Properties

Label 208.4.w
Level $208$
Weight $4$
Character orbit 208.w
Rep. character $\chi_{208}(17,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $40$
Newform subspaces $5$
Sturm bound $112$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 208.w (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 5 \)
Sturm bound: \(112\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(208, [\chi])\).

Total New Old
Modular forms 180 44 136
Cusp forms 156 40 116
Eisenstein series 24 4 20

Trace form

\( 40 q + 7 q^{3} + 57 q^{7} - 163 q^{9} + O(q^{10}) \) \( 40 q + 7 q^{3} + 57 q^{7} - 163 q^{9} + 3 q^{11} + 21 q^{13} - 78 q^{15} - 14 q^{17} + 3 q^{19} + 139 q^{23} - 782 q^{25} - 614 q^{27} - 72 q^{29} - 3 q^{33} + 296 q^{35} + 492 q^{37} - 1021 q^{39} - 180 q^{41} - 641 q^{43} + 237 q^{45} + 917 q^{49} + 862 q^{51} - 682 q^{53} - 168 q^{55} + 945 q^{59} + 294 q^{61} - 2022 q^{63} - 81 q^{65} - 1239 q^{67} + 573 q^{69} + 2631 q^{71} - 595 q^{75} - 218 q^{77} + 4128 q^{79} - 1152 q^{81} + 1089 q^{85} + 601 q^{87} + 2301 q^{89} + 2657 q^{91} + 246 q^{93} + 2034 q^{95} + 453 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(208, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
208.4.w.a 208.w 13.e $2$ $12.272$ \(\Q(\sqrt{-3}) \) None \(0\) \(-7\) \(0\) \(-39\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-7+7\zeta_{6})q^{3}+(-8+2^{4}\zeta_{6})q^{5}+\cdots\)
208.4.w.b 208.w 13.e $2$ $12.272$ \(\Q(\sqrt{-3}) \) None \(0\) \(2\) \(0\) \(24\) $\mathrm{SU}(2)[C_{6}]$ \(q+(2-2\zeta_{6})q^{3}+(1-2\zeta_{6})q^{5}+(2^{4}-8\zeta_{6})q^{7}+\cdots\)
208.4.w.c 208.w 13.e $8$ $12.272$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None \(0\) \(0\) \(0\) \(36\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{5}q^{3}+(2-3\beta _{1}+\beta _{2}-\beta _{4})q^{5}+\cdots\)
208.4.w.d 208.w 13.e $8$ $12.272$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None \(0\) \(6\) \(0\) \(-18\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\beta _{1}-\beta _{6})q^{3}+(2+4\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
208.4.w.e 208.w 13.e $20$ $12.272$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None \(0\) \(6\) \(0\) \(54\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\beta _{1}+\beta _{2})q^{3}+(-1+\beta _{1}-\beta _{7}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(208, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(208, [\chi]) \cong \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)