\)
\(702\) 11405.9 38136.2i 0.613230 2.05037i
\(703\) −396.000 + 228.631i −0.0212453 + 0.0122660i
\(704\) 12933.0 7466.86i 0.692372 0.399741i
\(705\) 9841.76 765.863i 0.525762 0.0409136i
\(706\) 15025.4i 0.800977i
\(707\) −12692.7 29170.3i −0.675186 1.55171i
\(708\) 15331.9 + 22350.1i 0.813855 + 1.18640i
\(709\) −10472.7 + 18139.3i −0.554741 + 0.960840i 0.443183 + 0.896431i \(0.353849\pi\)
−0.997924 + 0.0644082i \(0.979484\pi\)
\(710\) −1197.85 2074.74i −0.0633162 0.109667i
\(711\) 7714.96 1208.04i 0.406939 0.0637200i
\(712\) 10306.4 + 5950.38i 0.542482 + 0.313202i
\(713\) −706.707 −0.0371197
\(714\) −7941.66 4969.32i −0.416259 0.260465i
\(715\) −12976.5 −0.678731
\(716\) 7019.40 + 4052.65i 0.366379 + 0.211529i
\(717\) −28507.1 13627.9i −1.48482 0.709825i
\(718\) 942.547 + 1632.54i 0.0489910 + 0.0848549i
\(719\) 4150.10 7188.19i 0.215261 0.372843i −0.738092 0.674700i \(-0.764273\pi\)
0.953353 + 0.301857i \(0.0976064\pi\)
\(720\) 561.167 1454.25i 0.0290465 0.0752731i
\(721\) −17238.9 12749.1i −0.890443 0.658533i
\(722\) 30629.8i 1.57884i
\(723\) 1866.06 + 23979.9i 0.0959884 + 1.23350i
\(724\) −46098.8 + 26615.2i −2.36637 + 1.36622i
\(725\) 2219.47 1281.41i 0.113695 0.0656420i
\(726\) 1850.81 + 23783.9i 0.0946141 + 1.21584i
\(727\) 20951.5i 1.06884i −0.845218 0.534421i \(-0.820530\pi\)
0.845218 0.534421i \(-0.179470\pi\)
\(728\) −24338.7 2766.61i −1.23908 0.140848i
\(729\) 17584.5 8843.31i 0.893388 0.449287i
\(730\) −14826.8 + 25680.7i −0.751730 + 1.30203i
\(731\) −2404.53 4164.77i −0.121662 0.210724i
\(732\) −15339.9 7333.32i −0.774563 0.370283i
\(733\) 4885.73 + 2820.78i 0.246192 + 0.142139i 0.618019 0.786163i \(-0.287935\pi\)
−0.371827 + 0.928302i \(0.621269\pi\)
\(734\) 346.017 0.0174001
\(735\) −7572.89 19245.0i −0.380041 0.965799i
\(736\) 13275.1 0.664847
\(737\) −5018.93 2897.68i −0.250848 0.144827i
\(738\) −588.632 3759.22i −0.0293602 0.187505i
\(739\) 5691.08 + 9857.24i 0.283288 + 0.490669i 0.972193 0.234183i \(-0.0752415\pi\)
−0.688905 + 0.724852i \(0.741908\pi\)
\(740\) 3059.81 5299.74i 0.152001 0.263273i
\(741\) −2014.20 2936.20i −0.0998560 0.145565i
\(742\) 44099.5 + 5012.83i 2.18186 + 0.248015i
\(743\) 4665.46i 0.230362i −0.993345 0.115181i \(-0.963255\pi\)
0.993345 0.115181i \(-0.0367449\pi\)
\(744\) 1122.79 87.3730i 0.0553273 0.00430544i
\(745\) 13073.8 7548.17i 0.642936 0.371200i
\(746\) −48423.2 + 27957.1i −2.37654 + 1.37210i
\(747\) −7608.73 9429.84i −0.372676 0.461874i
\(748\) 4858.24i 0.237480i
\(749\) −18133.6 13410.8i −0.884628 0.654233i
\(750\) −26070.0 + 17883.7i −1.26926 + 0.870696i
\(751\) 4780.43 8279.95i 0.232277 0.402316i −0.726200 0.687483i \(-0.758716\pi\)
0.958478 + 0.285167i \(0.0920489\pi\)
\(752\) 407.270 + 705.413i 0.0197495 + 0.0342071i
\(753\) −13374.7 + 27977.3i −0.647278 + 1.35398i
\(754\) 65257.0 + 37676.1i 3.15188 + 1.81974i
\(755\) −30361.4 −1.46353
\(756\) −19736.7 26321.3i −0.949495 1.26627i
\(757\) 31574.1 1.51596 0.757979 0.652279i \(-0.226187\pi\)
0.757979 + 0.652279i \(0.226187\pi\)
\(758\) 5625.38 + 3247.82i 0.269556 + 0.155628i
\(759\) 2774.23 5803.17i 0.132672 0.277525i
\(760\) 1349.69 + 2337.73i 0.0644188 + 0.111577i
\(761\) 11215.0 19424.9i 0.534221 0.925298i −0.464980 0.885321i \(-0.653938\pi\)
0.999201 0.0399765i \(-0.0127283\pi\)
\(762\) 52321.3 35891.8i 2.48740 1.70633i
\(763\) 9593.35 + 22047.4i 0.455180 + 1.04610i
\(764\) 18448.8i 0.873633i
\(765\) 4213.48 + 5221.95i 0.199136 + 0.246797i
\(766\) −20119.2 + 11615.8i −0.949003 + 0.547907i
\(767\) 22268.7 12856.8i 1.04834 0.605259i
\(768\) −18480.3 + 1438.09i −0.868295 + 0.0675687i
\(769\) 26887.4i 1.26084i −0.776254 0.630420i \(-0.782883\pi\)
0.776254 0.630420i \(-0.217117\pi\)
\(770\) −10406.6 + 14071.4i −0.487048 +