Defining parameters
Level: | \( N \) | \(=\) | \( 208 = 2^{4} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 208.w (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(208, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 180 | 44 | 136 |
Cusp forms | 156 | 40 | 116 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(208, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
208.4.w.a | $2$ | $12.272$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-7\) | \(0\) | \(-39\) | \(q+(-7+7\zeta_{6})q^{3}+(-8+2^{4}\zeta_{6})q^{5}+\cdots\) |
208.4.w.b | $2$ | $12.272$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(2\) | \(0\) | \(24\) | \(q+(2-2\zeta_{6})q^{3}+(1-2\zeta_{6})q^{5}+(2^{4}-8\zeta_{6})q^{7}+\cdots\) |
208.4.w.c | $8$ | $12.272$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(36\) | \(q+\beta _{5}q^{3}+(2-3\beta _{1}+\beta _{2}-\beta _{4})q^{5}+\cdots\) |
208.4.w.d | $8$ | $12.272$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(6\) | \(0\) | \(-18\) | \(q+(1+\beta _{1}-\beta _{6})q^{3}+(2+4\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\) |
208.4.w.e | $20$ | $12.272$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(6\) | \(0\) | \(54\) | \(q+(1-\beta _{1}+\beta _{2})q^{3}+(-1+\beta _{1}-\beta _{7}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(208, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(208, [\chi]) \cong \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)