Properties

Label 208.3.bd.b.97.1
Level $208$
Weight $3$
Character 208.97
Analytic conductor $5.668$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,3,Mod(33,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.33"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 208.bd (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,6,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.66758949869\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 97.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 208.97
Dual form 208.3.bd.b.193.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.73205 + 4.73205i) q^{3} +(4.09808 - 4.09808i) q^{5} +(2.92820 - 10.9282i) q^{7} +(-10.4282 - 18.0622i) q^{9} +(8.92820 - 2.39230i) q^{11} +(11.2583 + 6.50000i) q^{13} +(8.19615 + 30.5885i) q^{15} +(-0.866025 + 0.500000i) q^{17} +(-16.1962 - 4.33975i) q^{19} +(43.7128 + 43.7128i) q^{21} +(5.66025 + 3.26795i) q^{23} -8.58846i q^{25} +64.7846 q^{27} +(16.3301 - 28.2846i) q^{29} +(12.9282 - 12.9282i) q^{31} +(-13.0718 + 48.7846i) q^{33} +(-32.7846 - 56.7846i) q^{35} +(-6.50000 + 1.74167i) q^{37} +(-61.5167 + 35.5167i) q^{39} +(6.50704 + 24.2846i) q^{41} +(48.9282 - 28.2487i) q^{43} +(-116.756 - 31.2846i) q^{45} +(-30.3923 - 30.3923i) q^{47} +(-68.4160 - 39.5000i) q^{49} -5.46410i q^{51} +25.2872 q^{53} +(26.7846 - 46.3923i) q^{55} +(64.7846 - 64.7846i) q^{57} +(-9.96152 + 37.1769i) q^{59} +(19.3564 + 33.5263i) q^{61} +(-227.923 + 61.0718i) q^{63} +(72.7750 - 19.5000i) q^{65} +(29.6603 + 110.694i) q^{67} +(-30.9282 + 17.8564i) q^{69} +(-16.7321 - 4.48334i) q^{71} +(-23.0596 - 23.0596i) q^{73} +(40.6410 + 23.4641i) q^{75} -104.574i q^{77} +65.2820 q^{79} +(-83.1410 + 144.004i) q^{81} +(-3.60770 + 3.60770i) q^{83} +(-1.50000 + 5.59808i) q^{85} +(89.2295 + 154.550i) q^{87} +(-108.988 + 29.2032i) q^{89} +(104.000 - 104.000i) q^{91} +(25.8564 + 96.4974i) q^{93} +(-84.1577 + 48.5885i) q^{95} +(75.4186 + 20.2083i) q^{97} +(-136.315 - 136.315i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 6 q^{5} - 16 q^{7} - 14 q^{9} + 8 q^{11} + 12 q^{15} - 44 q^{19} + 64 q^{21} - 12 q^{23} + 176 q^{27} + 48 q^{29} + 24 q^{31} - 80 q^{33} - 48 q^{35} - 26 q^{37} - 156 q^{39} - 116 q^{41}+ \cdots - 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.73205 + 4.73205i −0.910684 + 1.57735i −0.0975828 + 0.995227i \(0.531111\pi\)
−0.813101 + 0.582123i \(0.802222\pi\)
\(4\) 0 0
\(5\) 4.09808 4.09808i 0.819615 0.819615i −0.166437 0.986052i \(-0.553226\pi\)
0.986052 + 0.166437i \(0.0532262\pi\)
\(6\) 0 0
\(7\) 2.92820 10.9282i 0.418315 1.56117i −0.359788 0.933034i \(-0.617151\pi\)
0.778102 0.628138i \(-0.216183\pi\)
\(8\) 0 0
\(9\) −10.4282 18.0622i −1.15869 2.00691i
\(10\) 0 0
\(11\) 8.92820 2.39230i 0.811655 0.217482i 0.170960 0.985278i \(-0.445313\pi\)
0.640695 + 0.767796i \(0.278646\pi\)
\(12\) 0 0
\(13\) 11.2583 + 6.50000i 0.866025 + 0.500000i
\(14\) 0 0
\(15\) 8.19615 + 30.5885i 0.546410 + 2.03923i
\(16\) 0 0
\(17\) −0.866025 + 0.500000i −0.0509427 + 0.0294118i −0.525255 0.850945i \(-0.676030\pi\)
0.474312 + 0.880357i \(0.342697\pi\)
\(18\) 0 0
\(19\) −16.1962 4.33975i −0.852429 0.228408i −0.193954 0.981011i \(-0.562131\pi\)
−0.658475 + 0.752603i \(0.728798\pi\)
\(20\) 0 0
\(21\) 43.7128 + 43.7128i 2.08156 + 2.08156i
\(22\) 0 0
\(23\) 5.66025 + 3.26795i 0.246098 + 0.142085i 0.617976 0.786197i \(-0.287953\pi\)
−0.371878 + 0.928282i \(0.621286\pi\)
\(24\) 0 0
\(25\) 8.58846i 0.343538i
\(26\) 0 0
\(27\) 64.7846 2.39943
\(28\) 0 0
\(29\) 16.3301 28.2846i 0.563108 0.975331i −0.434115 0.900857i \(-0.642939\pi\)
0.997223 0.0744740i \(-0.0237278\pi\)
\(30\) 0 0
\(31\) 12.9282 12.9282i 0.417039 0.417039i −0.467143 0.884182i \(-0.654717\pi\)
0.884182 + 0.467143i \(0.154717\pi\)
\(32\) 0 0
\(33\) −13.0718 + 48.7846i −0.396115 + 1.47832i
\(34\) 0 0
\(35\) −32.7846 56.7846i −0.936703 1.62242i
\(36\) 0 0
\(37\) −6.50000 + 1.74167i −0.175676 + 0.0470722i −0.345585 0.938388i \(-0.612319\pi\)
0.169909 + 0.985460i \(0.445653\pi\)
\(38\) 0 0
\(39\) −61.5167 + 35.5167i −1.57735 + 0.910684i
\(40\) 0 0
\(41\) 6.50704 + 24.2846i 0.158708 + 0.592308i 0.998759 + 0.0497999i \(0.0158584\pi\)
−0.840051 + 0.542508i \(0.817475\pi\)
\(42\) 0 0
\(43\) 48.9282 28.2487i 1.13787 0.656947i 0.191964 0.981402i \(-0.438514\pi\)
0.945901 + 0.324455i \(0.105181\pi\)
\(44\) 0 0
\(45\) −116.756 31.2846i −2.59457 0.695214i
\(46\) 0 0
\(47\) −30.3923 30.3923i −0.646645 0.646645i 0.305536 0.952181i \(-0.401164\pi\)
−0.952181 + 0.305536i \(0.901164\pi\)
\(48\) 0 0
\(49\) −68.4160 39.5000i −1.39625 0.806122i
\(50\) 0 0
\(51\) 5.46410i 0.107139i
\(52\) 0 0
\(53\) 25.2872 0.477117 0.238558 0.971128i \(-0.423325\pi\)
0.238558 + 0.971128i \(0.423325\pi\)
\(54\) 0 0
\(55\) 26.7846 46.3923i 0.486993 0.843496i
\(56\) 0 0
\(57\) 64.7846 64.7846i 1.13657 1.13657i
\(58\) 0 0
\(59\) −9.96152 + 37.1769i −0.168839 + 0.630117i 0.828680 + 0.559723i \(0.189092\pi\)
−0.997519 + 0.0703943i \(0.977574\pi\)
\(60\) 0 0
\(61\) 19.3564 + 33.5263i 0.317318 + 0.549611i 0.979928 0.199354i \(-0.0638844\pi\)
−0.662609 + 0.748965i \(0.730551\pi\)
\(62\) 0 0
\(63\) −227.923 + 61.0718i −3.61783 + 0.969394i
\(64\) 0 0
\(65\) 72.7750 19.5000i 1.11962 0.300000i
\(66\) 0 0
\(67\) 29.6603 + 110.694i 0.442690 + 1.65214i 0.721963 + 0.691931i \(0.243240\pi\)
−0.279273 + 0.960212i \(0.590093\pi\)
\(68\) 0 0
\(69\) −30.9282 + 17.8564i −0.448235 + 0.258788i
\(70\) 0 0
\(71\) −16.7321 4.48334i −0.235663 0.0631456i 0.139055 0.990285i \(-0.455594\pi\)
−0.374717 + 0.927139i \(0.622260\pi\)
\(72\) 0 0
\(73\) −23.0596 23.0596i −0.315885 0.315885i 0.531299 0.847184i \(-0.321704\pi\)
−0.847184 + 0.531299i \(0.821704\pi\)
\(74\) 0 0
\(75\) 40.6410 + 23.4641i 0.541880 + 0.312855i
\(76\) 0 0
\(77\) 104.574i 1.35811i
\(78\) 0 0
\(79\) 65.2820 0.826355 0.413177 0.910651i \(-0.364419\pi\)
0.413177 + 0.910651i \(0.364419\pi\)
\(80\) 0 0
\(81\) −83.1410 + 144.004i −1.02643 + 1.77783i
\(82\) 0 0
\(83\) −3.60770 + 3.60770i −0.0434662 + 0.0434662i −0.728506 0.685040i \(-0.759785\pi\)
0.685040 + 0.728506i \(0.259785\pi\)
\(84\) 0 0
\(85\) −1.50000 + 5.59808i −0.0176471 + 0.0658597i
\(86\) 0 0
\(87\) 89.2295 + 154.550i 1.02563 + 1.77644i
\(88\) 0 0
\(89\) −108.988 + 29.2032i −1.22458 + 0.328126i −0.812468 0.583006i \(-0.801876\pi\)
−0.412114 + 0.911132i \(0.635210\pi\)
\(90\) 0 0
\(91\) 104.000 104.000i 1.14286 1.14286i
\(92\) 0 0
\(93\) 25.8564 + 96.4974i 0.278026 + 1.03761i
\(94\) 0 0
\(95\) −84.1577 + 48.5885i −0.885870 + 0.511457i
\(96\) 0 0
\(97\) 75.4186 + 20.2083i 0.777511 + 0.208333i 0.625687 0.780074i \(-0.284819\pi\)
0.151824 + 0.988408i \(0.451485\pi\)
\(98\) 0 0
\(99\) −136.315 136.315i −1.37692 1.37692i
\(100\) 0 0
\(101\) −142.567 82.3109i −1.41155 0.814959i −0.416016 0.909357i \(-0.636574\pi\)
−0.995535 + 0.0943978i \(0.969907\pi\)
\(102\) 0 0
\(103\) 40.8897i 0.396988i 0.980102 + 0.198494i \(0.0636050\pi\)
−0.980102 + 0.198494i \(0.936395\pi\)
\(104\) 0 0
\(105\) 358.277 3.41216
\(106\) 0 0
\(107\) 74.8372 129.622i 0.699413 1.21142i −0.269258 0.963068i \(-0.586778\pi\)
0.968670 0.248350i \(-0.0798884\pi\)
\(108\) 0 0
\(109\) −82.2154 + 82.2154i −0.754270 + 0.754270i −0.975273 0.221003i \(-0.929067\pi\)
0.221003 + 0.975273i \(0.429067\pi\)
\(110\) 0 0
\(111\) 9.51666 35.5167i 0.0857357 0.319970i
\(112\) 0 0
\(113\) −73.6506 127.567i −0.651776 1.12891i −0.982692 0.185248i \(-0.940691\pi\)
0.330916 0.943660i \(-0.392642\pi\)
\(114\) 0 0
\(115\) 36.5885 9.80385i 0.318160 0.0852508i
\(116\) 0 0
\(117\) 271.133i 2.31738i
\(118\) 0 0
\(119\) 2.92820 + 10.9282i 0.0246067 + 0.0918336i
\(120\) 0 0
\(121\) −30.7994 + 17.7820i −0.254540 + 0.146959i
\(122\) 0 0
\(123\) −132.694 35.5551i −1.07881 0.289066i
\(124\) 0 0
\(125\) 67.2558 + 67.2558i 0.538046 + 0.538046i
\(126\) 0 0
\(127\) −158.196 91.3346i −1.24564 0.719170i −0.275402 0.961329i \(-0.588811\pi\)
−0.970237 + 0.242159i \(0.922144\pi\)
\(128\) 0 0
\(129\) 308.708i 2.39308i
\(130\) 0 0
\(131\) −170.459 −1.30121 −0.650607 0.759415i \(-0.725485\pi\)
−0.650607 + 0.759415i \(0.725485\pi\)
\(132\) 0 0
\(133\) −94.8513 + 164.287i −0.713167 + 1.23524i
\(134\) 0 0
\(135\) 265.492 265.492i 1.96661 1.96661i
\(136\) 0 0
\(137\) 19.1359 71.4160i 0.139678 0.521285i −0.860257 0.509861i \(-0.829697\pi\)
0.999935 0.0114239i \(-0.00363643\pi\)
\(138\) 0 0
\(139\) 132.459 + 229.426i 0.952942 + 1.65054i 0.739009 + 0.673696i \(0.235294\pi\)
0.213933 + 0.976848i \(0.431372\pi\)
\(140\) 0 0
\(141\) 226.851 60.7846i 1.60887 0.431097i
\(142\) 0 0
\(143\) 116.067 + 31.1000i 0.811655 + 0.217482i
\(144\) 0 0
\(145\) −48.9904 182.835i −0.337865 1.26093i
\(146\) 0 0
\(147\) 373.832 215.832i 2.54307 1.46824i
\(148\) 0 0
\(149\) −43.2846 11.5981i −0.290501 0.0778394i 0.110626 0.993862i \(-0.464715\pi\)
−0.401126 + 0.916023i \(0.631381\pi\)
\(150\) 0 0
\(151\) 100.431 + 100.431i 0.665105 + 0.665105i 0.956579 0.291474i \(-0.0941457\pi\)
−0.291474 + 0.956579i \(0.594146\pi\)
\(152\) 0 0
\(153\) 18.0622 + 10.4282i 0.118053 + 0.0681582i
\(154\) 0 0
\(155\) 105.962i 0.683623i
\(156\) 0 0
\(157\) −68.3731 −0.435497 −0.217749 0.976005i \(-0.569871\pi\)
−0.217749 + 0.976005i \(0.569871\pi\)
\(158\) 0 0
\(159\) −69.0859 + 119.660i −0.434502 + 0.752580i
\(160\) 0 0
\(161\) 52.2872 52.2872i 0.324765 0.324765i
\(162\) 0 0
\(163\) −63.6462 + 237.531i −0.390467 + 1.45724i 0.438898 + 0.898537i \(0.355369\pi\)
−0.829365 + 0.558707i \(0.811298\pi\)
\(164\) 0 0
\(165\) 146.354 + 253.492i 0.886993 + 1.53632i
\(166\) 0 0
\(167\) 28.2487 7.56922i 0.169154 0.0453247i −0.173248 0.984878i \(-0.555426\pi\)
0.342402 + 0.939554i \(0.388760\pi\)
\(168\) 0 0
\(169\) 84.5000 + 146.358i 0.500000 + 0.866025i
\(170\) 0 0
\(171\) 90.5115 + 337.794i 0.529307 + 1.97540i
\(172\) 0 0
\(173\) 163.426 94.3538i 0.944657 0.545398i 0.0532398 0.998582i \(-0.483045\pi\)
0.891417 + 0.453184i \(0.149712\pi\)
\(174\) 0 0
\(175\) −93.8564 25.1487i −0.536322 0.143707i
\(176\) 0 0
\(177\) −148.708 148.708i −0.840156 0.840156i
\(178\) 0 0
\(179\) −66.9282 38.6410i −0.373901 0.215872i 0.301261 0.953542i \(-0.402593\pi\)
−0.675161 + 0.737670i \(0.735926\pi\)
\(180\) 0 0
\(181\) 240.559i 1.32905i 0.747264 + 0.664527i \(0.231367\pi\)
−0.747264 + 0.664527i \(0.768633\pi\)
\(182\) 0 0
\(183\) −211.531 −1.15591
\(184\) 0 0
\(185\) −19.5000 + 33.7750i −0.105405 + 0.182568i
\(186\) 0 0
\(187\) −6.53590 + 6.53590i −0.0349513 + 0.0349513i
\(188\) 0 0
\(189\) 189.703 707.979i 1.00372 3.74592i
\(190\) 0 0
\(191\) 58.6936 + 101.660i 0.307296 + 0.532253i 0.977770 0.209681i \(-0.0672424\pi\)
−0.670474 + 0.741933i \(0.733909\pi\)
\(192\) 0 0
\(193\) 197.789 52.9974i 1.02481 0.274598i 0.293007 0.956110i \(-0.405344\pi\)
0.731807 + 0.681512i \(0.238677\pi\)
\(194\) 0 0
\(195\) −106.550 + 397.650i −0.546410 + 2.03923i
\(196\) 0 0
\(197\) 89.8057 + 335.160i 0.455867 + 1.70132i 0.685527 + 0.728047i \(0.259572\pi\)
−0.229661 + 0.973271i \(0.573762\pi\)
\(198\) 0 0
\(199\) −99.1910 + 57.2679i −0.498447 + 0.287779i −0.728072 0.685501i \(-0.759583\pi\)
0.229625 + 0.973279i \(0.426250\pi\)
\(200\) 0 0
\(201\) −604.841 162.067i −3.00916 0.806302i
\(202\) 0 0
\(203\) −261.282 261.282i −1.28710 1.28710i
\(204\) 0 0
\(205\) 126.187 + 72.8538i 0.615544 + 0.355385i
\(206\) 0 0
\(207\) 136.315i 0.658528i
\(208\) 0 0
\(209\) −154.985 −0.741553
\(210\) 0 0
\(211\) 26.0526 45.1244i 0.123472 0.213860i −0.797663 0.603104i \(-0.793930\pi\)
0.921135 + 0.389244i \(0.127264\pi\)
\(212\) 0 0
\(213\) 66.9282 66.9282i 0.314217 0.314217i
\(214\) 0 0
\(215\) 84.7461 316.277i 0.394168 1.47106i
\(216\) 0 0
\(217\) −103.426 179.138i −0.476616 0.825523i
\(218\) 0 0
\(219\) 172.119 46.1192i 0.785932 0.210590i
\(220\) 0 0
\(221\) −13.0000 −0.0588235
\(222\) 0 0
\(223\) −40.6166 151.583i −0.182137 0.679746i −0.995225 0.0976048i \(-0.968882\pi\)
0.813088 0.582141i \(-0.197785\pi\)
\(224\) 0 0
\(225\) −155.126 + 89.5622i −0.689450 + 0.398054i
\(226\) 0 0
\(227\) 4.73205 + 1.26795i 0.0208460 + 0.00558568i 0.269227 0.963077i \(-0.413232\pi\)
−0.248381 + 0.968662i \(0.579898\pi\)
\(228\) 0 0
\(229\) 148.359 + 148.359i 0.647856 + 0.647856i 0.952474 0.304619i \(-0.0985290\pi\)
−0.304619 + 0.952474i \(0.598529\pi\)
\(230\) 0 0
\(231\) 494.851 + 285.703i 2.14221 + 1.23681i
\(232\) 0 0
\(233\) 427.138i 1.83321i −0.399792 0.916606i \(-0.630917\pi\)
0.399792 0.916606i \(-0.369083\pi\)
\(234\) 0 0
\(235\) −249.100 −1.06000
\(236\) 0 0
\(237\) −178.354 + 308.918i −0.752548 + 1.30345i
\(238\) 0 0
\(239\) −38.2769 + 38.2769i −0.160154 + 0.160154i −0.782635 0.622481i \(-0.786125\pi\)
0.622481 + 0.782635i \(0.286125\pi\)
\(240\) 0 0
\(241\) −60.0744 + 224.201i −0.249271 + 0.930293i 0.721917 + 0.691980i \(0.243261\pi\)
−0.971188 + 0.238313i \(0.923405\pi\)
\(242\) 0 0
\(243\) −162.760 281.909i −0.669795 1.16012i
\(244\) 0 0
\(245\) −442.248 + 118.500i −1.80509 + 0.483673i
\(246\) 0 0
\(247\) −154.133 154.133i −0.624021 0.624021i
\(248\) 0 0
\(249\) −7.21539 26.9282i −0.0289775 0.108145i
\(250\) 0 0
\(251\) −408.291 + 235.727i −1.62666 + 0.939151i −0.641576 + 0.767059i \(0.721719\pi\)
−0.985081 + 0.172092i \(0.944947\pi\)
\(252\) 0 0
\(253\) 58.3538 + 15.6359i 0.230648 + 0.0618018i
\(254\) 0 0
\(255\) −22.3923 22.3923i −0.0878130 0.0878130i
\(256\) 0 0
\(257\) 107.495 + 62.0622i 0.418268 + 0.241487i 0.694336 0.719651i \(-0.255698\pi\)
−0.276068 + 0.961138i \(0.589032\pi\)
\(258\) 0 0
\(259\) 76.1333i 0.293951i
\(260\) 0 0
\(261\) −681.176 −2.60987
\(262\) 0 0
\(263\) −53.1103 + 91.9897i −0.201940 + 0.349771i −0.949154 0.314814i \(-0.898058\pi\)
0.747213 + 0.664584i \(0.231391\pi\)
\(264\) 0 0
\(265\) 103.629 103.629i 0.391052 0.391052i
\(266\) 0 0
\(267\) 159.569 595.520i 0.597638 2.23041i
\(268\) 0 0
\(269\) 45.7795 + 79.2923i 0.170184 + 0.294767i 0.938484 0.345323i \(-0.112231\pi\)
−0.768300 + 0.640090i \(0.778897\pi\)
\(270\) 0 0
\(271\) 91.4256 24.4974i 0.337364 0.0903964i −0.0861600 0.996281i \(-0.527460\pi\)
0.423524 + 0.905885i \(0.360793\pi\)
\(272\) 0 0
\(273\) 208.000 + 776.267i 0.761905 + 2.84347i
\(274\) 0 0
\(275\) −20.5462 76.6795i −0.0747135 0.278835i
\(276\) 0 0
\(277\) 388.500 224.301i 1.40253 0.809749i 0.407876 0.913038i \(-0.366270\pi\)
0.994651 + 0.103288i \(0.0329364\pi\)
\(278\) 0 0
\(279\) −368.329 98.6936i −1.32018 0.353740i
\(280\) 0 0
\(281\) −162.725 162.725i −0.579093 0.579093i 0.355561 0.934653i \(-0.384290\pi\)
−0.934653 + 0.355561i \(0.884290\pi\)
\(282\) 0 0
\(283\) −216.679 125.100i −0.765652 0.442049i 0.0656694 0.997841i \(-0.479082\pi\)
−0.831321 + 0.555792i \(0.812415\pi\)
\(284\) 0 0
\(285\) 530.985i 1.86310i
\(286\) 0 0
\(287\) 284.441 0.991084
\(288\) 0 0
\(289\) −144.000 + 249.415i −0.498270 + 0.863029i
\(290\) 0 0
\(291\) −301.674 + 301.674i −1.03668 + 1.03668i
\(292\) 0 0
\(293\) −91.7314 + 342.346i −0.313076 + 1.16842i 0.612691 + 0.790323i \(0.290087\pi\)
−0.925767 + 0.378094i \(0.876580\pi\)
\(294\) 0 0
\(295\) 111.531 + 193.177i 0.378070 + 0.654837i
\(296\) 0 0
\(297\) 578.410 154.985i 1.94751 0.521833i
\(298\) 0 0
\(299\) 42.4833 + 73.5833i 0.142085 + 0.246098i
\(300\) 0 0
\(301\) −165.436 617.415i −0.549621 2.05121i
\(302\) 0 0
\(303\) 778.999 449.755i 2.57095 1.48434i
\(304\) 0 0
\(305\) 216.717 + 58.0692i 0.710548 + 0.190391i
\(306\) 0 0
\(307\) 222.497 + 222.497i 0.724747 + 0.724747i 0.969568 0.244821i \(-0.0787292\pi\)
−0.244821 + 0.969568i \(0.578729\pi\)
\(308\) 0 0
\(309\) −193.492 111.713i −0.626189 0.361530i
\(310\) 0 0
\(311\) 70.5922i 0.226985i 0.993539 + 0.113492i \(0.0362037\pi\)
−0.993539 + 0.113492i \(0.963796\pi\)
\(312\) 0 0
\(313\) 550.123 1.75758 0.878791 0.477207i \(-0.158351\pi\)
0.878791 + 0.477207i \(0.158351\pi\)
\(314\) 0 0
\(315\) −683.769 + 1184.32i −2.17070 + 3.75976i
\(316\) 0 0
\(317\) −287.011 + 287.011i −0.905397 + 0.905397i −0.995896 0.0904996i \(-0.971154\pi\)
0.0904996 + 0.995896i \(0.471154\pi\)
\(318\) 0 0
\(319\) 78.1333 291.597i 0.244932 0.914098i
\(320\) 0 0
\(321\) 408.918 + 708.267i 1.27389 + 2.20644i
\(322\) 0 0
\(323\) 16.1962 4.33975i 0.0501429 0.0134357i
\(324\) 0 0
\(325\) 55.8250 96.6917i 0.171769 0.297513i
\(326\) 0 0
\(327\) −164.431 613.664i −0.502846 1.87665i
\(328\) 0 0
\(329\) −421.128 + 243.138i −1.28002 + 0.739023i
\(330\) 0 0
\(331\) −32.6025 8.73582i −0.0984971 0.0263922i 0.209234 0.977866i \(-0.432903\pi\)
−0.307731 + 0.951473i \(0.599570\pi\)
\(332\) 0 0
\(333\) 99.2417 + 99.2417i 0.298023 + 0.298023i
\(334\) 0 0
\(335\) 575.181 + 332.081i 1.71696 + 0.991286i
\(336\) 0 0
\(337\) 289.420i 0.858814i −0.903111 0.429407i \(-0.858723\pi\)
0.903111 0.429407i \(-0.141277\pi\)
\(338\) 0 0
\(339\) 804.869 2.37425
\(340\) 0 0
\(341\) 84.4974 146.354i 0.247793 0.429190i
\(342\) 0 0
\(343\) −240.000 + 240.000i −0.699708 + 0.699708i
\(344\) 0 0
\(345\) −53.5692 + 199.923i −0.155273 + 0.579487i
\(346\) 0 0
\(347\) 206.970 + 358.483i 0.596457 + 1.03309i 0.993340 + 0.115224i \(0.0367586\pi\)
−0.396883 + 0.917869i \(0.629908\pi\)
\(348\) 0 0
\(349\) −151.538 + 40.6044i −0.434206 + 0.116345i −0.469300 0.883039i \(-0.655494\pi\)
0.0350940 + 0.999384i \(0.488827\pi\)
\(350\) 0 0
\(351\) 729.367 + 421.100i 2.07797 + 1.19971i
\(352\) 0 0
\(353\) −100.556 375.281i −0.284862 1.06312i −0.948940 0.315457i \(-0.897842\pi\)
0.664078 0.747663i \(-0.268824\pi\)
\(354\) 0 0
\(355\) −86.9423 + 50.1962i −0.244908 + 0.141398i
\(356\) 0 0
\(357\) −59.7128 16.0000i −0.167263 0.0448179i
\(358\) 0 0
\(359\) −326.985 326.985i −0.910820 0.910820i 0.0855163 0.996337i \(-0.472746\pi\)
−0.996337 + 0.0855163i \(0.972746\pi\)
\(360\) 0 0
\(361\) −69.1532 39.9256i −0.191560 0.110597i
\(362\) 0 0
\(363\) 194.326i 0.535332i
\(364\) 0 0
\(365\) −189.000 −0.517808
\(366\) 0 0
\(367\) −240.435 + 416.445i −0.655135 + 1.13473i 0.326725 + 0.945119i \(0.394055\pi\)
−0.981860 + 0.189608i \(0.939278\pi\)
\(368\) 0 0
\(369\) 370.776 370.776i 1.00481 1.00481i
\(370\) 0 0
\(371\) 74.0460 276.344i 0.199585 0.744861i
\(372\) 0 0
\(373\) 81.3250 + 140.859i 0.218029 + 0.377638i 0.954205 0.299152i \(-0.0967038\pi\)
−0.736176 + 0.676790i \(0.763370\pi\)
\(374\) 0 0
\(375\) −502.004 + 134.512i −1.33868 + 0.358697i
\(376\) 0 0
\(377\) 367.700 212.292i 0.975331 0.563108i
\(378\) 0 0
\(379\) −135.019 503.899i −0.356251 1.32955i −0.878903 0.477001i \(-0.841724\pi\)
0.522651 0.852547i \(-0.324943\pi\)
\(380\) 0 0
\(381\) 864.400 499.061i 2.26877 1.30987i
\(382\) 0 0
\(383\) 183.923 + 49.2820i 0.480217 + 0.128674i 0.490804 0.871270i \(-0.336703\pi\)
−0.0105867 + 0.999944i \(0.503370\pi\)
\(384\) 0 0
\(385\) −428.554 428.554i −1.11313 1.11313i
\(386\) 0 0
\(387\) −1020.47 589.167i −2.63686 1.52239i
\(388\) 0 0
\(389\) 615.256i 1.58164i −0.612052 0.790818i \(-0.709656\pi\)
0.612052 0.790818i \(-0.290344\pi\)
\(390\) 0 0
\(391\) −6.53590 −0.0167159
\(392\) 0 0
\(393\) 465.703 806.620i 1.18499 2.05247i
\(394\) 0 0
\(395\) 267.531 267.531i 0.677293 0.677293i
\(396\) 0 0
\(397\) 91.1647 340.231i 0.229634 0.857006i −0.750861 0.660461i \(-0.770361\pi\)
0.980495 0.196545i \(-0.0629723\pi\)
\(398\) 0 0
\(399\) −518.277 897.682i −1.29894 2.24983i
\(400\) 0 0
\(401\) −189.279 + 50.7173i −0.472019 + 0.126477i −0.486984 0.873411i \(-0.661903\pi\)
0.0149652 + 0.999888i \(0.495236\pi\)
\(402\) 0 0
\(403\) 229.583 61.5167i 0.569686 0.152647i
\(404\) 0 0
\(405\) 249.423 + 930.859i 0.615859 + 2.29842i
\(406\) 0 0
\(407\) −53.8667 + 31.1000i −0.132351 + 0.0764127i
\(408\) 0 0
\(409\) 465.635 + 124.767i 1.13847 + 0.305053i 0.778337 0.627847i \(-0.216064\pi\)
0.360136 + 0.932900i \(0.382730\pi\)
\(410\) 0 0
\(411\) 285.664 + 285.664i 0.695046 + 0.695046i
\(412\) 0 0
\(413\) 377.108 + 217.723i 0.913093 + 0.527175i
\(414\) 0 0
\(415\) 29.5692i 0.0712511i
\(416\) 0 0
\(417\) −1447.54 −3.47131
\(418\) 0 0
\(419\) 130.273 225.640i 0.310914 0.538519i −0.667646 0.744479i \(-0.732698\pi\)
0.978561 + 0.205959i \(0.0660314\pi\)
\(420\) 0 0
\(421\) −240.107 + 240.107i −0.570325 + 0.570325i −0.932219 0.361894i \(-0.882130\pi\)
0.361894 + 0.932219i \(0.382130\pi\)
\(422\) 0 0
\(423\) −232.014 + 865.888i −0.548497 + 2.04702i
\(424\) 0 0
\(425\) 4.29423 + 7.43782i 0.0101041 + 0.0175008i
\(426\) 0 0
\(427\) 423.061 113.359i 0.990776 0.265478i
\(428\) 0 0
\(429\) −464.267 + 464.267i −1.08221 + 1.08221i
\(430\) 0 0
\(431\) 198.613 + 741.233i 0.460819 + 1.71980i 0.670393 + 0.742006i \(0.266125\pi\)
−0.209575 + 0.977793i \(0.567208\pi\)
\(432\) 0 0
\(433\) −146.264 + 84.4456i −0.337792 + 0.195024i −0.659295 0.751884i \(-0.729145\pi\)
0.321503 + 0.946909i \(0.395812\pi\)
\(434\) 0 0
\(435\) 999.027 + 267.688i 2.29661 + 0.615376i
\(436\) 0 0
\(437\) −77.4923 77.4923i −0.177328 0.177328i
\(438\) 0 0
\(439\) 106.259 + 61.3487i 0.242048 + 0.139746i 0.616118 0.787654i \(-0.288705\pi\)
−0.374070 + 0.927401i \(0.622038\pi\)
\(440\) 0 0
\(441\) 1647.66i 3.73618i
\(442\) 0 0
\(443\) −71.4256 −0.161232 −0.0806158 0.996745i \(-0.525689\pi\)
−0.0806158 + 0.996745i \(0.525689\pi\)
\(444\) 0 0
\(445\) −326.963 + 566.317i −0.734749 + 1.27262i
\(446\) 0 0
\(447\) 173.138 173.138i 0.387334 0.387334i
\(448\) 0 0
\(449\) 40.1314 149.772i 0.0893795 0.333569i −0.906728 0.421716i \(-0.861428\pi\)
0.996107 + 0.0881472i \(0.0280946\pi\)
\(450\) 0 0
\(451\) 116.192 + 201.251i 0.257633 + 0.446233i
\(452\) 0 0
\(453\) −749.626 + 200.862i −1.65480 + 0.443403i
\(454\) 0 0
\(455\) 852.400i 1.87341i
\(456\) 0 0
\(457\) 98.5648 + 367.849i 0.215678 + 0.804921i 0.985927 + 0.167177i \(0.0534652\pi\)
−0.770249 + 0.637743i \(0.779868\pi\)
\(458\) 0 0
\(459\) −56.1051 + 32.3923i −0.122233 + 0.0705715i
\(460\) 0 0
\(461\) 635.054 + 170.162i 1.37756 + 0.369115i 0.870233 0.492640i \(-0.163968\pi\)
0.507324 + 0.861755i \(0.330635\pi\)
\(462\) 0 0
\(463\) 11.3205 + 11.3205i 0.0244503 + 0.0244503i 0.719226 0.694776i \(-0.244496\pi\)
−0.694776 + 0.719226i \(0.744496\pi\)
\(464\) 0 0
\(465\) 501.415 + 289.492i 1.07831 + 0.622564i
\(466\) 0 0
\(467\) 251.482i 0.538505i −0.963070 0.269253i \(-0.913223\pi\)
0.963070 0.269253i \(-0.0867767\pi\)
\(468\) 0 0
\(469\) 1296.53 2.76446
\(470\) 0 0
\(471\) 186.799 323.545i 0.396600 0.686932i
\(472\) 0 0
\(473\) 369.261 369.261i 0.780680 0.780680i
\(474\) 0 0
\(475\) −37.2717 + 139.100i −0.0784668 + 0.292842i
\(476\) 0 0
\(477\) −263.700 456.742i −0.552830 0.957530i
\(478\) 0 0
\(479\) 235.517 63.1065i 0.491684 0.131746i −0.00445385 0.999990i \(-0.501418\pi\)
0.496138 + 0.868244i \(0.334751\pi\)
\(480\) 0 0
\(481\) −84.5000 22.6417i −0.175676 0.0470722i
\(482\) 0 0
\(483\) 104.574 + 390.277i 0.216510 + 0.808027i
\(484\) 0 0
\(485\) 391.886 226.256i 0.808013 0.466507i
\(486\) 0 0
\(487\) −408.669 109.503i −0.839156 0.224851i −0.186452 0.982464i \(-0.559699\pi\)
−0.652704 + 0.757613i \(0.726366\pi\)
\(488\) 0 0
\(489\) −950.123 950.123i −1.94299 1.94299i
\(490\) 0 0
\(491\) −167.885 96.9282i −0.341924 0.197410i 0.319199 0.947688i \(-0.396586\pi\)
−0.661122 + 0.750278i \(0.729920\pi\)
\(492\) 0 0
\(493\) 32.6603i 0.0662480i
\(494\) 0 0
\(495\) −1117.26 −2.25709
\(496\) 0 0
\(497\) −97.9897 + 169.723i −0.197162 + 0.341495i
\(498\) 0 0
\(499\) 209.636 209.636i 0.420112 0.420112i −0.465130 0.885242i \(-0.653993\pi\)
0.885242 + 0.465130i \(0.153993\pi\)
\(500\) 0 0
\(501\) −41.3590 + 154.354i −0.0825529 + 0.308091i
\(502\) 0 0
\(503\) 18.6692 + 32.3360i 0.0371157 + 0.0642862i 0.883987 0.467512i \(-0.154850\pi\)
−0.846871 + 0.531799i \(0.821516\pi\)
\(504\) 0 0
\(505\) −921.565 + 246.933i −1.82488 + 0.488976i
\(506\) 0 0
\(507\) −923.433 −1.82137
\(508\) 0 0
\(509\) 95.4648 + 356.279i 0.187554 + 0.699960i 0.994069 + 0.108747i \(0.0346839\pi\)
−0.806516 + 0.591213i \(0.798649\pi\)
\(510\) 0 0
\(511\) −319.523 + 184.477i −0.625290 + 0.361011i
\(512\) 0 0
\(513\) −1049.26 281.149i −2.04534 0.548048i
\(514\) 0 0
\(515\) 167.569 + 167.569i 0.325377 + 0.325377i
\(516\) 0 0
\(517\) −344.056 198.641i −0.665486 0.384219i
\(518\) 0 0
\(519\) 1031.12i 1.98674i
\(520\) 0 0
\(521\) 772.717 1.48314 0.741571 0.670875i \(-0.234081\pi\)
0.741571 + 0.670875i \(0.234081\pi\)
\(522\) 0 0
\(523\) −54.2487 + 93.9615i −0.103726 + 0.179659i −0.913217 0.407474i \(-0.866410\pi\)
0.809491 + 0.587132i \(0.199743\pi\)
\(524\) 0 0
\(525\) 375.426 375.426i 0.715096 0.715096i
\(526\) 0 0
\(527\) −4.73205 + 17.6603i −0.00897922 + 0.0335109i
\(528\) 0 0
\(529\) −243.141 421.133i −0.459624 0.796092i
\(530\) 0 0
\(531\) 775.377 207.762i 1.46022 0.391265i
\(532\) 0 0
\(533\) −84.5915 + 315.700i −0.158708 + 0.592308i
\(534\) 0 0
\(535\) −224.512 837.888i −0.419648 1.56615i
\(536\) 0 0
\(537\) 365.703 211.138i 0.681010 0.393181i
\(538\) 0 0
\(539\) −705.328 188.992i −1.30859 0.350635i
\(540\) 0 0
\(541\) 30.4519 + 30.4519i 0.0562882 + 0.0562882i 0.734691 0.678402i \(-0.237327\pi\)
−0.678402 + 0.734691i \(0.737327\pi\)
\(542\) 0 0
\(543\) −1138.34 657.219i −2.09638 1.21035i
\(544\) 0 0
\(545\) 673.850i 1.23642i
\(546\) 0 0
\(547\) −422.438 −0.772282 −0.386141 0.922440i \(-0.626192\pi\)
−0.386141 + 0.922440i \(0.626192\pi\)
\(548\) 0 0
\(549\) 403.705 699.238i 0.735346 1.27366i
\(550\) 0 0
\(551\) −387.233 + 387.233i −0.702783 + 0.702783i
\(552\) 0 0
\(553\) 191.159 713.415i 0.345676 1.29008i
\(554\) 0 0
\(555\) −106.550 184.550i −0.191982 0.332522i
\(556\) 0 0
\(557\) −409.234 + 109.654i −0.734711 + 0.196865i −0.606726 0.794911i \(-0.707518\pi\)
−0.127985 + 0.991776i \(0.540851\pi\)
\(558\) 0 0
\(559\) 734.466 1.31389
\(560\) 0 0
\(561\) −13.0718 48.7846i −0.0233009 0.0869601i
\(562\) 0 0
\(563\) −367.510 + 212.182i −0.652771 + 0.376878i −0.789517 0.613729i \(-0.789669\pi\)
0.136746 + 0.990606i \(0.456336\pi\)
\(564\) 0 0
\(565\) −824.604 220.952i −1.45948 0.391065i
\(566\) 0 0
\(567\) 1330.26 + 1330.26i 2.34613 + 2.34613i
\(568\) 0 0
\(569\) −267.482 154.431i −0.470091 0.271407i 0.246187 0.969222i \(-0.420822\pi\)
−0.716278 + 0.697815i \(0.754156\pi\)
\(570\) 0 0
\(571\) 971.272i 1.70100i −0.525974 0.850501i \(-0.676299\pi\)
0.525974 0.850501i \(-0.323701\pi\)
\(572\) 0 0
\(573\) −641.415 −1.11940
\(574\) 0 0
\(575\) 28.0666 48.6128i 0.0488116 0.0845441i
\(576\) 0 0
\(577\) −413.542 + 413.542i −0.716710 + 0.716710i −0.967930 0.251220i \(-0.919168\pi\)
0.251220 + 0.967930i \(0.419168\pi\)
\(578\) 0 0
\(579\) −289.583 + 1080.74i −0.500144 + 1.86656i
\(580\) 0 0
\(581\) 28.8616 + 49.9897i 0.0496757 + 0.0860408i
\(582\) 0 0
\(583\) 225.769 60.4947i 0.387254 0.103764i
\(584\) 0 0
\(585\) −1111.12 1111.12i −1.89936 1.89936i
\(586\) 0 0
\(587\) 238.582 + 890.400i 0.406443 + 1.51687i 0.801379 + 0.598157i \(0.204100\pi\)
−0.394936 + 0.918708i \(0.629233\pi\)
\(588\) 0 0
\(589\) −265.492 + 153.282i −0.450751 + 0.260241i
\(590\) 0 0
\(591\) −1831.35 490.708i −3.09872 0.830301i
\(592\) 0 0
\(593\) 439.901 + 439.901i 0.741822 + 0.741822i 0.972928 0.231106i \(-0.0742345\pi\)
−0.231106 + 0.972928i \(0.574235\pi\)
\(594\) 0 0
\(595\) 56.7846 + 32.7846i 0.0954363 + 0.0551002i
\(596\) 0 0
\(597\) 625.836i 1.04830i
\(598\) 0 0
\(599\) 1081.06 1.80477 0.902386 0.430928i \(-0.141814\pi\)
0.902386 + 0.430928i \(0.141814\pi\)
\(600\) 0 0
\(601\) 24.3391 42.1565i 0.0404976 0.0701439i −0.845066 0.534662i \(-0.820439\pi\)
0.885564 + 0.464518i \(0.153772\pi\)
\(602\) 0 0
\(603\) 1690.06 1690.06i 2.80276 2.80276i
\(604\) 0 0
\(605\) −53.3461 + 199.090i −0.0881754 + 0.329075i
\(606\) 0 0
\(607\) 134.550 + 233.047i 0.221664 + 0.383933i 0.955313 0.295595i \(-0.0955179\pi\)
−0.733649 + 0.679528i \(0.762185\pi\)
\(608\) 0 0
\(609\) 1950.24 522.564i 3.20236 0.858069i
\(610\) 0 0
\(611\) −144.617 539.717i −0.236688 0.883333i
\(612\) 0 0
\(613\) 25.9256 + 96.7558i 0.0422930 + 0.157840i 0.983843 0.179034i \(-0.0572972\pi\)
−0.941550 + 0.336874i \(0.890630\pi\)
\(614\) 0 0
\(615\) −689.496 + 398.081i −1.12113 + 0.647286i
\(616\) 0 0
\(617\) 258.141 + 69.1687i 0.418381 + 0.112105i 0.461867 0.886949i \(-0.347180\pi\)
−0.0434861 + 0.999054i \(0.513846\pi\)
\(618\) 0 0
\(619\) −192.862 192.862i −0.311570 0.311570i 0.533948 0.845517i \(-0.320708\pi\)
−0.845517 + 0.533948i \(0.820708\pi\)
\(620\) 0 0
\(621\) 366.697 + 211.713i 0.590495 + 0.340922i
\(622\) 0 0
\(623\) 1276.55i 2.04904i
\(624\) 0 0
\(625\) 765.950 1.22552
\(626\) 0 0
\(627\) 423.426 733.395i 0.675320 1.16969i
\(628\) 0 0
\(629\) 4.75833 4.75833i 0.00756491 0.00756491i
\(630\) 0 0
\(631\) 7.08211 26.4308i 0.0112236 0.0418871i −0.960087 0.279702i \(-0.909764\pi\)
0.971311 + 0.237815i \(0.0764311\pi\)
\(632\) 0 0
\(633\) 142.354 + 246.564i 0.224888 + 0.389517i
\(634\) 0 0
\(635\) −1022.60 + 274.004i −1.61039 + 0.431502i
\(636\) 0 0
\(637\) −513.500 889.408i −0.806122 1.39625i
\(638\) 0 0
\(639\) 93.5064 + 348.970i 0.146332 + 0.546120i
\(640\) 0 0
\(641\) −924.395 + 533.700i −1.44211 + 0.832605i −0.997991 0.0633603i \(-0.979818\pi\)
−0.444124 + 0.895965i \(0.646485\pi\)
\(642\) 0 0
\(643\) 530.161 + 142.056i 0.824512 + 0.220927i 0.646318 0.763068i \(-0.276308\pi\)
0.178194 + 0.983995i \(0.442975\pi\)
\(644\) 0 0
\(645\) 1265.11 + 1265.11i 1.96141 + 1.96141i
\(646\) 0 0
\(647\) −71.9756 41.5551i −0.111245 0.0642274i 0.443345 0.896351i \(-0.353792\pi\)
−0.554590 + 0.832124i \(0.687125\pi\)
\(648\) 0 0
\(649\) 355.754i 0.548157i
\(650\) 0 0
\(651\) 1130.26 1.73618
\(652\) 0 0
\(653\) 480.400 832.077i 0.735681 1.27424i −0.218743 0.975783i \(-0.570195\pi\)
0.954424 0.298455i \(-0.0964712\pi\)
\(654\) 0 0
\(655\) −698.554 + 698.554i −1.06649 + 1.06649i
\(656\) 0 0
\(657\) −176.036 + 656.977i −0.267940 + 0.999965i
\(658\) 0 0
\(659\) −30.3538 52.5744i −0.0460604 0.0797790i 0.842076 0.539359i \(-0.181333\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(660\) 0 0
\(661\) 79.7820 21.3775i 0.120699 0.0323412i −0.197964 0.980209i \(-0.563433\pi\)
0.318663 + 0.947868i \(0.396766\pi\)
\(662\) 0 0
\(663\) 35.5167 61.5167i 0.0535696 0.0927853i
\(664\) 0 0
\(665\) 284.554 + 1061.97i 0.427900 + 1.59695i
\(666\) 0 0
\(667\) 184.865 106.732i 0.277159 0.160018i
\(668\) 0 0
\(669\) 828.267 + 221.933i 1.23807 + 0.331739i
\(670\) 0 0
\(671\) 253.023 + 253.023i 0.377083 + 0.377083i
\(672\) 0 0
\(673\) 140.789 + 81.2846i 0.209196 + 0.120780i 0.600938 0.799296i \(-0.294794\pi\)
−0.391742 + 0.920075i \(0.628127\pi\)
\(674\) 0 0
\(675\) 556.400i 0.824296i
\(676\) 0 0
\(677\) 354.554 0.523713 0.261857 0.965107i \(-0.415665\pi\)
0.261857 + 0.965107i \(0.415665\pi\)
\(678\) 0 0
\(679\) 441.682 765.015i 0.650489 1.12668i
\(680\) 0 0
\(681\) −18.9282 + 18.9282i −0.0277947 + 0.0277947i
\(682\) 0 0
\(683\) −61.6781 + 230.186i −0.0903047 + 0.337022i −0.996266 0.0863392i \(-0.972483\pi\)
0.905961 + 0.423361i \(0.139150\pi\)
\(684\) 0 0
\(685\) −214.248 371.088i −0.312771 0.541735i
\(686\) 0 0
\(687\) −1107.37 + 296.718i −1.61189 + 0.431904i
\(688\) 0 0
\(689\) 284.692 + 164.367i 0.413195 + 0.238558i
\(690\) 0 0
\(691\) −121.397 453.061i −0.175684 0.655661i −0.996434 0.0843737i \(-0.973111\pi\)
0.820750 0.571287i \(-0.193556\pi\)
\(692\) 0 0
\(693\) −1888.84 + 1090.52i −2.72560 + 1.57363i
\(694\) 0 0
\(695\) 1483.03 + 397.377i 2.13386 + 0.571765i
\(696\) 0 0
\(697\) −17.7776 17.7776i −0.0255058 0.0255058i
\(698\) 0 0
\(699\) 2021.24 + 1166.96i 2.89162 + 1.66948i
\(700\) 0 0
\(701\) 657.692i 0.938220i 0.883140 + 0.469110i \(0.155425\pi\)
−0.883140 + 0.469110i \(0.844575\pi\)
\(702\) 0 0
\(703\) 112.833 0.160503
\(704\) 0 0
\(705\) 680.554 1178.75i 0.965324 1.67199i
\(706\) 0 0
\(707\) −1316.97 + 1316.97i −1.86276 + 1.86276i
\(708\) 0 0
\(709\) −160.279 + 598.171i −0.226064 + 0.843683i 0.755911 + 0.654674i \(0.227194\pi\)
−0.981975 + 0.189009i \(0.939473\pi\)
\(710\) 0 0
\(711\) −680.774 1179.14i −0.957488 1.65842i
\(712\) 0 0
\(713\) 115.426 30.9282i 0.161887 0.0433776i
\(714\) 0 0
\(715\) 603.100 348.200i 0.843496 0.486993i
\(716\) 0 0
\(717\) −76.5538 285.703i −0.106770 0.398469i
\(718\) 0 0
\(719\) 487.923 281.703i 0.678613 0.391798i −0.120719 0.992687i \(-0.538520\pi\)
0.799332 + 0.600889i \(0.205187\pi\)
\(720\) 0 0
\(721\) 446.851 + 119.733i 0.619766 + 0.166066i
\(722\) 0 0
\(723\) −896.802 896.802i −1.24039 1.24039i
\(724\) 0 0
\(725\) −242.921 140.251i −0.335064 0.193449i
\(726\) 0 0
\(727\) 877.779i 1.20740i −0.797212 0.603700i \(-0.793693\pi\)
0.797212 0.603700i \(-0.206307\pi\)
\(728\) 0 0
\(729\) 282.138 0.387021
\(730\) 0 0
\(731\) −28.2487 + 48.9282i −0.0386439 + 0.0669332i
\(732\) 0 0
\(733\) −629.878 + 629.878i −0.859315 + 0.859315i −0.991257 0.131943i \(-0.957878\pi\)
0.131943 + 0.991257i \(0.457878\pi\)
\(734\) 0 0
\(735\) 647.496 2416.49i 0.880947 3.28774i
\(736\) 0 0
\(737\) 529.626 + 917.338i 0.718624 + 1.24469i
\(738\) 0 0
\(739\) 1064.61 285.261i 1.44061 0.386010i 0.547862 0.836569i \(-0.315442\pi\)
0.892747 + 0.450559i \(0.148775\pi\)
\(740\) 0 0
\(741\) 1150.47 308.267i 1.55259 0.416014i
\(742\) 0 0
\(743\) 10.3848 + 38.7564i 0.0139768 + 0.0521621i 0.972562 0.232644i \(-0.0747376\pi\)
−0.958585 + 0.284806i \(0.908071\pi\)
\(744\) 0 0
\(745\) −224.913 + 129.854i −0.301897 + 0.174300i
\(746\) 0 0
\(747\) 102.785 + 27.5411i 0.137597 + 0.0368689i
\(748\) 0 0
\(749\) −1197.39 1197.39i −1.59866 1.59866i
\(750\) 0 0
\(751\) −234.413 135.338i −0.312134 0.180211i 0.335747 0.941952i \(-0.391011\pi\)
−0.647881 + 0.761741i \(0.724345\pi\)
\(752\) 0 0
\(753\) 2576.07i 3.42108i
\(754\) 0 0
\(755\) 823.146 1.09026
\(756\) 0 0
\(757\) 211.354 366.076i 0.279199 0.483587i −0.691987 0.721910i \(-0.743264\pi\)
0.971186 + 0.238323i \(0.0765977\pi\)
\(758\) 0 0
\(759\) −233.415 + 233.415i −0.307530 + 0.307530i
\(760\) 0 0
\(761\) −252.362 + 941.829i −0.331619 + 1.23762i 0.575869 + 0.817542i \(0.304664\pi\)
−0.907488 + 0.420078i \(0.862003\pi\)
\(762\) 0 0
\(763\) 657.723 + 1139.21i 0.862022 + 1.49307i
\(764\) 0 0
\(765\) 116.756 31.2846i 0.152622 0.0408949i
\(766\) 0 0
\(767\) −353.800 + 353.800i −0.461278 + 0.461278i
\(768\) 0 0
\(769\) −41.1149 153.443i −0.0534654 0.199536i 0.934027 0.357203i \(-0.116269\pi\)
−0.987492 + 0.157667i \(0.949603\pi\)
\(770\) 0 0
\(771\) −587.363 + 339.114i −0.761819 + 0.439837i
\(772\) 0 0
\(773\) −698.599 187.189i −0.903751 0.242159i −0.223124 0.974790i \(-0.571626\pi\)
−0.680626 + 0.732631i \(0.738292\pi\)
\(774\) 0 0
\(775\) −111.033 111.033i −0.143269 0.143269i
\(776\) 0 0
\(777\) −360.267 208.000i −0.463664 0.267696i
\(778\) 0 0
\(779\) 421.556i 0.541150i
\(780\) 0 0
\(781\) −160.113 −0.205010
\(782\) 0 0
\(783\) 1057.94 1832.41i 1.35114 2.34024i
\(784\) 0 0
\(785\) −280.198 + 280.198i −0.356940 + 0.356940i
\(786\) 0 0
\(787\) −268.750 + 1002.99i −0.341487 + 1.27445i 0.555177 + 0.831732i \(0.312651\pi\)
−0.896663 + 0.442713i \(0.854016\pi\)
\(788\) 0 0
\(789\) −290.200 502.641i −0.367807 0.637061i
\(790\) 0 0
\(791\) −1609.74 + 431.328i −2.03507 + 0.545295i
\(792\) 0 0
\(793\) 503.267i 0.634636i
\(794\) 0 0
\(795\) 207.258 + 773.496i 0.260701 + 0.972951i
\(796\) 0 0
\(797\) 1033.00 596.405i 1.29612 0.748312i 0.316384 0.948631i \(-0.397531\pi\)
0.979731 + 0.200319i \(0.0641977\pi\)
\(798\) 0 0
\(799\) 41.5167 + 11.1244i 0.0519608 + 0.0139228i
\(800\) 0 0
\(801\) 1664.02 + 1664.02i 2.07743 + 2.07743i
\(802\) 0 0
\(803\) −261.046 150.715i −0.325089 0.187690i
\(804\) 0 0
\(805\) 428.554i 0.532365i
\(806\) 0 0
\(807\) −500.287 −0.619935
\(808\) 0 0
\(809\) −192.845 + 334.018i −0.238375 + 0.412878i −0.960248 0.279148i \(-0.909948\pi\)
0.721873 + 0.692025i \(0.243281\pi\)
\(810\) 0 0
\(811\) −496.823 + 496.823i −0.612606 + 0.612606i −0.943624 0.331019i \(-0.892608\pi\)
0.331019 + 0.943624i \(0.392608\pi\)
\(812\) 0 0
\(813\) −133.856 + 499.559i −0.164645 + 0.614464i
\(814\) 0 0
\(815\) 712.592 + 1234.25i 0.874346 + 1.51441i
\(816\) 0 0
\(817\) −915.041 + 245.184i −1.12000 + 0.300103i
\(818\) 0 0
\(819\) −2963.00 793.933i −3.61783 0.969394i
\(820\) 0 0
\(821\) −414.570 1547.20i −0.504957 1.88453i −0.464973 0.885325i \(-0.653936\pi\)
−0.0399843 0.999200i \(-0.512731\pi\)
\(822\) 0 0
\(823\) −525.282 + 303.272i −0.638253 + 0.368495i −0.783941 0.620835i \(-0.786794\pi\)
0.145688 + 0.989331i \(0.453460\pi\)
\(824\) 0 0
\(825\) 418.985 + 112.267i 0.507860 + 0.136081i
\(826\) 0 0
\(827\) −815.167 815.167i −0.985691 0.985691i 0.0142079 0.999899i \(-0.495477\pi\)
−0.999899 + 0.0142079i \(0.995477\pi\)
\(828\) 0 0
\(829\) −547.172 315.910i −0.660038 0.381073i 0.132253 0.991216i \(-0.457779\pi\)
−0.792291 + 0.610143i \(0.791112\pi\)
\(830\) 0 0
\(831\) 2451.20i 2.94970i
\(832\) 0 0
\(833\) 79.0000 0.0948379
\(834\) 0 0
\(835\) 84.7461 146.785i 0.101492 0.175790i
\(836\) 0 0
\(837\) 837.549 837.549i 1.00066 1.00066i
\(838\) 0 0
\(839\) −29.4473 + 109.899i −0.0350980 + 0.130988i −0.981252 0.192730i \(-0.938266\pi\)
0.946154 + 0.323717i \(0.104933\pi\)
\(840\) 0 0
\(841\) −112.846 195.455i −0.134181 0.232408i
\(842\) 0 0
\(843\) 1214.60 325.450i 1.44080 0.386062i
\(844\) 0 0
\(845\) 946.075 + 253.500i 1.11962 + 0.300000i
\(846\) 0 0
\(847\) 104.139 + 388.651i 0.122950 + 0.458856i
\(848\) 0 0
\(849\) 1183.96 683.559i 1.39453 0.805134i
\(850\) 0 0
\(851\) −42.4833 11.3834i −0.0499217 0.0133765i
\(852\) 0 0
\(853\) −265.826 265.826i −0.311637 0.311637i 0.533907 0.845544i \(-0.320723\pi\)
−0.845544 + 0.533907i \(0.820723\pi\)
\(854\) 0 0
\(855\) 1755.23 + 1013.38i 2.05290 + 1.18524i
\(856\) 0 0
\(857\) 670.268i 0.782110i −0.920367 0.391055i \(-0.872110\pi\)
0.920367 0.391055i \(-0.127890\pi\)
\(858\) 0 0
\(859\) −36.8334 −0.0428794 −0.0214397 0.999770i \(-0.506825\pi\)
−0.0214397 + 0.999770i \(0.506825\pi\)
\(860\) 0 0
\(861\) −777.108 + 1345.99i −0.902564 + 1.56329i
\(862\) 0 0
\(863\) 124.939 124.939i 0.144772 0.144772i −0.631006 0.775778i \(-0.717358\pi\)
0.775778 + 0.631006i \(0.217358\pi\)
\(864\) 0 0
\(865\) 283.061 1056.40i 0.327239 1.22127i
\(866\) 0 0
\(867\) −786.831 1362.83i −0.907532 1.57189i
\(868\) 0 0
\(869\) 582.851 156.175i 0.670715 0.179718i
\(870\) 0 0
\(871\) −385.583 + 1439.02i −0.442690 + 1.65214i
\(872\) 0 0
\(873\) −421.474 1572.96i −0.482788 1.80179i
\(874\) 0 0
\(875\) 931.923 538.046i 1.06505 0.614910i
\(876\) 0 0
\(877\) 502.038 + 134.521i 0.572449 + 0.153387i 0.533420 0.845851i \(-0.320907\pi\)
0.0390295 + 0.999238i \(0.487573\pi\)
\(878\) 0 0
\(879\) −1369.38 1369.38i −1.55789 1.55789i
\(880\) 0 0
\(881\) −1146.46 661.908i −1.30132 0.751315i −0.320686 0.947186i \(-0.603913\pi\)
−0.980630 + 0.195871i \(0.937247\pi\)
\(882\) 0 0
\(883\) 789.464i 0.894070i 0.894516 + 0.447035i \(0.147520\pi\)
−0.894516 + 0.447035i \(0.852480\pi\)
\(884\) 0 0
\(885\) −1218.83 −1.37721
\(886\) 0 0
\(887\) 632.410 1095.37i 0.712977 1.23491i −0.250758 0.968050i \(-0.580680\pi\)
0.963735 0.266862i \(-0.0859867\pi\)
\(888\) 0 0
\(889\) −1461.35 + 1461.35i −1.64382 + 1.64382i
\(890\) 0 0
\(891\) −397.797 + 1484.60i −0.446462 + 1.66622i
\(892\) 0 0
\(893\) 360.344 + 624.133i 0.403520 + 0.698917i
\(894\) 0 0
\(895\) −432.631 + 115.923i −0.483386 + 0.129523i
\(896\) 0 0
\(897\) −464.267 −0.517577
\(898\) 0 0
\(899\) −154.550 576.788i −0.171913 0.641589i
\(900\) 0 0
\(901\) −21.8993 + 12.6436i −0.0243056 + 0.0140328i
\(902\) 0 0
\(903\) 3373.62 + 903.959i 3.73601 + 1.00106i
\(904\) 0 0
\(905\) 985.829 + 985.829i 1.08931 + 1.08931i
\(906\) 0 0
\(907\) −1122.13 647.864i −1.23719 0.714293i −0.268673 0.963232i \(-0.586585\pi\)
−0.968519 + 0.248938i \(0.919918\pi\)
\(908\) 0 0
\(909\) 3433.42i 3.77714i
\(910\) 0 0
\(911\) 458.733 0.503549 0.251774 0.967786i \(-0.418986\pi\)
0.251774 + 0.967786i \(0.418986\pi\)
\(912\) 0 0
\(913\) −23.5795 + 40.8409i −0.0258264 + 0.0447327i
\(914\) 0 0
\(915\) −866.869 + 866.869i −0.947398 + 0.947398i
\(916\) 0 0
\(917\) −499.138 + 1862.81i −0.544317 + 2.03142i
\(918\) 0 0
\(919\) −637.804 1104.71i −0.694019 1.20208i −0.970510 0.241060i \(-0.922505\pi\)
0.276491 0.961017i \(-0.410828\pi\)
\(920\) 0 0
\(921\) −1660.74 + 444.995i −1.80320 + 0.483165i
\(922\) 0 0
\(923\) −159.233 159.233i −0.172517 0.172517i
\(924\) 0 0
\(925\) 14.9583 + 55.8250i 0.0161711 + 0.0603513i
\(926\) 0 0
\(927\) 738.558 426.406i 0.796718 0.459985i
\(928\) 0 0
\(929\) −742.056 198.833i −0.798768 0.214029i −0.163725 0.986506i \(-0.552351\pi\)
−0.635043 + 0.772477i \(0.719018\pi\)
\(930\) 0 0
\(931\) 936.656 + 936.656i 1.00608 + 1.00608i
\(932\) 0 0
\(933\) −334.046 192.862i −0.358034 0.206711i
\(934\) 0 0
\(935\) 53.5692i 0.0572933i
\(936\) 0 0
\(937\) −969.985 −1.03520 −0.517601 0.855622i \(-0.673175\pi\)
−0.517601 + 0.855622i \(0.673175\pi\)
\(938\) 0 0
\(939\) −1502.96 + 2603.21i −1.60060 + 2.77232i
\(940\) 0 0
\(941\) 880.815 880.815i 0.936042 0.936042i −0.0620325 0.998074i \(-0.519758\pi\)
0.998074 + 0.0620325i \(0.0197582\pi\)
\(942\) 0 0
\(943\) −42.5294 + 158.722i −0.0451001 + 0.168316i
\(944\) 0 0
\(945\) −2123.94 3678.77i −2.24755 3.89288i
\(946\) 0 0
\(947\) 708.865 189.940i 0.748538 0.200570i 0.135668 0.990754i \(-0.456682\pi\)
0.612869 + 0.790184i \(0.290015\pi\)
\(948\) 0 0
\(949\) −109.725 409.500i −0.115622 0.431507i
\(950\) 0 0
\(951\) −574.022 2142.28i −0.603598 2.25266i
\(952\) 0 0
\(953\) −846.431 + 488.687i −0.888175 + 0.512788i −0.873345 0.487102i \(-0.838054\pi\)
−0.0148299 + 0.999890i \(0.504721\pi\)
\(954\) 0 0
\(955\) 657.142 + 176.081i 0.688107 + 0.184378i
\(956\) 0 0
\(957\) 1166.39 + 1166.39i 1.21880 + 1.21880i
\(958\) 0 0
\(959\) −724.415 418.241i −0.755386 0.436122i
\(960\) 0 0
\(961\) 626.723i 0.652157i
\(962\) 0 0
\(963\) −3121.67 −3.24161
\(964\) 0 0
\(965\) 593.367 1027.74i 0.614888 1.06502i
\(966\) 0 0
\(967\) 931.492 931.492i 0.963281 0.963281i −0.0360688 0.999349i \(-0.511484\pi\)
0.999349 + 0.0360688i \(0.0114835\pi\)
\(968\) 0 0
\(969\) −23.7128 + 88.4974i −0.0244714 + 0.0913286i
\(970\) 0 0
\(971\) −665.678 1152.99i −0.685559 1.18742i −0.973261 0.229703i \(-0.926224\pi\)
0.287701 0.957720i \(-0.407109\pi\)
\(972\) 0 0
\(973\) 2895.08 775.733i 2.97541 0.797259i
\(974\) 0 0
\(975\) 305.033 + 528.333i 0.312855 + 0.541880i
\(976\) 0 0
\(977\) −185.625 692.761i −0.189995 0.709070i −0.993506 0.113780i \(-0.963704\pi\)
0.803511 0.595290i \(-0.202963\pi\)
\(978\) 0 0
\(979\) −903.202 + 521.464i −0.922576 + 0.532650i
\(980\) 0 0
\(981\) 2342.35 + 627.630i 2.38771 + 0.639786i
\(982\) 0 0
\(983\) 788.487 + 788.487i 0.802123 + 0.802123i 0.983427 0.181304i \(-0.0580318\pi\)
−0.181304 + 0.983427i \(0.558032\pi\)
\(984\) 0 0
\(985\) 1741.54 + 1005.48i 1.76806 + 1.02079i
\(986\) 0 0
\(987\) 2657.07i 2.69206i
\(988\) 0 0
\(989\) 369.261 0.373368
\(990\) 0 0
\(991\) 340.627 589.983i 0.343720 0.595341i −0.641400 0.767207i \(-0.721646\pi\)
0.985120 + 0.171865i \(0.0549794\pi\)
\(992\) 0 0
\(993\) 130.410 130.410i 0.131329 0.131329i
\(994\) 0 0
\(995\) −171.804 + 641.181i −0.172667 + 0.644403i
\(996\) 0 0
\(997\) 247.761 + 429.135i 0.248507 + 0.430427i 0.963112 0.269102i \(-0.0867268\pi\)
−0.714605 + 0.699528i \(0.753393\pi\)
\(998\) 0 0
\(999\) −421.100 + 112.833i −0.421521 + 0.112946i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.3.bd.b.97.1 4
4.3 odd 2 104.3.v.b.97.1 yes 4
13.11 odd 12 inner 208.3.bd.b.193.1 4
52.11 even 12 104.3.v.b.89.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.3.v.b.89.1 4 52.11 even 12
104.3.v.b.97.1 yes 4 4.3 odd 2
208.3.bd.b.97.1 4 1.1 even 1 trivial
208.3.bd.b.193.1 4 13.11 odd 12 inner