Properties

Label 208.8.i.b.113.1
Level $208$
Weight $8$
Character 208.113
Analytic conductor $64.976$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,8,Mod(81,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.81"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 208.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.9760853007\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4654x^{6} + 7012369x^{4} + 3763719168x^{2} + 637953638400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 113.1
Root \(-41.0833i\) of defining polynomial
Character \(\chi\) \(=\) 208.113
Dual form 208.8.i.b.81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-35.5792 + 61.6250i) q^{3} +523.489 q^{5} +(-208.401 - 360.960i) q^{7} +(-1438.26 - 2491.14i) q^{9} +(1711.39 - 2964.21i) q^{11} +(-6741.24 + 4159.83i) q^{13} +(-18625.3 + 32260.0i) q^{15} +(3269.02 + 5662.11i) q^{17} +(13990.2 + 24231.8i) q^{19} +29658.9 q^{21} +(53089.0 - 91952.9i) q^{23} +195916. q^{25} +49065.2 q^{27} +(-34273.0 + 59362.6i) q^{29} -51572.8 q^{31} +(121780. + 210929. i) q^{33} +(-109095. - 188959. i) q^{35} +(-24067.7 + 41686.5i) q^{37} +(-16501.7 - 563432. i) q^{39} +(301049. - 521432. i) q^{41} +(458126. + 793497. i) q^{43} +(-752914. - 1.30409e6i) q^{45} +326201. q^{47} +(324910. - 562760. i) q^{49} -465237. q^{51} +934068. q^{53} +(895894. - 1.55173e6i) q^{55} -1.99105e6 q^{57} +(587217. + 1.01709e6i) q^{59} +(1.44545e6 + 2.50359e6i) q^{61} +(-599469. + 1.03831e6i) q^{63} +(-3.52897e6 + 2.17763e6i) q^{65} +(159079. - 275533. i) q^{67} +(3.77773e6 + 6.54322e6i) q^{69} +(641869. + 1.11175e6i) q^{71} -1.67209e6 q^{73} +(-6.97054e6 + 1.20733e7i) q^{75} -1.42662e6 q^{77} +8.09160e6 q^{79} +(1.39977e6 - 2.42448e6i) q^{81} -5.57141e6 q^{83} +(1.71130e6 + 2.96405e6i) q^{85} +(-2.43881e6 - 4.22415e6i) q^{87} +(-3.93786e6 + 6.82057e6i) q^{89} +(2.90641e6 + 1.56641e6i) q^{91} +(1.83492e6 - 3.17817e6i) q^{93} +(7.32374e6 + 1.26851e7i) q^{95} +(3.40424e6 + 5.89631e6i) q^{97} -9.84569e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 556 q^{5} + 548 q^{7} - 5214 q^{9} + 7392 q^{11} - 25818 q^{13} - 15528 q^{15} + 28316 q^{17} + 99888 q^{19} + 182148 q^{21} + 33388 q^{23} + 173756 q^{25} - 212544 q^{27} + 93140 q^{29} - 622320 q^{31}+ \cdots + 20715312 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −35.5792 + 61.6250i −0.760802 + 1.31775i 0.181635 + 0.983366i \(0.441861\pi\)
−0.942437 + 0.334383i \(0.891472\pi\)
\(4\) 0 0
\(5\) 523.489 1.87289 0.936446 0.350812i \(-0.114094\pi\)
0.936446 + 0.350812i \(0.114094\pi\)
\(6\) 0 0
\(7\) −208.401 360.960i −0.229644 0.397756i 0.728058 0.685515i \(-0.240423\pi\)
−0.957703 + 0.287759i \(0.907090\pi\)
\(8\) 0 0
\(9\) −1438.26 2491.14i −0.657641 1.13907i
\(10\) 0 0
\(11\) 1711.39 2964.21i 0.387681 0.671483i −0.604456 0.796638i \(-0.706610\pi\)
0.992137 + 0.125155i \(0.0399429\pi\)
\(12\) 0 0
\(13\) −6741.24 + 4159.83i −0.851017 + 0.525139i
\(14\) 0 0
\(15\) −18625.3 + 32260.0i −1.42490 + 2.46800i
\(16\) 0 0
\(17\) 3269.02 + 5662.11i 0.161379 + 0.279516i 0.935363 0.353688i \(-0.115073\pi\)
−0.773985 + 0.633204i \(0.781739\pi\)
\(18\) 0 0
\(19\) 13990.2 + 24231.8i 0.467937 + 0.810491i 0.999329 0.0366351i \(-0.0116639\pi\)
−0.531391 + 0.847127i \(0.678331\pi\)
\(20\) 0 0
\(21\) 29658.9 0.698856
\(22\) 0 0
\(23\) 53089.0 91952.9i 0.909824 1.57586i 0.0955160 0.995428i \(-0.469550\pi\)
0.814308 0.580433i \(-0.197117\pi\)
\(24\) 0 0
\(25\) 195916. 2.50772
\(26\) 0 0
\(27\) 49065.2 0.479734
\(28\) 0 0
\(29\) −34273.0 + 59362.6i −0.260951 + 0.451980i −0.966495 0.256686i \(-0.917369\pi\)
0.705544 + 0.708666i \(0.250703\pi\)
\(30\) 0 0
\(31\) −51572.8 −0.310924 −0.155462 0.987842i \(-0.549687\pi\)
−0.155462 + 0.987842i \(0.549687\pi\)
\(32\) 0 0
\(33\) 121780. + 210929.i 0.589897 + 1.02173i
\(34\) 0 0
\(35\) −109095. 188959.i −0.430099 0.744954i
\(36\) 0 0
\(37\) −24067.7 + 41686.5i −0.0781140 + 0.135297i −0.902436 0.430824i \(-0.858223\pi\)
0.824322 + 0.566121i \(0.191556\pi\)
\(38\) 0 0
\(39\) −16501.7 563432.i −0.0445452 1.52095i
\(40\) 0 0
\(41\) 301049. 521432.i 0.682172 1.18156i −0.292145 0.956374i \(-0.594369\pi\)
0.974317 0.225182i \(-0.0722976\pi\)
\(42\) 0 0
\(43\) 458126. + 793497.i 0.878709 + 1.52197i 0.852758 + 0.522306i \(0.174928\pi\)
0.0259511 + 0.999663i \(0.491739\pi\)
\(44\) 0 0
\(45\) −752914. 1.30409e6i −1.23169 2.13335i
\(46\) 0 0
\(47\) 326201. 0.458293 0.229146 0.973392i \(-0.426407\pi\)
0.229146 + 0.973392i \(0.426407\pi\)
\(48\) 0 0
\(49\) 324910. 562760.i 0.394527 0.683341i
\(50\) 0 0
\(51\) −465237. −0.491110
\(52\) 0 0
\(53\) 934068. 0.861813 0.430907 0.902397i \(-0.358194\pi\)
0.430907 + 0.902397i \(0.358194\pi\)
\(54\) 0 0
\(55\) 895894. 1.55173e6i 0.726085 1.25762i
\(56\) 0 0
\(57\) −1.99105e6 −1.42403
\(58\) 0 0
\(59\) 587217. + 1.01709e6i 0.372235 + 0.644729i 0.989909 0.141705i \(-0.0452584\pi\)
−0.617674 + 0.786434i \(0.711925\pi\)
\(60\) 0 0
\(61\) 1.44545e6 + 2.50359e6i 0.815358 + 1.41224i 0.909071 + 0.416642i \(0.136793\pi\)
−0.0937130 + 0.995599i \(0.529874\pi\)
\(62\) 0 0
\(63\) −599469. + 1.03831e6i −0.302047 + 0.523161i
\(64\) 0 0
\(65\) −3.52897e6 + 2.17763e6i −1.59386 + 0.983528i
\(66\) 0 0
\(67\) 159079. 275533.i 0.0646176 0.111921i −0.831907 0.554916i \(-0.812751\pi\)
0.896524 + 0.442995i \(0.146084\pi\)
\(68\) 0 0
\(69\) 3.77773e6 + 6.54322e6i 1.38439 + 2.39784i
\(70\) 0 0
\(71\) 641869. + 1.11175e6i 0.212834 + 0.368640i 0.952600 0.304224i \(-0.0983972\pi\)
−0.739766 + 0.672864i \(0.765064\pi\)
\(72\) 0 0
\(73\) −1.67209e6 −0.503070 −0.251535 0.967848i \(-0.580935\pi\)
−0.251535 + 0.967848i \(0.580935\pi\)
\(74\) 0 0
\(75\) −6.97054e6 + 1.20733e7i −1.90788 + 3.30455i
\(76\) 0 0
\(77\) −1.42662e6 −0.356115
\(78\) 0 0
\(79\) 8.09160e6 1.84646 0.923229 0.384250i \(-0.125540\pi\)
0.923229 + 0.384250i \(0.125540\pi\)
\(80\) 0 0
\(81\) 1.39977e6 2.42448e6i 0.292658 0.506899i
\(82\) 0 0
\(83\) −5.57141e6 −1.06953 −0.534764 0.845002i \(-0.679599\pi\)
−0.534764 + 0.845002i \(0.679599\pi\)
\(84\) 0 0
\(85\) 1.71130e6 + 2.96405e6i 0.302245 + 0.523504i
\(86\) 0 0
\(87\) −2.43881e6 4.22415e6i −0.397064 0.687736i
\(88\) 0 0
\(89\) −3.93786e6 + 6.82057e6i −0.592100 + 1.02555i 0.401849 + 0.915706i \(0.368368\pi\)
−0.993949 + 0.109842i \(0.964966\pi\)
\(90\) 0 0
\(91\) 2.90641e6 + 1.56641e6i 0.404308 + 0.217902i
\(92\) 0 0
\(93\) 1.83492e6 3.17817e6i 0.236552 0.409720i
\(94\) 0 0
\(95\) 7.32374e6 + 1.26851e7i 0.876396 + 1.51796i
\(96\) 0 0
\(97\) 3.40424e6 + 5.89631e6i 0.378720 + 0.655963i 0.990876 0.134774i \(-0.0430309\pi\)
−0.612156 + 0.790737i \(0.709698\pi\)
\(98\) 0 0
\(99\) −9.84569e6 −1.01982
\(100\) 0 0
\(101\) −805060. + 1.39441e6i −0.0777506 + 0.134668i −0.902279 0.431152i \(-0.858107\pi\)
0.824529 + 0.565820i \(0.191440\pi\)
\(102\) 0 0
\(103\) −4.93664e6 −0.445145 −0.222572 0.974916i \(-0.571445\pi\)
−0.222572 + 0.974916i \(0.571445\pi\)
\(104\) 0 0
\(105\) 1.55261e7 1.30888
\(106\) 0 0
\(107\) −6.13515e6 + 1.06264e7i −0.484152 + 0.838576i −0.999834 0.0182040i \(-0.994205\pi\)
0.515682 + 0.856780i \(0.327539\pi\)
\(108\) 0 0
\(109\) −1.65278e7 −1.22243 −0.611213 0.791467i \(-0.709318\pi\)
−0.611213 + 0.791467i \(0.709318\pi\)
\(110\) 0 0
\(111\) −1.71262e6 2.96634e6i −0.118859 0.205869i
\(112\) 0 0
\(113\) −6.64380e6 1.15074e7i −0.433154 0.750244i 0.563989 0.825782i \(-0.309266\pi\)
−0.997143 + 0.0755379i \(0.975933\pi\)
\(114\) 0 0
\(115\) 2.77915e7 4.81363e7i 1.70400 2.95142i
\(116\) 0 0
\(117\) 2.00584e7 + 1.08105e7i 1.15783 + 0.624013i
\(118\) 0 0
\(119\) 1.36253e6 2.35997e6i 0.0741195 0.128379i
\(120\) 0 0
\(121\) 3.88588e6 + 6.73054e6i 0.199407 + 0.345383i
\(122\) 0 0
\(123\) 2.14222e7 + 3.71043e7i 1.03800 + 1.79786i
\(124\) 0 0
\(125\) 6.16623e7 2.82381
\(126\) 0 0
\(127\) 1.36436e6 2.36314e6i 0.0591040 0.102371i −0.834959 0.550311i \(-0.814509\pi\)
0.894063 + 0.447940i \(0.147842\pi\)
\(128\) 0 0
\(129\) −6.51990e7 −2.67410
\(130\) 0 0
\(131\) −1.96041e7 −0.761898 −0.380949 0.924596i \(-0.624403\pi\)
−0.380949 + 0.924596i \(0.624403\pi\)
\(132\) 0 0
\(133\) 5.83115e6 1.00999e7i 0.214918 0.372250i
\(134\) 0 0
\(135\) 2.56851e7 0.898490
\(136\) 0 0
\(137\) −326199. 564993.i −0.0108383 0.0187724i 0.860555 0.509357i \(-0.170117\pi\)
−0.871394 + 0.490584i \(0.836783\pi\)
\(138\) 0 0
\(139\) 4.60831e6 + 7.98182e6i 0.145542 + 0.252087i 0.929575 0.368633i \(-0.120174\pi\)
−0.784033 + 0.620719i \(0.786841\pi\)
\(140\) 0 0
\(141\) −1.16060e7 + 2.01021e7i −0.348670 + 0.603915i
\(142\) 0 0
\(143\) 793743. + 2.71016e7i 0.0226988 + 0.775030i
\(144\) 0 0
\(145\) −1.79415e7 + 3.10757e7i −0.488733 + 0.846510i
\(146\) 0 0
\(147\) 2.31201e7 + 4.00451e7i 0.600314 + 1.03977i
\(148\) 0 0
\(149\) 1.22231e6 + 2.11710e6i 0.0302712 + 0.0524312i 0.880764 0.473555i \(-0.157030\pi\)
−0.850493 + 0.525986i \(0.823696\pi\)
\(150\) 0 0
\(151\) 2.73196e7 0.645736 0.322868 0.946444i \(-0.395353\pi\)
0.322868 + 0.946444i \(0.395353\pi\)
\(152\) 0 0
\(153\) 9.40341e6 1.62872e7i 0.212259 0.367643i
\(154\) 0 0
\(155\) −2.69978e7 −0.582328
\(156\) 0 0
\(157\) 5.54490e7 1.14352 0.571761 0.820420i \(-0.306260\pi\)
0.571761 + 0.820420i \(0.306260\pi\)
\(158\) 0 0
\(159\) −3.32334e7 + 5.75620e7i −0.655670 + 1.13565i
\(160\) 0 0
\(161\) −4.42551e7 −0.835744
\(162\) 0 0
\(163\) 1.60007e7 + 2.77139e7i 0.289388 + 0.501235i 0.973664 0.227988i \(-0.0732148\pi\)
−0.684275 + 0.729224i \(0.739881\pi\)
\(164\) 0 0
\(165\) 6.37504e7 + 1.10419e8i 1.10481 + 1.91359i
\(166\) 0 0
\(167\) −9.67304e6 + 1.67542e7i −0.160715 + 0.278366i −0.935125 0.354318i \(-0.884713\pi\)
0.774411 + 0.632683i \(0.218047\pi\)
\(168\) 0 0
\(169\) 2.81401e7 5.60848e7i 0.448459 0.893804i
\(170\) 0 0
\(171\) 4.02432e7 6.97033e7i 0.615469 1.06602i
\(172\) 0 0
\(173\) −2.06874e7 3.58317e7i −0.303770 0.526145i 0.673217 0.739445i \(-0.264912\pi\)
−0.976987 + 0.213300i \(0.931579\pi\)
\(174\) 0 0
\(175\) −4.08290e7 7.07179e7i −0.575885 0.997462i
\(176\) 0 0
\(177\) −8.35709e7 −1.13279
\(178\) 0 0
\(179\) −1.61438e7 + 2.79619e7i −0.210388 + 0.364403i −0.951836 0.306608i \(-0.900806\pi\)
0.741448 + 0.671010i \(0.234139\pi\)
\(180\) 0 0
\(181\) −8.08975e7 −1.01405 −0.507026 0.861931i \(-0.669255\pi\)
−0.507026 + 0.861931i \(0.669255\pi\)
\(182\) 0 0
\(183\) −2.05712e8 −2.48130
\(184\) 0 0
\(185\) −1.25992e7 + 2.18224e7i −0.146299 + 0.253397i
\(186\) 0 0
\(187\) 2.23783e7 0.250254
\(188\) 0 0
\(189\) −1.02252e7 1.77106e7i −0.110168 0.190817i
\(190\) 0 0
\(191\) −6.81711e6 1.18076e7i −0.0707919 0.122615i 0.828457 0.560053i \(-0.189219\pi\)
−0.899249 + 0.437438i \(0.855886\pi\)
\(192\) 0 0
\(193\) −8.66220e6 + 1.50034e7i −0.0867316 + 0.150224i −0.906128 0.423004i \(-0.860976\pi\)
0.819396 + 0.573228i \(0.194309\pi\)
\(194\) 0 0
\(195\) −8.63844e6 2.94951e8i −0.0834284 2.84858i
\(196\) 0 0
\(197\) −3.11874e7 + 5.40181e7i −0.290634 + 0.503393i −0.973960 0.226720i \(-0.927200\pi\)
0.683326 + 0.730114i \(0.260533\pi\)
\(198\) 0 0
\(199\) −1.20854e6 2.09325e6i −0.0108711 0.0188293i 0.860539 0.509385i \(-0.170127\pi\)
−0.871410 + 0.490556i \(0.836794\pi\)
\(200\) 0 0
\(201\) 1.13198e7 + 1.96065e7i 0.0983225 + 0.170300i
\(202\) 0 0
\(203\) 2.85700e7 0.239704
\(204\) 0 0
\(205\) 1.57596e8 2.72964e8i 1.27763 2.21293i
\(206\) 0 0
\(207\) −3.05423e8 −2.39335
\(208\) 0 0
\(209\) 9.57711e7 0.725642
\(210\) 0 0
\(211\) 4.86339e7 8.42364e7i 0.356411 0.617321i −0.630948 0.775825i \(-0.717334\pi\)
0.987358 + 0.158504i \(0.0506671\pi\)
\(212\) 0 0
\(213\) −9.13487e7 −0.647700
\(214\) 0 0
\(215\) 2.39824e8 + 4.15387e8i 1.64573 + 2.85048i
\(216\) 0 0
\(217\) 1.07478e7 + 1.86157e7i 0.0714020 + 0.123672i
\(218\) 0 0
\(219\) 5.94915e7 1.03042e8i 0.382737 0.662920i
\(220\) 0 0
\(221\) −4.55907e7 2.45711e7i −0.284121 0.153127i
\(222\) 0 0
\(223\) 8.35602e7 1.44730e8i 0.504583 0.873963i −0.495403 0.868663i \(-0.664980\pi\)
0.999986 0.00529982i \(-0.00168699\pi\)
\(224\) 0 0
\(225\) −2.81778e8 4.88054e8i −1.64918 2.85647i
\(226\) 0 0
\(227\) 2.85340e7 + 4.94223e7i 0.161909 + 0.280435i 0.935553 0.353185i \(-0.114902\pi\)
−0.773644 + 0.633620i \(0.781568\pi\)
\(228\) 0 0
\(229\) 2.68753e8 1.47886 0.739432 0.673231i \(-0.235094\pi\)
0.739432 + 0.673231i \(0.235094\pi\)
\(230\) 0 0
\(231\) 5.07580e7 8.79154e7i 0.270933 0.469270i
\(232\) 0 0
\(233\) −6.53750e7 −0.338584 −0.169292 0.985566i \(-0.554148\pi\)
−0.169292 + 0.985566i \(0.554148\pi\)
\(234\) 0 0
\(235\) 1.70763e8 0.858333
\(236\) 0 0
\(237\) −2.87893e8 + 4.98645e8i −1.40479 + 2.43317i
\(238\) 0 0
\(239\) 2.06797e8 0.979832 0.489916 0.871770i \(-0.337027\pi\)
0.489916 + 0.871770i \(0.337027\pi\)
\(240\) 0 0
\(241\) 1.40238e8 + 2.42899e8i 0.645365 + 1.11780i 0.984217 + 0.176965i \(0.0566280\pi\)
−0.338852 + 0.940840i \(0.610039\pi\)
\(242\) 0 0
\(243\) 1.53259e8 + 2.65452e8i 0.685177 + 1.18676i
\(244\) 0 0
\(245\) 1.70087e8 2.94599e8i 0.738906 1.27982i
\(246\) 0 0
\(247\) −1.95112e8 1.05155e8i −0.823843 0.444010i
\(248\) 0 0
\(249\) 1.98226e8 3.43338e8i 0.813699 1.40937i
\(250\) 0 0
\(251\) −1.55974e8 2.70156e8i −0.622580 1.07834i −0.989004 0.147892i \(-0.952751\pi\)
0.366423 0.930448i \(-0.380582\pi\)
\(252\) 0 0
\(253\) −1.81712e8 3.14734e8i −0.705443 1.22186i
\(254\) 0 0
\(255\) −2.43546e8 −0.919795
\(256\) 0 0
\(257\) −1.07145e8 + 1.85580e8i −0.393736 + 0.681970i −0.992939 0.118627i \(-0.962151\pi\)
0.599203 + 0.800597i \(0.295484\pi\)
\(258\) 0 0
\(259\) 2.00629e7 0.0717537
\(260\) 0 0
\(261\) 1.97174e8 0.686448
\(262\) 0 0
\(263\) 8.74186e7 1.51413e8i 0.296318 0.513239i −0.678972 0.734164i \(-0.737574\pi\)
0.975291 + 0.220925i \(0.0709077\pi\)
\(264\) 0 0
\(265\) 4.88975e8 1.61408
\(266\) 0 0
\(267\) −2.80212e8 4.85341e8i −0.900943 1.56048i
\(268\) 0 0
\(269\) −1.41548e8 2.45168e8i −0.443374 0.767947i 0.554563 0.832142i \(-0.312885\pi\)
−0.997937 + 0.0641947i \(0.979552\pi\)
\(270\) 0 0
\(271\) 1.08878e8 1.88582e8i 0.332312 0.575581i −0.650653 0.759375i \(-0.725505\pi\)
0.982965 + 0.183794i \(0.0588380\pi\)
\(272\) 0 0
\(273\) −1.99938e8 + 1.23376e8i −0.594738 + 0.366996i
\(274\) 0 0
\(275\) 3.35289e8 5.80737e8i 0.972197 1.68389i
\(276\) 0 0
\(277\) 2.75129e8 + 4.76538e8i 0.777782 + 1.34716i 0.933218 + 0.359312i \(0.116988\pi\)
−0.155436 + 0.987846i \(0.549678\pi\)
\(278\) 0 0
\(279\) 7.41751e7 + 1.28475e8i 0.204476 + 0.354164i
\(280\) 0 0
\(281\) −1.42673e8 −0.383591 −0.191796 0.981435i \(-0.561431\pi\)
−0.191796 + 0.981435i \(0.561431\pi\)
\(282\) 0 0
\(283\) −1.29624e7 + 2.24515e7i −0.0339963 + 0.0588833i −0.882523 0.470269i \(-0.844157\pi\)
0.848527 + 0.529153i \(0.177490\pi\)
\(284\) 0 0
\(285\) −1.04229e9 −2.66706
\(286\) 0 0
\(287\) −2.50955e8 −0.626627
\(288\) 0 0
\(289\) 1.83796e8 3.18345e8i 0.447914 0.775809i
\(290\) 0 0
\(291\) −4.84480e8 −1.15253
\(292\) 0 0
\(293\) −3.71932e8 6.44205e8i −0.863827 1.49619i −0.868207 0.496202i \(-0.834727\pi\)
0.00437957 0.999990i \(-0.498606\pi\)
\(294\) 0 0
\(295\) 3.07402e8 + 5.32436e8i 0.697155 + 1.20751i
\(296\) 0 0
\(297\) 8.39697e7 1.45440e8i 0.185984 0.322133i
\(298\) 0 0
\(299\) 2.46227e7 + 8.40718e8i 0.0532705 + 1.81887i
\(300\) 0 0
\(301\) 1.90947e8 3.30731e8i 0.403581 0.699023i
\(302\) 0 0
\(303\) −5.72868e7 9.92237e7i −0.118306 0.204911i
\(304\) 0 0
\(305\) 7.56677e8 + 1.31060e9i 1.52708 + 2.64497i
\(306\) 0 0
\(307\) −2.86830e8 −0.565771 −0.282886 0.959154i \(-0.591292\pi\)
−0.282886 + 0.959154i \(0.591292\pi\)
\(308\) 0 0
\(309\) 1.75642e8 3.04221e8i 0.338667 0.586589i
\(310\) 0 0
\(311\) −7.18890e8 −1.35519 −0.677596 0.735434i \(-0.736978\pi\)
−0.677596 + 0.735434i \(0.736978\pi\)
\(312\) 0 0
\(313\) 6.20382e8 1.14355 0.571774 0.820411i \(-0.306255\pi\)
0.571774 + 0.820411i \(0.306255\pi\)
\(314\) 0 0
\(315\) −3.13815e8 + 5.43544e8i −0.565701 + 0.979824i
\(316\) 0 0
\(317\) 1.67254e8 0.294897 0.147448 0.989070i \(-0.452894\pi\)
0.147448 + 0.989070i \(0.452894\pi\)
\(318\) 0 0
\(319\) 1.17309e8 + 2.03185e8i 0.202331 + 0.350448i
\(320\) 0 0
\(321\) −4.36567e8 7.56157e8i −0.736688 1.27598i
\(322\) 0 0
\(323\) −9.14688e7 + 1.58429e8i −0.151030 + 0.261592i
\(324\) 0 0
\(325\) −1.32072e9 + 8.14978e8i −2.13412 + 1.31690i
\(326\) 0 0
\(327\) 5.88046e8 1.01853e9i 0.930024 1.61085i
\(328\) 0 0
\(329\) −6.79805e7 1.17746e8i −0.105244 0.182289i
\(330\) 0 0
\(331\) 3.94643e8 + 6.83541e8i 0.598144 + 1.03602i 0.993095 + 0.117314i \(0.0374284\pi\)
−0.394950 + 0.918702i \(0.629238\pi\)
\(332\) 0 0
\(333\) 1.38463e8 0.205484
\(334\) 0 0
\(335\) 8.32761e7 1.44238e8i 0.121022 0.209616i
\(336\) 0 0
\(337\) −6.94195e8 −0.988046 −0.494023 0.869449i \(-0.664474\pi\)
−0.494023 + 0.869449i \(0.664474\pi\)
\(338\) 0 0
\(339\) 9.45525e8 1.31818
\(340\) 0 0
\(341\) −8.82611e7 + 1.52873e8i −0.120539 + 0.208780i
\(342\) 0 0
\(343\) −6.14099e8 −0.821692
\(344\) 0 0
\(345\) 1.97760e9 + 3.42531e9i 2.59282 + 4.49089i
\(346\) 0 0
\(347\) −1.32264e7 2.29088e7i −0.0169937 0.0294340i 0.857403 0.514645i \(-0.172076\pi\)
−0.874397 + 0.485211i \(0.838743\pi\)
\(348\) 0 0
\(349\) −3.89696e8 + 6.74973e8i −0.490723 + 0.849957i −0.999943 0.0106791i \(-0.996601\pi\)
0.509220 + 0.860636i \(0.329934\pi\)
\(350\) 0 0
\(351\) −3.30760e8 + 2.04103e8i −0.408262 + 0.251927i
\(352\) 0 0
\(353\) 3.64706e8 6.31689e8i 0.441297 0.764349i −0.556489 0.830855i \(-0.687852\pi\)
0.997786 + 0.0665058i \(0.0211851\pi\)
\(354\) 0 0
\(355\) 3.36011e8 + 5.81989e8i 0.398616 + 0.690423i
\(356\) 0 0
\(357\) 9.69556e7 + 1.67932e8i 0.112781 + 0.195342i
\(358\) 0 0
\(359\) 5.70058e8 0.650262 0.325131 0.945669i \(-0.394592\pi\)
0.325131 + 0.945669i \(0.394592\pi\)
\(360\) 0 0
\(361\) 5.54818e7 9.60973e7i 0.0620691 0.107507i
\(362\) 0 0
\(363\) −5.53026e8 −0.606837
\(364\) 0 0
\(365\) −8.75319e8 −0.942196
\(366\) 0 0
\(367\) −2.41067e8 + 4.17540e8i −0.254569 + 0.440927i −0.964778 0.263064i \(-0.915267\pi\)
0.710209 + 0.703991i \(0.248600\pi\)
\(368\) 0 0
\(369\) −1.73195e9 −1.79450
\(370\) 0 0
\(371\) −1.94660e8 3.37162e8i −0.197911 0.342791i
\(372\) 0 0
\(373\) 1.49680e8 + 2.59253e8i 0.149342 + 0.258668i 0.930984 0.365059i \(-0.118951\pi\)
−0.781642 + 0.623727i \(0.785618\pi\)
\(374\) 0 0
\(375\) −2.19390e9 + 3.79994e9i −2.14836 + 3.72107i
\(376\) 0 0
\(377\) −1.58958e7 5.42747e8i −0.0152788 0.521678i
\(378\) 0 0
\(379\) 5.05321e8 8.75242e8i 0.476793 0.825830i −0.522853 0.852423i \(-0.675132\pi\)
0.999646 + 0.0265924i \(0.00846563\pi\)
\(380\) 0 0
\(381\) 9.70858e7 + 1.68158e8i 0.0899329 + 0.155768i
\(382\) 0 0
\(383\) 4.42877e8 + 7.67085e8i 0.402798 + 0.697667i 0.994062 0.108811i \(-0.0347044\pi\)
−0.591264 + 0.806478i \(0.701371\pi\)
\(384\) 0 0
\(385\) −7.46819e8 −0.666965
\(386\) 0 0
\(387\) 1.31781e9 2.28251e9i 1.15575 2.00182i
\(388\) 0 0
\(389\) 2.15563e9 1.85674 0.928370 0.371656i \(-0.121210\pi\)
0.928370 + 0.371656i \(0.121210\pi\)
\(390\) 0 0
\(391\) 6.94197e8 0.587305
\(392\) 0 0
\(393\) 6.97498e8 1.20810e9i 0.579654 1.00399i
\(394\) 0 0
\(395\) 4.23586e9 3.45822
\(396\) 0 0
\(397\) 4.73536e8 + 8.20188e8i 0.379827 + 0.657880i 0.991037 0.133589i \(-0.0426501\pi\)
−0.611210 + 0.791469i \(0.709317\pi\)
\(398\) 0 0
\(399\) 4.14936e8 + 7.18689e8i 0.327021 + 0.566417i
\(400\) 0 0
\(401\) 7.68784e8 1.33157e9i 0.595386 1.03124i −0.398106 0.917339i \(-0.630332\pi\)
0.993492 0.113900i \(-0.0363343\pi\)
\(402\) 0 0
\(403\) 3.47664e8 2.14534e8i 0.264602 0.163278i
\(404\) 0 0
\(405\) 7.32767e8 1.26919e9i 0.548117 0.949366i
\(406\) 0 0
\(407\) 8.23784e7 + 1.42684e8i 0.0605666 + 0.104904i
\(408\) 0 0
\(409\) −4.78055e8 8.28015e8i −0.345498 0.598421i 0.639946 0.768420i \(-0.278957\pi\)
−0.985444 + 0.169999i \(0.945623\pi\)
\(410\) 0 0
\(411\) 4.64236e7 0.0329831
\(412\) 0 0
\(413\) 2.44753e8 4.23924e8i 0.170963 0.296117i
\(414\) 0 0
\(415\) −2.91657e9 −2.00311
\(416\) 0 0
\(417\) −6.55839e8 −0.442916
\(418\) 0 0
\(419\) 1.00065e9 1.73318e9i 0.664559 1.15105i −0.314846 0.949143i \(-0.601953\pi\)
0.979405 0.201907i \(-0.0647137\pi\)
\(420\) 0 0
\(421\) 2.08228e9 1.36004 0.680020 0.733194i \(-0.261971\pi\)
0.680020 + 0.733194i \(0.261971\pi\)
\(422\) 0 0
\(423\) −4.69162e8 8.12613e8i −0.301392 0.522026i
\(424\) 0 0
\(425\) 6.40454e8 + 1.10930e9i 0.404694 + 0.700950i
\(426\) 0 0
\(427\) 6.02465e8 1.04350e9i 0.374485 0.648626i
\(428\) 0 0
\(429\) −1.69837e9 9.15338e8i −1.03856 0.559733i
\(430\) 0 0
\(431\) −3.68644e8 + 6.38511e8i −0.221788 + 0.384147i −0.955351 0.295474i \(-0.904522\pi\)
0.733563 + 0.679621i \(0.237856\pi\)
\(432\) 0 0
\(433\) 2.20052e8 + 3.81141e8i 0.130262 + 0.225620i 0.923778 0.382930i \(-0.125085\pi\)
−0.793516 + 0.608550i \(0.791751\pi\)
\(434\) 0 0
\(435\) −1.27669e9 2.21129e9i −0.743659 1.28805i
\(436\) 0 0
\(437\) 2.97091e9 1.70296
\(438\) 0 0
\(439\) −1.08879e9 + 1.88584e9i −0.614212 + 1.06385i 0.376310 + 0.926494i \(0.377193\pi\)
−0.990522 + 0.137353i \(0.956140\pi\)
\(440\) 0 0
\(441\) −1.86922e9 −1.03783
\(442\) 0 0
\(443\) −1.78526e9 −0.975639 −0.487819 0.872945i \(-0.662207\pi\)
−0.487819 + 0.872945i \(0.662207\pi\)
\(444\) 0 0
\(445\) −2.06143e9 + 3.57050e9i −1.10894 + 1.92074i
\(446\) 0 0
\(447\) −1.73955e8 −0.0921216
\(448\) 0 0
\(449\) 4.68771e8 + 8.11935e8i 0.244398 + 0.423310i 0.961962 0.273182i \(-0.0880762\pi\)
−0.717564 + 0.696493i \(0.754743\pi\)
\(450\) 0 0
\(451\) −1.03042e9 1.78475e9i −0.528930 0.916133i
\(452\) 0 0
\(453\) −9.72010e8 + 1.68357e9i −0.491278 + 0.850918i
\(454\) 0 0
\(455\) 1.52148e9 + 8.19998e8i 0.757225 + 0.408106i
\(456\) 0 0
\(457\) −1.53717e9 + 2.66245e9i −0.753381 + 1.30489i 0.192794 + 0.981239i \(0.438245\pi\)
−0.946175 + 0.323655i \(0.895088\pi\)
\(458\) 0 0
\(459\) 1.60395e8 + 2.77813e8i 0.0774189 + 0.134093i
\(460\) 0 0
\(461\) −1.64378e9 2.84710e9i −0.781428 1.35347i −0.931110 0.364739i \(-0.881158\pi\)
0.149681 0.988734i \(-0.452175\pi\)
\(462\) 0 0
\(463\) −8.40096e7 −0.0393365 −0.0196682 0.999807i \(-0.506261\pi\)
−0.0196682 + 0.999807i \(0.506261\pi\)
\(464\) 0 0
\(465\) 9.60560e8 1.66374e9i 0.443036 0.767361i
\(466\) 0 0
\(467\) −3.33082e9 −1.51336 −0.756681 0.653785i \(-0.773180\pi\)
−0.756681 + 0.653785i \(0.773180\pi\)
\(468\) 0 0
\(469\) −1.32609e8 −0.0593563
\(470\) 0 0
\(471\) −1.97283e9 + 3.41704e9i −0.869995 + 1.50688i
\(472\) 0 0
\(473\) 3.13613e9 1.36264
\(474\) 0 0
\(475\) 2.74091e9 + 4.74740e9i 1.17346 + 2.03249i
\(476\) 0 0
\(477\) −1.34343e9 2.32690e9i −0.566764 0.981663i
\(478\) 0 0
\(479\) −4.49485e8 + 7.78532e8i −0.186871 + 0.323670i −0.944205 0.329357i \(-0.893168\pi\)
0.757335 + 0.653027i \(0.226501\pi\)
\(480\) 0 0
\(481\) −1.11626e7 3.81136e8i −0.00457360 0.156161i
\(482\) 0 0
\(483\) 1.57456e9 2.72722e9i 0.635836 1.10130i
\(484\) 0 0
\(485\) 1.78208e9 + 3.08666e9i 0.709302 + 1.22855i
\(486\) 0 0
\(487\) −1.33482e9 2.31197e9i −0.523685 0.907048i −0.999620 0.0275680i \(-0.991224\pi\)
0.475935 0.879480i \(-0.342110\pi\)
\(488\) 0 0
\(489\) −2.27716e9 −0.880670
\(490\) 0 0
\(491\) 1.70549e9 2.95399e9i 0.650225 1.12622i −0.332843 0.942982i \(-0.608008\pi\)
0.983068 0.183241i \(-0.0586588\pi\)
\(492\) 0 0
\(493\) −4.48157e8 −0.168448
\(494\) 0 0
\(495\) −5.15412e9 −1.91001
\(496\) 0 0
\(497\) 2.67532e8 4.63378e8i 0.0977525 0.169312i
\(498\) 0 0
\(499\) 5.43259e9 1.95729 0.978645 0.205559i \(-0.0659014\pi\)
0.978645 + 0.205559i \(0.0659014\pi\)
\(500\) 0 0
\(501\) −6.88318e8 1.19220e9i −0.244544 0.423563i
\(502\) 0 0
\(503\) 5.84567e8 + 1.01250e9i 0.204808 + 0.354737i 0.950071 0.312032i \(-0.101010\pi\)
−0.745264 + 0.666770i \(0.767676\pi\)
\(504\) 0 0
\(505\) −4.21440e8 + 7.29956e8i −0.145618 + 0.252219i
\(506\) 0 0
\(507\) 2.45503e9 + 3.72959e9i 0.836620 + 1.27096i
\(508\) 0 0
\(509\) −1.08501e9 + 1.87929e9i −0.364688 + 0.631658i −0.988726 0.149736i \(-0.952158\pi\)
0.624038 + 0.781394i \(0.285491\pi\)
\(510\) 0 0
\(511\) 3.48464e8 + 6.03557e8i 0.115527 + 0.200099i
\(512\) 0 0
\(513\) 6.86434e8 + 1.18894e9i 0.224485 + 0.388820i
\(514\) 0 0
\(515\) −2.58428e9 −0.833708
\(516\) 0 0
\(517\) 5.58257e8 9.66930e8i 0.177671 0.307736i
\(518\) 0 0
\(519\) 2.94417e9 0.924436
\(520\) 0 0
\(521\) −5.57218e9 −1.72621 −0.863103 0.505027i \(-0.831482\pi\)
−0.863103 + 0.505027i \(0.831482\pi\)
\(522\) 0 0
\(523\) −3.33759e8 + 5.78087e8i −0.102018 + 0.176700i −0.912516 0.409041i \(-0.865863\pi\)
0.810498 + 0.585741i \(0.199197\pi\)
\(524\) 0 0
\(525\) 5.81066e9 1.75254
\(526\) 0 0
\(527\) −1.68593e8 2.92011e8i −0.0501766 0.0869084i
\(528\) 0 0
\(529\) −3.93448e9 6.81471e9i −1.15556 2.00149i
\(530\) 0 0
\(531\) 1.68914e9 2.92568e9i 0.489593 0.848000i
\(532\) 0 0
\(533\) 1.39627e8 + 4.76741e9i 0.0399414 + 1.36376i
\(534\) 0 0
\(535\) −3.21168e9 + 5.56280e9i −0.906764 + 1.57056i
\(536\) 0 0
\(537\) −1.14877e9 1.98973e9i −0.320127 0.554477i
\(538\) 0 0
\(539\) −1.11209e9 1.92620e9i −0.305901 0.529836i
\(540\) 0 0
\(541\) 4.87524e9 1.32375 0.661875 0.749614i \(-0.269761\pi\)
0.661875 + 0.749614i \(0.269761\pi\)
\(542\) 0 0
\(543\) 2.87827e9 4.98531e9i 0.771493 1.33626i
\(544\) 0 0
\(545\) −8.65212e9 −2.28947
\(546\) 0 0
\(547\) −6.55899e8 −0.171349 −0.0856744 0.996323i \(-0.527304\pi\)
−0.0856744 + 0.996323i \(0.527304\pi\)
\(548\) 0 0
\(549\) 4.15786e9 7.20163e9i 1.07242 1.85749i
\(550\) 0 0
\(551\) −1.91795e9 −0.488435
\(552\) 0 0
\(553\) −1.68629e9 2.92075e9i −0.424029 0.734439i
\(554\) 0 0
\(555\) −8.96538e8 1.55285e9i −0.222609 0.385571i
\(556\) 0 0
\(557\) 7.33190e8 1.26992e9i 0.179773 0.311375i −0.762030 0.647542i \(-0.775797\pi\)
0.941803 + 0.336167i \(0.109130\pi\)
\(558\) 0 0
\(559\) −6.38915e9 3.44343e9i −1.54704 0.833777i
\(560\) 0 0
\(561\) −7.96201e8 + 1.37906e9i −0.190394 + 0.329772i
\(562\) 0 0
\(563\) −1.50686e9 2.60996e9i −0.355872 0.616388i 0.631395 0.775461i \(-0.282483\pi\)
−0.987267 + 0.159074i \(0.949149\pi\)
\(564\) 0 0
\(565\) −3.47796e9 6.02400e9i −0.811250 1.40513i
\(566\) 0 0
\(567\) −1.16686e9 −0.268829
\(568\) 0 0
\(569\) 3.75097e9 6.49687e9i 0.853592 1.47847i −0.0243527 0.999703i \(-0.507752\pi\)
0.877945 0.478762i \(-0.158914\pi\)
\(570\) 0 0
\(571\) 1.19452e9 0.268514 0.134257 0.990947i \(-0.457135\pi\)
0.134257 + 0.990947i \(0.457135\pi\)
\(572\) 0 0
\(573\) 9.70190e8 0.215435
\(574\) 0 0
\(575\) 1.04010e10 1.80150e10i 2.28159 3.95183i
\(576\) 0 0
\(577\) −4.85637e9 −1.05244 −0.526219 0.850349i \(-0.676391\pi\)
−0.526219 + 0.850349i \(0.676391\pi\)
\(578\) 0 0
\(579\) −6.16388e8 1.06762e9i −0.131971 0.228581i
\(580\) 0 0
\(581\) 1.16109e9 + 2.01106e9i 0.245611 + 0.425411i
\(582\) 0 0
\(583\) 1.59856e9 2.76878e9i 0.334109 0.578693i
\(584\) 0 0
\(585\) 1.05003e10 + 5.65915e9i 2.16849 + 1.16871i
\(586\) 0 0
\(587\) −1.01242e9 + 1.75356e9i −0.206598 + 0.357839i −0.950641 0.310294i \(-0.899573\pi\)
0.744043 + 0.668132i \(0.232906\pi\)
\(588\) 0 0
\(589\) −7.21516e8 1.24970e9i −0.145493 0.252001i
\(590\) 0 0
\(591\) −2.21924e9 3.84384e9i −0.442231 0.765966i
\(592\) 0 0
\(593\) 9.30040e8 0.183151 0.0915757 0.995798i \(-0.470810\pi\)
0.0915757 + 0.995798i \(0.470810\pi\)
\(594\) 0 0
\(595\) 7.13271e8 1.23542e9i 0.138818 0.240439i
\(596\) 0 0
\(597\) 1.71995e8 0.0330831
\(598\) 0 0
\(599\) −2.25978e9 −0.429608 −0.214804 0.976657i \(-0.568911\pi\)
−0.214804 + 0.976657i \(0.568911\pi\)
\(600\) 0 0
\(601\) −7.28350e8 + 1.26154e9i −0.136861 + 0.237050i −0.926307 0.376770i \(-0.877035\pi\)
0.789446 + 0.613820i \(0.210368\pi\)
\(602\) 0 0
\(603\) −9.15188e8 −0.169981
\(604\) 0 0
\(605\) 2.03422e9 + 3.52336e9i 0.373468 + 0.646865i
\(606\) 0 0
\(607\) −2.64143e9 4.57510e9i −0.479379 0.830309i 0.520341 0.853958i \(-0.325805\pi\)
−0.999720 + 0.0236495i \(0.992471\pi\)
\(608\) 0 0
\(609\) −1.01650e9 + 1.76063e9i −0.182367 + 0.315869i
\(610\) 0 0
\(611\) −2.19900e9 + 1.35694e9i −0.390015 + 0.240667i
\(612\) 0 0
\(613\) 1.20643e9 2.08960e9i 0.211540 0.366397i −0.740657 0.671883i \(-0.765486\pi\)
0.952197 + 0.305486i \(0.0988190\pi\)
\(614\) 0 0
\(615\) 1.12143e10 + 1.94237e10i 1.94405 + 3.36720i
\(616\) 0 0
\(617\) −4.68931e9 8.12213e9i −0.803732 1.39210i −0.917144 0.398556i \(-0.869511\pi\)
0.113412 0.993548i \(-0.463822\pi\)
\(618\) 0 0
\(619\) −2.73222e9 −0.463019 −0.231510 0.972833i \(-0.574366\pi\)
−0.231510 + 0.972833i \(0.574366\pi\)
\(620\) 0 0
\(621\) 2.60482e9 4.51169e9i 0.436473 0.755994i
\(622\) 0 0
\(623\) 3.28261e9 0.543890
\(624\) 0 0
\(625\) 1.69736e10 2.78096
\(626\) 0 0
\(627\) −3.40746e9 + 5.90189e9i −0.552070 + 0.956213i
\(628\) 0 0
\(629\) −3.14711e8 −0.0504238
\(630\) 0 0
\(631\) 4.52633e9 + 7.83984e9i 0.717205 + 1.24224i 0.962103 + 0.272687i \(0.0879124\pi\)
−0.244897 + 0.969549i \(0.578754\pi\)
\(632\) 0 0
\(633\) 3.46071e9 + 5.99413e9i 0.542316 + 0.939319i
\(634\) 0 0
\(635\) 7.14229e8 1.23708e9i 0.110695 0.191730i
\(636\) 0 0
\(637\) 1.50693e8 + 5.14527e9i 0.0230997 + 0.788716i
\(638\) 0 0
\(639\) 1.84635e9 3.19797e9i 0.279937 0.484866i
\(640\) 0 0
\(641\) 5.18052e9 + 8.97293e9i 0.776910 + 1.34565i 0.933715 + 0.358018i \(0.116547\pi\)
−0.156805 + 0.987630i \(0.550119\pi\)
\(642\) 0 0
\(643\) −1.96400e9 3.40175e9i −0.291342 0.504619i 0.682785 0.730619i \(-0.260768\pi\)
−0.974127 + 0.226000i \(0.927435\pi\)
\(644\) 0 0
\(645\) −3.41310e10 −5.00829
\(646\) 0 0
\(647\) −5.63673e9 + 9.76311e9i −0.818206 + 1.41717i 0.0887973 + 0.996050i \(0.471698\pi\)
−0.907003 + 0.421124i \(0.861636\pi\)
\(648\) 0 0
\(649\) 4.01983e9 0.577233
\(650\) 0 0
\(651\) −1.52959e9 −0.217291
\(652\) 0 0
\(653\) 6.93321e9 1.20087e10i 0.974401 1.68771i 0.292505 0.956264i \(-0.405511\pi\)
0.681896 0.731449i \(-0.261156\pi\)
\(654\) 0 0
\(655\) −1.02625e10 −1.42695
\(656\) 0 0
\(657\) 2.40490e9 + 4.16540e9i 0.330840 + 0.573031i
\(658\) 0 0
\(659\) −7.94245e7 1.37567e8i −0.0108107 0.0187248i 0.860569 0.509333i \(-0.170108\pi\)
−0.871380 + 0.490608i \(0.836775\pi\)
\(660\) 0 0
\(661\) −5.58771e9 + 9.67820e9i −0.752539 + 1.30344i 0.194050 + 0.980992i \(0.437838\pi\)
−0.946589 + 0.322443i \(0.895496\pi\)
\(662\) 0 0
\(663\) 3.13627e9 1.93531e9i 0.417942 0.257901i
\(664\) 0 0
\(665\) 3.05255e9 5.28716e9i 0.402519 0.697183i
\(666\) 0 0
\(667\) 3.63904e9 + 6.30300e9i 0.474839 + 0.822445i
\(668\) 0 0
\(669\) 5.94601e9 + 1.02988e10i 0.767776 + 1.32983i
\(670\) 0 0
\(671\) 9.89490e9 1.26439
\(672\) 0 0
\(673\) 2.69956e9 4.67577e9i 0.341381 0.591289i −0.643308 0.765607i \(-0.722439\pi\)
0.984689 + 0.174318i \(0.0557720\pi\)
\(674\) 0 0
\(675\) 9.61266e9 1.20304
\(676\) 0 0
\(677\) −7.69486e9 −0.953104 −0.476552 0.879146i \(-0.658114\pi\)
−0.476552 + 0.879146i \(0.658114\pi\)
\(678\) 0 0
\(679\) 1.41889e9 2.45759e9i 0.173942 0.301276i
\(680\) 0 0
\(681\) −4.06086e9 −0.492724
\(682\) 0 0
\(683\) −2.54926e9 4.41544e9i −0.306155 0.530275i 0.671363 0.741129i \(-0.265709\pi\)
−0.977518 + 0.210853i \(0.932376\pi\)
\(684\) 0 0
\(685\) −1.70761e8 2.95768e8i −0.0202989 0.0351588i
\(686\) 0 0
\(687\) −9.56200e9 + 1.65619e10i −1.12512 + 1.94877i
\(688\) 0 0
\(689\) −6.29678e9 + 3.88557e9i −0.733417 + 0.452572i
\(690\) 0 0
\(691\) −1.53611e8 + 2.66062e8i −0.0177112 + 0.0306768i −0.874745 0.484583i \(-0.838971\pi\)
0.857034 + 0.515260i \(0.172305\pi\)
\(692\) 0 0
\(693\) 2.05185e9 + 3.55391e9i 0.234196 + 0.405639i
\(694\) 0 0
\(695\) 2.41240e9 + 4.17840e9i 0.272585 + 0.472131i
\(696\) 0 0
\(697\) 3.93654e9 0.440352
\(698\) 0 0
\(699\) 2.32599e9 4.02874e9i 0.257595 0.446168i
\(700\) 0 0
\(701\) 1.35330e9 0.148382 0.0741910 0.997244i \(-0.476363\pi\)
0.0741910 + 0.997244i \(0.476363\pi\)
\(702\) 0 0
\(703\) −1.34685e9 −0.146210
\(704\) 0 0
\(705\) −6.07561e9 + 1.05233e10i −0.653022 + 1.13107i
\(706\) 0 0
\(707\) 6.71100e8 0.0714199
\(708\) 0 0
\(709\) −5.45562e9 9.44942e9i −0.574887 0.995734i −0.996054 0.0887504i \(-0.971713\pi\)
0.421167 0.906983i \(-0.361621\pi\)
\(710\) 0 0
\(711\) −1.16378e10 2.01573e10i −1.21431 2.10324i
\(712\) 0 0
\(713\) −2.73795e9 + 4.74227e9i −0.282886 + 0.489973i
\(714\) 0 0
\(715\) 4.15516e8 + 1.41874e10i 0.0425125 + 1.45155i
\(716\) 0 0
\(717\) −7.35768e9 + 1.27439e10i −0.745459 + 1.29117i
\(718\) 0 0
\(719\) −5.14659e9 8.91415e9i −0.516379 0.894394i −0.999819 0.0190170i \(-0.993946\pi\)
0.483440 0.875377i \(-0.339387\pi\)
\(720\) 0 0
\(721\) 1.02880e9 + 1.78193e9i 0.102225 + 0.177059i
\(722\) 0 0
\(723\) −1.99582e10 −1.96398
\(724\) 0 0
\(725\) −6.71463e9 + 1.16301e10i −0.654393 + 1.13344i
\(726\) 0 0
\(727\) −7.61641e9 −0.735156 −0.367578 0.929993i \(-0.619813\pi\)
−0.367578 + 0.929993i \(0.619813\pi\)
\(728\) 0 0
\(729\) −1.56887e10 −1.49982
\(730\) 0 0
\(731\) −2.99525e9 + 5.18792e9i −0.283610 + 0.491227i
\(732\) 0 0
\(733\) 5.63920e9 0.528875 0.264438 0.964403i \(-0.414814\pi\)
0.264438 + 0.964403i \(0.414814\pi\)
\(734\) 0 0
\(735\) 1.21031e10 + 2.09632e10i 1.12432 + 1.94739i
\(736\) 0 0
\(737\) −5.44492e8 9.43088e8i −0.0501020 0.0867793i
\(738\) 0 0
\(739\) 1.09173e10 1.89093e10i 0.995083 1.72353i 0.411766 0.911289i \(-0.364912\pi\)
0.583317 0.812245i \(-0.301755\pi\)
\(740\) 0 0
\(741\) 1.34221e10 8.28242e9i 1.21187 0.747814i
\(742\) 0 0
\(743\) −5.74324e9 + 9.94759e9i −0.513684 + 0.889728i 0.486190 + 0.873853i \(0.338386\pi\)
−0.999874 + 0.0158742i \(0.994947\pi\)
\(744\) 0 0
\(745\) 6.39866e8 + 1.10828e9i 0.0566947 + 0.0981980i
\(746\) 0 0
\(747\) 8.01314e9 + 1.38792e10i 0.703365 + 1.21826i
\(748\) 0 0
\(749\) 5.11427e9 0.444731
\(750\) 0 0
\(751\) 3.48748e9 6.04050e9i 0.300450 0.520395i −0.675788 0.737096i \(-0.736196\pi\)
0.976238 + 0.216701i \(0.0695298\pi\)
\(752\) 0 0
\(753\) 2.21978e10 1.89464
\(754\) 0 0
\(755\) 1.43015e10 1.20939
\(756\) 0 0
\(757\) 1.58758e9 2.74977e9i 0.133015 0.230389i −0.791822 0.610751i \(-0.790867\pi\)
0.924837 + 0.380363i \(0.124201\pi\)
\(758\) 0 0
\(759\) 2.58607e10 2.14681
\(760\) 0 0
\(761\) −7.65367e9 1.32565e10i −0.629540 1.09040i −0.987644 0.156714i \(-0.949910\pi\)
0.358104 0.933682i \(-0.383423\pi\)
\(762\) 0 0
\(763\) 3.44440e9 + 5.96588e9i 0.280723 + 0.486227i
\(764\) 0 0
\(765\) 4.92258e9 8.52616e9i 0.397537 0.688555i
\(766\) 0 0
\(767\) −8.18950e9 4.41372e9i −0.655350 0.353200i
\(768\) 0 0
\(769\) −1.47679e9 + 2.55788e9i −0.117105 + 0.202833i −0.918619 0.395143i \(-0.870695\pi\)
0.801514 + 0.597976i \(0.204028\pi\)
\(770\) 0 0
\(771\) −7.62425e9 1.32056e10i −0.599110 1.03769i
\(772\) 0 0
\(773\) −4.92294e9 8.52678e9i −0.383351 0.663983i 0.608188 0.793793i \(-0.291897\pi\)
−0.991539 + 0.129810i \(0.958563\pi\)
\(774\) 0 0
\(775\) −1.01039e10 −0.779712
\(776\) 0 0
\(777\) −7.13822e8 + 1.23638e9i −0.0545904 + 0.0945534i
\(778\) 0 0
\(779\) 1.68470e10 1.27685
\(780\) 0 0
\(781\) 4.39395e9 0.330047
\(782\) 0 0
\(783\) −1.68161e9 + 2.91264e9i −0.125187 + 0.216830i
\(784\) 0 0
\(785\) 2.90269e10 2.14169
\(786\) 0 0
\(787\) −2.60565e9 4.51312e9i −0.190548 0.330039i 0.754884 0.655858i \(-0.227693\pi\)
−0.945432 + 0.325820i \(0.894360\pi\)
\(788\) 0 0
\(789\) 6.22057e9 + 1.07743e10i 0.450880 + 0.780946i
\(790\) 0 0
\(791\) −2.76914e9 + 4.79630e9i −0.198943 + 0.344579i
\(792\) 0 0
\(793\) −2.01586e10 1.08645e10i −1.43551 0.773665i
\(794\) 0 0
\(795\) −1.73973e10 + 3.01331e10i −1.22800 + 2.12696i
\(796\) 0 0
\(797\) −3.92980e9 6.80662e9i −0.274958 0.476241i 0.695166 0.718849i \(-0.255331\pi\)
−0.970125 + 0.242607i \(0.921997\pi\)
\(798\) 0 0
\(799\) 1.06636e9 + 1.84699e9i 0.0739588 + 0.128100i
\(800\) 0 0
\(801\) 2.26547e10 1.55756
\(802\) 0 0
\(803\) −2.86159e9 + 4.95642e9i −0.195031 + 0.337803i
\(804\) 0 0
\(805\) −2.31671e10 −1.56526
\(806\) 0 0
\(807\) 2.01447e10 1.34928
\(808\) 0 0
\(809\) 3.22934e9 5.59338e9i 0.214434 0.371411i −0.738663 0.674075i \(-0.764543\pi\)
0.953097 + 0.302664i \(0.0978760\pi\)
\(810\) 0 0
\(811\) 2.35320e10 1.54912 0.774562 0.632498i \(-0.217970\pi\)
0.774562 + 0.632498i \(0.217970\pi\)
\(812\) 0 0
\(813\) 7.74756e9 + 1.34192e10i 0.505648 + 0.875807i
\(814\) 0 0
\(815\) 8.37617e9 + 1.45080e10i 0.541993 + 0.938760i
\(816\) 0 0
\(817\) −1.28186e10 + 2.22024e10i −0.822362 + 1.42437i
\(818\) 0 0
\(819\) −2.78034e8 9.49319e9i −0.0176850 0.603835i
\(820\) 0 0
\(821\) 1.26199e9 2.18583e9i 0.0795894 0.137853i −0.823483 0.567340i \(-0.807972\pi\)
0.903073 + 0.429487i \(0.141306\pi\)
\(822\) 0 0
\(823\) −8.68821e9 1.50484e10i −0.543289 0.941004i −0.998712 0.0507293i \(-0.983845\pi\)
0.455423 0.890275i \(-0.349488\pi\)
\(824\) 0 0
\(825\) 2.38586e10 + 4.13243e10i 1.47930 + 2.56222i
\(826\) 0 0
\(827\) −1.96660e10 −1.20906 −0.604530 0.796583i \(-0.706639\pi\)
−0.604530 + 0.796583i \(0.706639\pi\)
\(828\) 0 0
\(829\) −1.53344e10 + 2.65600e10i −0.934817 + 1.61915i −0.159857 + 0.987140i \(0.551103\pi\)
−0.774960 + 0.632010i \(0.782230\pi\)
\(830\) 0 0
\(831\) −3.91555e10 −2.36695
\(832\) 0 0
\(833\) 4.24855e9 0.254673
\(834\) 0 0
\(835\) −5.06373e9 + 8.77064e9i −0.301001 + 0.521349i
\(836\) 0 0
\(837\) −2.53043e9 −0.149161
\(838\) 0 0
\(839\) −1.50419e10 2.60533e10i −0.879297 1.52299i −0.852114 0.523356i \(-0.824680\pi\)
−0.0271823 0.999630i \(-0.508653\pi\)
\(840\) 0 0
\(841\) 6.27566e9 + 1.08698e10i 0.363809 + 0.630136i
\(842\) 0 0
\(843\) 5.07618e9 8.79220e9i 0.291837 0.505477i
\(844\) 0 0
\(845\) 1.47310e10 2.93598e10i 0.839915 1.67400i
\(846\) 0 0
\(847\) 1.61964e9 2.80530e9i 0.0915854 0.158631i
\(848\) 0 0
\(849\) −9.22381e8 1.59761e9i −0.0517289 0.0895971i
\(850\) 0 0
\(851\) 2.55546e9 + 4.42619e9i 0.142140 + 0.246194i
\(852\) 0 0
\(853\) −8.80922e9 −0.485977 −0.242989 0.970029i \(-0.578128\pi\)
−0.242989 + 0.970029i \(0.578128\pi\)
\(854\) 0 0
\(855\) 2.10669e10 3.64889e10i 1.15271 1.99655i
\(856\) 0 0
\(857\) 1.71306e10 0.929696 0.464848 0.885391i \(-0.346109\pi\)
0.464848 + 0.885391i \(0.346109\pi\)
\(858\) 0 0
\(859\) −9.23130e9 −0.496921 −0.248460 0.968642i \(-0.579925\pi\)
−0.248460 + 0.968642i \(0.579925\pi\)
\(860\) 0 0
\(861\) 8.92879e9 1.54651e10i 0.476740 0.825737i
\(862\) 0 0
\(863\) 2.02167e10 1.07071 0.535356 0.844627i \(-0.320178\pi\)
0.535356 + 0.844627i \(0.320178\pi\)
\(864\) 0 0
\(865\) −1.08296e10 1.87575e10i −0.568929 0.985414i
\(866\) 0 0
\(867\) 1.30787e10 + 2.26529e10i 0.681548 + 1.18048i
\(868\) 0 0
\(869\) 1.38479e10 2.39852e10i 0.715837 1.23987i
\(870\) 0 0
\(871\) 7.37809e7 + 2.51918e9i 0.00378338 + 0.129180i
\(872\) 0 0
\(873\) 9.79236e9 1.69609e10i 0.498124 0.862776i
\(874\) 0 0
\(875\) −1.28505e10 2.22577e10i −0.648471 1.12318i
\(876\) 0 0
\(877\) 7.10449e9 + 1.23053e10i 0.355659 + 0.616020i 0.987231 0.159298i \(-0.0509230\pi\)
−0.631571 + 0.775318i \(0.717590\pi\)
\(878\) 0 0
\(879\) 5.29322e10 2.62881
\(880\) 0 0
\(881\) 7.59598e9 1.31566e10i 0.374256 0.648230i −0.615960 0.787778i \(-0.711232\pi\)
0.990215 + 0.139548i \(0.0445649\pi\)
\(882\) 0 0
\(883\) −5.15139e8 −0.0251803 −0.0125902 0.999921i \(-0.504008\pi\)
−0.0125902 + 0.999921i \(0.504008\pi\)
\(884\) 0 0
\(885\) −4.37485e10 −2.12159
\(886\) 0 0
\(887\) 1.37994e10 2.39012e10i 0.663936 1.14997i −0.315636 0.948880i \(-0.602218\pi\)
0.979573 0.201091i \(-0.0644487\pi\)
\(888\) 0 0
\(889\) −1.13734e9 −0.0542916
\(890\) 0 0
\(891\) −4.79112e9 8.29846e9i −0.226916 0.393030i
\(892\) 0 0
\(893\) 4.56364e9 + 7.90445e9i 0.214452 + 0.371442i
\(894\) 0 0
\(895\) −8.45112e9 + 1.46378e10i −0.394034 + 0.682487i
\(896\) 0 0
\(897\) −5.26853e10 2.83947e10i −2.43734 1.31360i
\(898\) 0 0
\(899\) 1.76755e9 3.06149e9i 0.0811360 0.140532i
\(900\) 0 0
\(901\) 3.05349e9 + 5.28880e9i 0.139078 + 0.240891i
\(902\) 0 0
\(903\) 1.35875e10 + 2.35343e10i 0.614091 + 1.06364i
\(904\) 0 0
\(905\) −4.23489e10 −1.89921
\(906\) 0 0
\(907\) −1.19671e10 + 2.07277e10i −0.532555 + 0.922412i 0.466723 + 0.884404i \(0.345435\pi\)
−0.999277 + 0.0380081i \(0.987899\pi\)
\(908\) 0 0
\(909\) 4.63155e9 0.204528
\(910\) 0 0
\(911\) 2.98472e10 1.30794 0.653972 0.756519i \(-0.273102\pi\)
0.653972 + 0.756519i \(0.273102\pi\)
\(912\) 0 0
\(913\) −9.53485e9 + 1.65148e10i −0.414635 + 0.718169i
\(914\) 0 0
\(915\) −1.07688e11 −4.64722
\(916\) 0 0
\(917\) 4.08550e9 + 7.07630e9i 0.174966 + 0.303049i
\(918\) 0 0
\(919\) −4.11876e9 7.13390e9i −0.175050 0.303196i 0.765129 0.643878i \(-0.222675\pi\)
−0.940179 + 0.340682i \(0.889342\pi\)
\(920\) 0 0
\(921\) 1.02052e10 1.76759e10i 0.430440 0.745544i
\(922\) 0 0
\(923\) −8.95168e9 4.82450e9i −0.374713 0.201951i
\(924\) 0 0
\(925\) −4.71525e9 + 8.16705e9i −0.195888 + 0.339289i
\(926\) 0 0
\(927\) 7.10018e9 + 1.22979e10i 0.292745 + 0.507050i
\(928\) 0 0
\(929\) −1.65384e10 2.86454e10i −0.676767 1.17219i −0.975949 0.217999i \(-0.930047\pi\)
0.299182 0.954196i \(-0.403286\pi\)
\(930\) 0 0
\(931\) 1.81823e10 0.738456
\(932\) 0 0
\(933\) 2.55775e10 4.43016e10i 1.03103 1.78580i
\(934\) 0 0
\(935\) 1.17148e10 0.468699
\(936\) 0 0
\(937\) 6.86759e9 0.272719 0.136360 0.990659i \(-0.456460\pi\)
0.136360 + 0.990659i \(0.456460\pi\)
\(938\) 0 0
\(939\) −2.20727e10 + 3.82311e10i −0.870014 + 1.50691i
\(940\) 0 0
\(941\) −3.10041e10 −1.21298 −0.606492 0.795090i \(-0.707424\pi\)
−0.606492 + 0.795090i \(0.707424\pi\)
\(942\) 0 0
\(943\) −3.19648e10 5.53646e10i −1.24131 2.15002i
\(944\) 0 0
\(945\) −5.35279e9 9.27131e9i −0.206333 0.357380i
\(946\) 0 0
\(947\) −1.08273e10 + 1.87534e10i −0.414280 + 0.717555i −0.995353 0.0962973i \(-0.969300\pi\)
0.581072 + 0.813852i \(0.302633\pi\)
\(948\) 0 0
\(949\) 1.12719e10 6.95560e9i 0.428121 0.264182i
\(950\) 0 0
\(951\) −5.95078e9 + 1.03070e10i −0.224358 + 0.388600i
\(952\) 0 0
\(953\) 6.18367e9 + 1.07104e10i 0.231431 + 0.400850i 0.958229 0.286001i \(-0.0923260\pi\)
−0.726799 + 0.686851i \(0.758993\pi\)
\(954\) 0 0
\(955\) −3.56868e9 6.18114e9i −0.132586 0.229645i
\(956\) 0 0
\(957\) −1.66950e10 −0.615737
\(958\) 0 0
\(959\) −1.35960e8 + 2.35490e8i −0.00497790 + 0.00862197i
\(960\) 0 0
\(961\) −2.48529e10 −0.903326
\(962\) 0 0
\(963\) 3.52958e10 1.27359
\(964\) 0 0
\(965\) −4.53457e9 + 7.85410e9i −0.162439 + 0.281353i
\(966\) 0 0
\(967\) −3.71093e10 −1.31974 −0.659872 0.751378i \(-0.729390\pi\)
−0.659872 + 0.751378i \(0.729390\pi\)
\(968\) 0 0
\(969\) −6.50878e9 1.12735e10i −0.229809 0.398040i
\(970\) 0 0
\(971\) −1.35012e10 2.33848e10i −0.473267 0.819723i 0.526265 0.850321i \(-0.323592\pi\)
−0.999532 + 0.0305981i \(0.990259\pi\)
\(972\) 0 0
\(973\) 1.92075e9 3.32683e9i 0.0668460 0.115781i
\(974\) 0 0
\(975\) −3.23294e9 1.10385e11i −0.111707 3.81413i
\(976\) 0 0
\(977\) −1.50462e10 + 2.60608e10i −0.516175 + 0.894041i 0.483649 + 0.875262i \(0.339311\pi\)
−0.999824 + 0.0187788i \(0.994022\pi\)
\(978\) 0 0
\(979\) 1.34784e10 + 2.33453e10i 0.459092 + 0.795171i
\(980\) 0 0
\(981\) 2.37713e10 + 4.11731e10i 0.803917 + 1.39242i
\(982\) 0 0
\(983\) 5.51343e10 1.85133 0.925667 0.378340i \(-0.123505\pi\)
0.925667 + 0.378340i \(0.123505\pi\)
\(984\) 0 0
\(985\) −1.63262e10 + 2.82779e10i −0.544327 + 0.942801i
\(986\) 0 0
\(987\) 9.67477e9 0.320281
\(988\) 0 0
\(989\) 9.72858e10 3.19788
\(990\) 0 0
\(991\) −7.69281e9 + 1.33243e10i −0.251089 + 0.434898i −0.963826 0.266533i \(-0.914122\pi\)
0.712737 + 0.701431i \(0.247455\pi\)
\(992\) 0 0
\(993\) −5.61643e10 −1.82028
\(994\) 0 0
\(995\) −6.32656e8 1.09579e9i −0.0203604 0.0352653i
\(996\) 0 0
\(997\) 1.39828e10 + 2.42190e10i 0.446850 + 0.773967i 0.998179 0.0603210i \(-0.0192124\pi\)
−0.551329 + 0.834288i \(0.685879\pi\)
\(998\) 0 0
\(999\) −1.18089e9 + 2.04536e9i −0.0374739 + 0.0649067i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.8.i.b.113.1 8
4.3 odd 2 26.8.c.b.9.4 yes 8
12.11 even 2 234.8.h.b.217.1 8
13.3 even 3 inner 208.8.i.b.81.1 8
52.3 odd 6 26.8.c.b.3.4 8
52.7 even 12 338.8.b.h.337.1 8
52.19 even 12 338.8.b.h.337.5 8
52.35 odd 6 338.8.a.i.1.1 4
52.43 odd 6 338.8.a.j.1.1 4
156.107 even 6 234.8.h.b.55.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.c.b.3.4 8 52.3 odd 6
26.8.c.b.9.4 yes 8 4.3 odd 2
208.8.i.b.81.1 8 13.3 even 3 inner
208.8.i.b.113.1 8 1.1 even 1 trivial
234.8.h.b.55.1 8 156.107 even 6
234.8.h.b.217.1 8 12.11 even 2
338.8.a.i.1.1 4 52.35 odd 6
338.8.a.j.1.1 4 52.43 odd 6
338.8.b.h.337.1 8 52.7 even 12
338.8.b.h.337.5 8 52.19 even 12