Properties

Label 208.3.bd.b.193.1
Level $208$
Weight $3$
Character 208.193
Analytic conductor $5.668$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,3,Mod(33,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.33"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 208.bd (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,6,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.66758949869\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 208.193
Dual form 208.3.bd.b.97.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.73205 - 4.73205i) q^{3} +(4.09808 + 4.09808i) q^{5} +(2.92820 + 10.9282i) q^{7} +(-10.4282 + 18.0622i) q^{9} +(8.92820 + 2.39230i) q^{11} +(11.2583 - 6.50000i) q^{13} +(8.19615 - 30.5885i) q^{15} +(-0.866025 - 0.500000i) q^{17} +(-16.1962 + 4.33975i) q^{19} +(43.7128 - 43.7128i) q^{21} +(5.66025 - 3.26795i) q^{23} +8.58846i q^{25} +64.7846 q^{27} +(16.3301 + 28.2846i) q^{29} +(12.9282 + 12.9282i) q^{31} +(-13.0718 - 48.7846i) q^{33} +(-32.7846 + 56.7846i) q^{35} +(-6.50000 - 1.74167i) q^{37} +(-61.5167 - 35.5167i) q^{39} +(6.50704 - 24.2846i) q^{41} +(48.9282 + 28.2487i) q^{43} +(-116.756 + 31.2846i) q^{45} +(-30.3923 + 30.3923i) q^{47} +(-68.4160 + 39.5000i) q^{49} +5.46410i q^{51} +25.2872 q^{53} +(26.7846 + 46.3923i) q^{55} +(64.7846 + 64.7846i) q^{57} +(-9.96152 - 37.1769i) q^{59} +(19.3564 - 33.5263i) q^{61} +(-227.923 - 61.0718i) q^{63} +(72.7750 + 19.5000i) q^{65} +(29.6603 - 110.694i) q^{67} +(-30.9282 - 17.8564i) q^{69} +(-16.7321 + 4.48334i) q^{71} +(-23.0596 + 23.0596i) q^{73} +(40.6410 - 23.4641i) q^{75} +104.574i q^{77} +65.2820 q^{79} +(-83.1410 - 144.004i) q^{81} +(-3.60770 - 3.60770i) q^{83} +(-1.50000 - 5.59808i) q^{85} +(89.2295 - 154.550i) q^{87} +(-108.988 - 29.2032i) q^{89} +(104.000 + 104.000i) q^{91} +(25.8564 - 96.4974i) q^{93} +(-84.1577 - 48.5885i) q^{95} +(75.4186 - 20.2083i) q^{97} +(-136.315 + 136.315i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 6 q^{5} - 16 q^{7} - 14 q^{9} + 8 q^{11} + 12 q^{15} - 44 q^{19} + 64 q^{21} - 12 q^{23} + 176 q^{27} + 48 q^{29} + 24 q^{31} - 80 q^{33} - 48 q^{35} - 26 q^{37} - 156 q^{39} - 116 q^{41}+ \cdots - 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.73205 4.73205i −0.910684 1.57735i −0.813101 0.582123i \(-0.802222\pi\)
−0.0975828 0.995227i \(-0.531111\pi\)
\(4\) 0 0
\(5\) 4.09808 + 4.09808i 0.819615 + 0.819615i 0.986052 0.166437i \(-0.0532262\pi\)
−0.166437 + 0.986052i \(0.553226\pi\)
\(6\) 0 0
\(7\) 2.92820 + 10.9282i 0.418315 + 1.56117i 0.778102 + 0.628138i \(0.216183\pi\)
−0.359788 + 0.933034i \(0.617151\pi\)
\(8\) 0 0
\(9\) −10.4282 + 18.0622i −1.15869 + 2.00691i
\(10\) 0 0
\(11\) 8.92820 + 2.39230i 0.811655 + 0.217482i 0.640695 0.767796i \(-0.278646\pi\)
0.170960 + 0.985278i \(0.445313\pi\)
\(12\) 0 0
\(13\) 11.2583 6.50000i 0.866025 0.500000i
\(14\) 0 0
\(15\) 8.19615 30.5885i 0.546410 2.03923i
\(16\) 0 0
\(17\) −0.866025 0.500000i −0.0509427 0.0294118i 0.474312 0.880357i \(-0.342697\pi\)
−0.525255 + 0.850945i \(0.676030\pi\)
\(18\) 0 0
\(19\) −16.1962 + 4.33975i −0.852429 + 0.228408i −0.658475 0.752603i \(-0.728798\pi\)
−0.193954 + 0.981011i \(0.562131\pi\)
\(20\) 0 0
\(21\) 43.7128 43.7128i 2.08156 2.08156i
\(22\) 0 0
\(23\) 5.66025 3.26795i 0.246098 0.142085i −0.371878 0.928282i \(-0.621286\pi\)
0.617976 + 0.786197i \(0.287953\pi\)
\(24\) 0 0
\(25\) 8.58846i 0.343538i
\(26\) 0 0
\(27\) 64.7846 2.39943
\(28\) 0 0
\(29\) 16.3301 + 28.2846i 0.563108 + 0.975331i 0.997223 + 0.0744740i \(0.0237278\pi\)
−0.434115 + 0.900857i \(0.642939\pi\)
\(30\) 0 0
\(31\) 12.9282 + 12.9282i 0.417039 + 0.417039i 0.884182 0.467143i \(-0.154717\pi\)
−0.467143 + 0.884182i \(0.654717\pi\)
\(32\) 0 0
\(33\) −13.0718 48.7846i −0.396115 1.47832i
\(34\) 0 0
\(35\) −32.7846 + 56.7846i −0.936703 + 1.62242i
\(36\) 0 0
\(37\) −6.50000 1.74167i −0.175676 0.0470722i 0.169909 0.985460i \(-0.445653\pi\)
−0.345585 + 0.938388i \(0.612319\pi\)
\(38\) 0 0
\(39\) −61.5167 35.5167i −1.57735 0.910684i
\(40\) 0 0
\(41\) 6.50704 24.2846i 0.158708 0.592308i −0.840051 0.542508i \(-0.817475\pi\)
0.998759 0.0497999i \(-0.0158584\pi\)
\(42\) 0 0
\(43\) 48.9282 + 28.2487i 1.13787 + 0.656947i 0.945901 0.324455i \(-0.105181\pi\)
0.191964 + 0.981402i \(0.438514\pi\)
\(44\) 0 0
\(45\) −116.756 + 31.2846i −2.59457 + 0.695214i
\(46\) 0 0
\(47\) −30.3923 + 30.3923i −0.646645 + 0.646645i −0.952181 0.305536i \(-0.901164\pi\)
0.305536 + 0.952181i \(0.401164\pi\)
\(48\) 0 0
\(49\) −68.4160 + 39.5000i −1.39625 + 0.806122i
\(50\) 0 0
\(51\) 5.46410i 0.107139i
\(52\) 0 0
\(53\) 25.2872 0.477117 0.238558 0.971128i \(-0.423325\pi\)
0.238558 + 0.971128i \(0.423325\pi\)
\(54\) 0 0
\(55\) 26.7846 + 46.3923i 0.486993 + 0.843496i
\(56\) 0 0
\(57\) 64.7846 + 64.7846i 1.13657 + 1.13657i
\(58\) 0 0
\(59\) −9.96152 37.1769i −0.168839 0.630117i −0.997519 0.0703943i \(-0.977574\pi\)
0.828680 0.559723i \(-0.189092\pi\)
\(60\) 0 0
\(61\) 19.3564 33.5263i 0.317318 0.549611i −0.662609 0.748965i \(-0.730551\pi\)
0.979928 + 0.199354i \(0.0638844\pi\)
\(62\) 0 0
\(63\) −227.923 61.0718i −3.61783 0.969394i
\(64\) 0 0
\(65\) 72.7750 + 19.5000i 1.11962 + 0.300000i
\(66\) 0 0
\(67\) 29.6603 110.694i 0.442690 1.65214i −0.279273 0.960212i \(-0.590093\pi\)
0.721963 0.691931i \(-0.243240\pi\)
\(68\) 0 0
\(69\) −30.9282 17.8564i −0.448235 0.258788i
\(70\) 0 0
\(71\) −16.7321 + 4.48334i −0.235663 + 0.0631456i −0.374717 0.927139i \(-0.622260\pi\)
0.139055 + 0.990285i \(0.455594\pi\)
\(72\) 0 0
\(73\) −23.0596 + 23.0596i −0.315885 + 0.315885i −0.847184 0.531299i \(-0.821704\pi\)
0.531299 + 0.847184i \(0.321704\pi\)
\(74\) 0 0
\(75\) 40.6410 23.4641i 0.541880 0.312855i
\(76\) 0 0
\(77\) 104.574i 1.35811i
\(78\) 0 0
\(79\) 65.2820 0.826355 0.413177 0.910651i \(-0.364419\pi\)
0.413177 + 0.910651i \(0.364419\pi\)
\(80\) 0 0
\(81\) −83.1410 144.004i −1.02643 1.77783i
\(82\) 0 0
\(83\) −3.60770 3.60770i −0.0434662 0.0434662i 0.685040 0.728506i \(-0.259785\pi\)
−0.728506 + 0.685040i \(0.759785\pi\)
\(84\) 0 0
\(85\) −1.50000 5.59808i −0.0176471 0.0658597i
\(86\) 0 0
\(87\) 89.2295 154.550i 1.02563 1.77644i
\(88\) 0 0
\(89\) −108.988 29.2032i −1.22458 0.328126i −0.412114 0.911132i \(-0.635210\pi\)
−0.812468 + 0.583006i \(0.801876\pi\)
\(90\) 0 0
\(91\) 104.000 + 104.000i 1.14286 + 1.14286i
\(92\) 0 0
\(93\) 25.8564 96.4974i 0.278026 1.03761i
\(94\) 0 0
\(95\) −84.1577 48.5885i −0.885870 0.511457i
\(96\) 0 0
\(97\) 75.4186 20.2083i 0.777511 0.208333i 0.151824 0.988408i \(-0.451485\pi\)
0.625687 + 0.780074i \(0.284819\pi\)
\(98\) 0 0
\(99\) −136.315 + 136.315i −1.37692 + 1.37692i
\(100\) 0 0
\(101\) −142.567 + 82.3109i −1.41155 + 0.814959i −0.995535 0.0943978i \(-0.969907\pi\)
−0.416016 + 0.909357i \(0.636574\pi\)
\(102\) 0 0
\(103\) 40.8897i 0.396988i −0.980102 0.198494i \(-0.936395\pi\)
0.980102 0.198494i \(-0.0636050\pi\)
\(104\) 0 0
\(105\) 358.277 3.41216
\(106\) 0 0
\(107\) 74.8372 + 129.622i 0.699413 + 1.21142i 0.968670 + 0.248350i \(0.0798884\pi\)
−0.269258 + 0.963068i \(0.586778\pi\)
\(108\) 0 0
\(109\) −82.2154 82.2154i −0.754270 0.754270i 0.221003 0.975273i \(-0.429067\pi\)
−0.975273 + 0.221003i \(0.929067\pi\)
\(110\) 0 0
\(111\) 9.51666 + 35.5167i 0.0857357 + 0.319970i
\(112\) 0 0
\(113\) −73.6506 + 127.567i −0.651776 + 1.12891i 0.330916 + 0.943660i \(0.392642\pi\)
−0.982692 + 0.185248i \(0.940691\pi\)
\(114\) 0 0
\(115\) 36.5885 + 9.80385i 0.318160 + 0.0852508i
\(116\) 0 0
\(117\) 271.133i 2.31738i
\(118\) 0 0
\(119\) 2.92820 10.9282i 0.0246067 0.0918336i
\(120\) 0 0
\(121\) −30.7994 17.7820i −0.254540 0.146959i
\(122\) 0 0
\(123\) −132.694 + 35.5551i −1.07881 + 0.289066i
\(124\) 0 0
\(125\) 67.2558 67.2558i 0.538046 0.538046i
\(126\) 0 0
\(127\) −158.196 + 91.3346i −1.24564 + 0.719170i −0.970237 0.242159i \(-0.922144\pi\)
−0.275402 + 0.961329i \(0.588811\pi\)
\(128\) 0 0
\(129\) 308.708i 2.39308i
\(130\) 0 0
\(131\) −170.459 −1.30121 −0.650607 0.759415i \(-0.725485\pi\)
−0.650607 + 0.759415i \(0.725485\pi\)
\(132\) 0 0
\(133\) −94.8513 164.287i −0.713167 1.23524i
\(134\) 0 0
\(135\) 265.492 + 265.492i 1.96661 + 1.96661i
\(136\) 0 0
\(137\) 19.1359 + 71.4160i 0.139678 + 0.521285i 0.999935 + 0.0114239i \(0.00363643\pi\)
−0.860257 + 0.509861i \(0.829697\pi\)
\(138\) 0 0
\(139\) 132.459 229.426i 0.952942 1.65054i 0.213933 0.976848i \(-0.431372\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(140\) 0 0
\(141\) 226.851 + 60.7846i 1.60887 + 0.431097i
\(142\) 0 0
\(143\) 116.067 31.1000i 0.811655 0.217482i
\(144\) 0 0
\(145\) −48.9904 + 182.835i −0.337865 + 1.26093i
\(146\) 0 0
\(147\) 373.832 + 215.832i 2.54307 + 1.46824i
\(148\) 0 0
\(149\) −43.2846 + 11.5981i −0.290501 + 0.0778394i −0.401126 0.916023i \(-0.631381\pi\)
0.110626 + 0.993862i \(0.464715\pi\)
\(150\) 0 0
\(151\) 100.431 100.431i 0.665105 0.665105i −0.291474 0.956579i \(-0.594146\pi\)
0.956579 + 0.291474i \(0.0941457\pi\)
\(152\) 0 0
\(153\) 18.0622 10.4282i 0.118053 0.0681582i
\(154\) 0 0
\(155\) 105.962i 0.683623i
\(156\) 0 0
\(157\) −68.3731 −0.435497 −0.217749 0.976005i \(-0.569871\pi\)
−0.217749 + 0.976005i \(0.569871\pi\)
\(158\) 0 0
\(159\) −69.0859 119.660i −0.434502 0.752580i
\(160\) 0 0
\(161\) 52.2872 + 52.2872i 0.324765 + 0.324765i
\(162\) 0 0
\(163\) −63.6462 237.531i −0.390467 1.45724i −0.829365 0.558707i \(-0.811298\pi\)
0.438898 0.898537i \(-0.355369\pi\)
\(164\) 0 0
\(165\) 146.354 253.492i 0.886993 1.53632i
\(166\) 0 0
\(167\) 28.2487 + 7.56922i 0.169154 + 0.0453247i 0.342402 0.939554i \(-0.388760\pi\)
−0.173248 + 0.984878i \(0.555426\pi\)
\(168\) 0 0
\(169\) 84.5000 146.358i 0.500000 0.866025i
\(170\) 0 0
\(171\) 90.5115 337.794i 0.529307 1.97540i
\(172\) 0 0
\(173\) 163.426 + 94.3538i 0.944657 + 0.545398i 0.891417 0.453184i \(-0.149712\pi\)
0.0532398 + 0.998582i \(0.483045\pi\)
\(174\) 0 0
\(175\) −93.8564 + 25.1487i −0.536322 + 0.143707i
\(176\) 0 0
\(177\) −148.708 + 148.708i −0.840156 + 0.840156i
\(178\) 0 0
\(179\) −66.9282 + 38.6410i −0.373901 + 0.215872i −0.675161 0.737670i \(-0.735926\pi\)
0.301261 + 0.953542i \(0.402593\pi\)
\(180\) 0 0
\(181\) 240.559i 1.32905i −0.747264 0.664527i \(-0.768633\pi\)
0.747264 0.664527i \(-0.231367\pi\)
\(182\) 0 0
\(183\) −211.531 −1.15591
\(184\) 0 0
\(185\) −19.5000 33.7750i −0.105405 0.182568i
\(186\) 0 0
\(187\) −6.53590 6.53590i −0.0349513 0.0349513i
\(188\) 0 0
\(189\) 189.703 + 707.979i 1.00372 + 3.74592i
\(190\) 0 0
\(191\) 58.6936 101.660i 0.307296 0.532253i −0.670474 0.741933i \(-0.733909\pi\)
0.977770 + 0.209681i \(0.0672424\pi\)
\(192\) 0 0
\(193\) 197.789 + 52.9974i 1.02481 + 0.274598i 0.731807 0.681512i \(-0.238677\pi\)
0.293007 + 0.956110i \(0.405344\pi\)
\(194\) 0 0
\(195\) −106.550 397.650i −0.546410 2.03923i
\(196\) 0 0
\(197\) 89.8057 335.160i 0.455867 1.70132i −0.229661 0.973271i \(-0.573762\pi\)
0.685527 0.728047i \(-0.259572\pi\)
\(198\) 0 0
\(199\) −99.1910 57.2679i −0.498447 0.287779i 0.229625 0.973279i \(-0.426250\pi\)
−0.728072 + 0.685501i \(0.759583\pi\)
\(200\) 0 0
\(201\) −604.841 + 162.067i −3.00916 + 0.806302i
\(202\) 0 0
\(203\) −261.282 + 261.282i −1.28710 + 1.28710i
\(204\) 0 0
\(205\) 126.187 72.8538i 0.615544 0.355385i
\(206\) 0 0
\(207\) 136.315i 0.658528i
\(208\) 0 0
\(209\) −154.985 −0.741553
\(210\) 0 0
\(211\) 26.0526 + 45.1244i 0.123472 + 0.213860i 0.921135 0.389244i \(-0.127264\pi\)
−0.797663 + 0.603104i \(0.793930\pi\)
\(212\) 0 0
\(213\) 66.9282 + 66.9282i 0.314217 + 0.314217i
\(214\) 0 0
\(215\) 84.7461 + 316.277i 0.394168 + 1.47106i
\(216\) 0 0
\(217\) −103.426 + 179.138i −0.476616 + 0.825523i
\(218\) 0 0
\(219\) 172.119 + 46.1192i 0.785932 + 0.210590i
\(220\) 0 0
\(221\) −13.0000 −0.0588235
\(222\) 0 0
\(223\) −40.6166 + 151.583i −0.182137 + 0.679746i 0.813088 + 0.582141i \(0.197785\pi\)
−0.995225 + 0.0976048i \(0.968882\pi\)
\(224\) 0 0
\(225\) −155.126 89.5622i −0.689450 0.398054i
\(226\) 0 0
\(227\) 4.73205 1.26795i 0.0208460 0.00558568i −0.248381 0.968662i \(-0.579898\pi\)
0.269227 + 0.963077i \(0.413232\pi\)
\(228\) 0 0
\(229\) 148.359 148.359i 0.647856 0.647856i −0.304619 0.952474i \(-0.598529\pi\)
0.952474 + 0.304619i \(0.0985290\pi\)
\(230\) 0 0
\(231\) 494.851 285.703i 2.14221 1.23681i
\(232\) 0 0
\(233\) 427.138i 1.83321i 0.399792 + 0.916606i \(0.369083\pi\)
−0.399792 + 0.916606i \(0.630917\pi\)
\(234\) 0 0
\(235\) −249.100 −1.06000
\(236\) 0 0
\(237\) −178.354 308.918i −0.752548 1.30345i
\(238\) 0 0
\(239\) −38.2769 38.2769i −0.160154 0.160154i 0.622481 0.782635i \(-0.286125\pi\)
−0.782635 + 0.622481i \(0.786125\pi\)
\(240\) 0 0
\(241\) −60.0744 224.201i −0.249271 0.930293i −0.971188 0.238313i \(-0.923405\pi\)
0.721917 0.691980i \(-0.243261\pi\)
\(242\) 0 0
\(243\) −162.760 + 281.909i −0.669795 + 1.16012i
\(244\) 0 0
\(245\) −442.248 118.500i −1.80509 0.483673i
\(246\) 0 0
\(247\) −154.133 + 154.133i −0.624021 + 0.624021i
\(248\) 0 0
\(249\) −7.21539 + 26.9282i −0.0289775 + 0.108145i
\(250\) 0 0
\(251\) −408.291 235.727i −1.62666 0.939151i −0.985081 0.172092i \(-0.944947\pi\)
−0.641576 0.767059i \(-0.721719\pi\)
\(252\) 0 0
\(253\) 58.3538 15.6359i 0.230648 0.0618018i
\(254\) 0 0
\(255\) −22.3923 + 22.3923i −0.0878130 + 0.0878130i
\(256\) 0 0
\(257\) 107.495 62.0622i 0.418268 0.241487i −0.276068 0.961138i \(-0.589032\pi\)
0.694336 + 0.719651i \(0.255698\pi\)
\(258\) 0 0
\(259\) 76.1333i 0.293951i
\(260\) 0 0
\(261\) −681.176 −2.60987
\(262\) 0 0
\(263\) −53.1103 91.9897i −0.201940 0.349771i 0.747213 0.664584i \(-0.231391\pi\)
−0.949154 + 0.314814i \(0.898058\pi\)
\(264\) 0 0
\(265\) 103.629 + 103.629i 0.391052 + 0.391052i
\(266\) 0 0
\(267\) 159.569 + 595.520i 0.597638 + 2.23041i
\(268\) 0 0
\(269\) 45.7795 79.2923i 0.170184 0.294767i −0.768300 0.640090i \(-0.778897\pi\)
0.938484 + 0.345323i \(0.112231\pi\)
\(270\) 0 0
\(271\) 91.4256 + 24.4974i 0.337364 + 0.0903964i 0.423524 0.905885i \(-0.360793\pi\)
−0.0861600 + 0.996281i \(0.527460\pi\)
\(272\) 0 0
\(273\) 208.000 776.267i 0.761905 2.84347i
\(274\) 0 0
\(275\) −20.5462 + 76.6795i −0.0747135 + 0.278835i
\(276\) 0 0
\(277\) 388.500 + 224.301i 1.40253 + 0.809749i 0.994651 0.103288i \(-0.0329364\pi\)
0.407876 + 0.913038i \(0.366270\pi\)
\(278\) 0 0
\(279\) −368.329 + 98.6936i −1.32018 + 0.353740i
\(280\) 0 0
\(281\) −162.725 + 162.725i −0.579093 + 0.579093i −0.934653 0.355561i \(-0.884290\pi\)
0.355561 + 0.934653i \(0.384290\pi\)
\(282\) 0 0
\(283\) −216.679 + 125.100i −0.765652 + 0.442049i −0.831321 0.555792i \(-0.812415\pi\)
0.0656694 + 0.997841i \(0.479082\pi\)
\(284\) 0 0
\(285\) 530.985i 1.86310i
\(286\) 0 0
\(287\) 284.441 0.991084
\(288\) 0 0
\(289\) −144.000 249.415i −0.498270 0.863029i
\(290\) 0 0
\(291\) −301.674 301.674i −1.03668 1.03668i
\(292\) 0 0
\(293\) −91.7314 342.346i −0.313076 1.16842i −0.925767 0.378094i \(-0.876580\pi\)
0.612691 0.790323i \(-0.290087\pi\)
\(294\) 0 0
\(295\) 111.531 193.177i 0.378070 0.654837i
\(296\) 0 0
\(297\) 578.410 + 154.985i 1.94751 + 0.521833i
\(298\) 0 0
\(299\) 42.4833 73.5833i 0.142085 0.246098i
\(300\) 0 0
\(301\) −165.436 + 617.415i −0.549621 + 2.05121i
\(302\) 0 0
\(303\) 778.999 + 449.755i 2.57095 + 1.48434i
\(304\) 0 0
\(305\) 216.717 58.0692i 0.710548 0.190391i
\(306\) 0 0
\(307\) 222.497 222.497i 0.724747 0.724747i −0.244821 0.969568i \(-0.578729\pi\)
0.969568 + 0.244821i \(0.0787292\pi\)
\(308\) 0 0
\(309\) −193.492 + 111.713i −0.626189 + 0.361530i
\(310\) 0 0
\(311\) 70.5922i 0.226985i −0.993539 0.113492i \(-0.963796\pi\)
0.993539 0.113492i \(-0.0362037\pi\)
\(312\) 0 0
\(313\) 550.123 1.75758 0.878791 0.477207i \(-0.158351\pi\)
0.878791 + 0.477207i \(0.158351\pi\)
\(314\) 0 0
\(315\) −683.769 1184.32i −2.17070 3.75976i
\(316\) 0 0
\(317\) −287.011 287.011i −0.905397 0.905397i 0.0904996 0.995896i \(-0.471154\pi\)
−0.995896 + 0.0904996i \(0.971154\pi\)
\(318\) 0 0
\(319\) 78.1333 + 291.597i 0.244932 + 0.914098i
\(320\) 0 0
\(321\) 408.918 708.267i 1.27389 2.20644i
\(322\) 0 0
\(323\) 16.1962 + 4.33975i 0.0501429 + 0.0134357i
\(324\) 0 0
\(325\) 55.8250 + 96.6917i 0.171769 + 0.297513i
\(326\) 0 0
\(327\) −164.431 + 613.664i −0.502846 + 1.87665i
\(328\) 0 0
\(329\) −421.128 243.138i −1.28002 0.739023i
\(330\) 0 0
\(331\) −32.6025 + 8.73582i −0.0984971 + 0.0263922i −0.307731 0.951473i \(-0.599570\pi\)
0.209234 + 0.977866i \(0.432903\pi\)
\(332\) 0 0
\(333\) 99.2417 99.2417i 0.298023 0.298023i
\(334\) 0 0
\(335\) 575.181 332.081i 1.71696 0.991286i
\(336\) 0 0
\(337\) 289.420i 0.858814i 0.903111 + 0.429407i \(0.141277\pi\)
−0.903111 + 0.429407i \(0.858723\pi\)
\(338\) 0 0
\(339\) 804.869 2.37425
\(340\) 0 0
\(341\) 84.4974 + 146.354i 0.247793 + 0.429190i
\(342\) 0 0
\(343\) −240.000 240.000i −0.699708 0.699708i
\(344\) 0 0
\(345\) −53.5692 199.923i −0.155273 0.579487i
\(346\) 0 0
\(347\) 206.970 358.483i 0.596457 1.03309i −0.396883 0.917869i \(-0.629908\pi\)
0.993340 0.115224i \(-0.0367586\pi\)
\(348\) 0 0
\(349\) −151.538 40.6044i −0.434206 0.116345i 0.0350940 0.999384i \(-0.488827\pi\)
−0.469300 + 0.883039i \(0.655494\pi\)
\(350\) 0 0
\(351\) 729.367 421.100i 2.07797 1.19971i
\(352\) 0 0
\(353\) −100.556 + 375.281i −0.284862 + 1.06312i 0.664078 + 0.747663i \(0.268824\pi\)
−0.948940 + 0.315457i \(0.897842\pi\)
\(354\) 0 0
\(355\) −86.9423 50.1962i −0.244908 0.141398i
\(356\) 0 0
\(357\) −59.7128 + 16.0000i −0.167263 + 0.0448179i
\(358\) 0 0
\(359\) −326.985 + 326.985i −0.910820 + 0.910820i −0.996337 0.0855163i \(-0.972746\pi\)
0.0855163 + 0.996337i \(0.472746\pi\)
\(360\) 0 0
\(361\) −69.1532 + 39.9256i −0.191560 + 0.110597i
\(362\) 0 0
\(363\) 194.326i 0.535332i
\(364\) 0 0
\(365\) −189.000 −0.517808
\(366\) 0 0
\(367\) −240.435 416.445i −0.655135 1.13473i −0.981860 0.189608i \(-0.939278\pi\)
0.326725 0.945119i \(-0.394055\pi\)
\(368\) 0 0
\(369\) 370.776 + 370.776i 1.00481 + 1.00481i
\(370\) 0 0
\(371\) 74.0460 + 276.344i 0.199585 + 0.744861i
\(372\) 0 0
\(373\) 81.3250 140.859i 0.218029 0.377638i −0.736176 0.676790i \(-0.763370\pi\)
0.954205 + 0.299152i \(0.0967038\pi\)
\(374\) 0 0
\(375\) −502.004 134.512i −1.33868 0.358697i
\(376\) 0 0
\(377\) 367.700 + 212.292i 0.975331 + 0.563108i
\(378\) 0 0
\(379\) −135.019 + 503.899i −0.356251 + 1.32955i 0.522651 + 0.852547i \(0.324943\pi\)
−0.878903 + 0.477001i \(0.841724\pi\)
\(380\) 0 0
\(381\) 864.400 + 499.061i 2.26877 + 1.30987i
\(382\) 0 0
\(383\) 183.923 49.2820i 0.480217 0.128674i −0.0105867 0.999944i \(-0.503370\pi\)
0.490804 + 0.871270i \(0.336703\pi\)
\(384\) 0 0
\(385\) −428.554 + 428.554i −1.11313 + 1.11313i
\(386\) 0 0
\(387\) −1020.47 + 589.167i −2.63686 + 1.52239i
\(388\) 0 0
\(389\) 615.256i 1.58164i 0.612052 + 0.790818i \(0.290344\pi\)
−0.612052 + 0.790818i \(0.709656\pi\)
\(390\) 0 0
\(391\) −6.53590 −0.0167159
\(392\) 0 0
\(393\) 465.703 + 806.620i 1.18499 + 2.05247i
\(394\) 0 0
\(395\) 267.531 + 267.531i 0.677293 + 0.677293i
\(396\) 0 0
\(397\) 91.1647 + 340.231i 0.229634 + 0.857006i 0.980495 + 0.196545i \(0.0629723\pi\)
−0.750861 + 0.660461i \(0.770361\pi\)
\(398\) 0 0
\(399\) −518.277 + 897.682i −1.29894 + 2.24983i
\(400\) 0 0
\(401\) −189.279 50.7173i −0.472019 0.126477i 0.0149652 0.999888i \(-0.495236\pi\)
−0.486984 + 0.873411i \(0.661903\pi\)
\(402\) 0 0
\(403\) 229.583 + 61.5167i 0.569686 + 0.152647i
\(404\) 0 0
\(405\) 249.423 930.859i 0.615859 2.29842i
\(406\) 0 0
\(407\) −53.8667 31.1000i −0.132351 0.0764127i
\(408\) 0 0
\(409\) 465.635 124.767i 1.13847 0.305053i 0.360136 0.932900i \(-0.382730\pi\)
0.778337 + 0.627847i \(0.216064\pi\)
\(410\) 0 0
\(411\) 285.664 285.664i 0.695046 0.695046i
\(412\) 0 0
\(413\) 377.108 217.723i 0.913093 0.527175i
\(414\) 0 0
\(415\) 29.5692i 0.0712511i
\(416\) 0 0
\(417\) −1447.54 −3.47131
\(418\) 0 0
\(419\) 130.273 + 225.640i 0.310914 + 0.538519i 0.978561 0.205959i \(-0.0660314\pi\)
−0.667646 + 0.744479i \(0.732698\pi\)
\(420\) 0 0
\(421\) −240.107 240.107i −0.570325 0.570325i 0.361894 0.932219i \(-0.382130\pi\)
−0.932219 + 0.361894i \(0.882130\pi\)
\(422\) 0 0
\(423\) −232.014 865.888i −0.548497 2.04702i
\(424\) 0 0
\(425\) 4.29423 7.43782i 0.0101041 0.0175008i
\(426\) 0 0
\(427\) 423.061 + 113.359i 0.990776 + 0.265478i
\(428\) 0 0
\(429\) −464.267 464.267i −1.08221 1.08221i
\(430\) 0 0
\(431\) 198.613 741.233i 0.460819 1.71980i −0.209575 0.977793i \(-0.567208\pi\)
0.670393 0.742006i \(-0.266125\pi\)
\(432\) 0 0
\(433\) −146.264 84.4456i −0.337792 0.195024i 0.321503 0.946909i \(-0.395812\pi\)
−0.659295 + 0.751884i \(0.729145\pi\)
\(434\) 0 0
\(435\) 999.027 267.688i 2.29661 0.615376i
\(436\) 0 0
\(437\) −77.4923 + 77.4923i −0.177328 + 0.177328i
\(438\) 0 0
\(439\) 106.259 61.3487i 0.242048 0.139746i −0.374070 0.927401i \(-0.622038\pi\)
0.616118 + 0.787654i \(0.288705\pi\)
\(440\) 0 0
\(441\) 1647.66i 3.73618i
\(442\) 0 0
\(443\) −71.4256 −0.161232 −0.0806158 0.996745i \(-0.525689\pi\)
−0.0806158 + 0.996745i \(0.525689\pi\)
\(444\) 0 0
\(445\) −326.963 566.317i −0.734749 1.27262i
\(446\) 0 0
\(447\) 173.138 + 173.138i 0.387334 + 0.387334i
\(448\) 0 0
\(449\) 40.1314 + 149.772i 0.0893795 + 0.333569i 0.996107 0.0881472i \(-0.0280946\pi\)
−0.906728 + 0.421716i \(0.861428\pi\)
\(450\) 0 0
\(451\) 116.192 201.251i 0.257633 0.446233i
\(452\) 0 0
\(453\) −749.626 200.862i −1.65480 0.443403i
\(454\) 0 0
\(455\) 852.400i 1.87341i
\(456\) 0 0
\(457\) 98.5648 367.849i 0.215678 0.804921i −0.770249 0.637743i \(-0.779868\pi\)
0.985927 0.167177i \(-0.0534652\pi\)
\(458\) 0 0
\(459\) −56.1051 32.3923i −0.122233 0.0705715i
\(460\) 0 0
\(461\) 635.054 170.162i 1.37756 0.369115i 0.507324 0.861755i \(-0.330635\pi\)
0.870233 + 0.492640i \(0.163968\pi\)
\(462\) 0 0
\(463\) 11.3205 11.3205i 0.0244503 0.0244503i −0.694776 0.719226i \(-0.744496\pi\)
0.719226 + 0.694776i \(0.244496\pi\)
\(464\) 0 0
\(465\) 501.415 289.492i 1.07831 0.622564i
\(466\) 0 0
\(467\) 251.482i 0.538505i 0.963070 + 0.269253i \(0.0867767\pi\)
−0.963070 + 0.269253i \(0.913223\pi\)
\(468\) 0 0
\(469\) 1296.53 2.76446
\(470\) 0 0
\(471\) 186.799 + 323.545i 0.396600 + 0.686932i
\(472\) 0 0
\(473\) 369.261 + 369.261i 0.780680 + 0.780680i
\(474\) 0 0
\(475\) −37.2717 139.100i −0.0784668 0.292842i
\(476\) 0 0
\(477\) −263.700 + 456.742i −0.552830 + 0.957530i
\(478\) 0 0
\(479\) 235.517 + 63.1065i 0.491684 + 0.131746i 0.496138 0.868244i \(-0.334751\pi\)
−0.00445385 + 0.999990i \(0.501418\pi\)
\(480\) 0 0
\(481\) −84.5000 + 22.6417i −0.175676 + 0.0470722i
\(482\) 0 0
\(483\) 104.574 390.277i 0.216510 0.808027i
\(484\) 0 0
\(485\) 391.886 + 226.256i 0.808013 + 0.466507i
\(486\) 0 0
\(487\) −408.669 + 109.503i −0.839156 + 0.224851i −0.652704 0.757613i \(-0.726366\pi\)
−0.186452 + 0.982464i \(0.559699\pi\)
\(488\) 0 0
\(489\) −950.123 + 950.123i −1.94299 + 1.94299i
\(490\) 0 0
\(491\) −167.885 + 96.9282i −0.341924 + 0.197410i −0.661122 0.750278i \(-0.729920\pi\)
0.319199 + 0.947688i \(0.396586\pi\)
\(492\) 0 0
\(493\) 32.6603i 0.0662480i
\(494\) 0 0
\(495\) −1117.26 −2.25709
\(496\) 0 0
\(497\) −97.9897 169.723i −0.197162 0.341495i
\(498\) 0 0
\(499\) 209.636 + 209.636i 0.420112 + 0.420112i 0.885242 0.465130i \(-0.153993\pi\)
−0.465130 + 0.885242i \(0.653993\pi\)
\(500\) 0 0
\(501\) −41.3590 154.354i −0.0825529 0.308091i
\(502\) 0 0
\(503\) 18.6692 32.3360i 0.0371157 0.0642862i −0.846871 0.531799i \(-0.821516\pi\)
0.883987 + 0.467512i \(0.154850\pi\)
\(504\) 0 0
\(505\) −921.565 246.933i −1.82488 0.488976i
\(506\) 0 0
\(507\) −923.433 −1.82137
\(508\) 0 0
\(509\) 95.4648 356.279i 0.187554 0.699960i −0.806516 0.591213i \(-0.798649\pi\)
0.994069 0.108747i \(-0.0346839\pi\)
\(510\) 0 0
\(511\) −319.523 184.477i −0.625290 0.361011i
\(512\) 0 0
\(513\) −1049.26 + 281.149i −2.04534 + 0.548048i
\(514\) 0 0
\(515\) 167.569 167.569i 0.325377 0.325377i
\(516\) 0 0
\(517\) −344.056 + 198.641i −0.665486 + 0.384219i
\(518\) 0 0
\(519\) 1031.12i 1.98674i
\(520\) 0 0
\(521\) 772.717 1.48314 0.741571 0.670875i \(-0.234081\pi\)
0.741571 + 0.670875i \(0.234081\pi\)
\(522\) 0 0
\(523\) −54.2487 93.9615i −0.103726 0.179659i 0.809491 0.587132i \(-0.199743\pi\)
−0.913217 + 0.407474i \(0.866410\pi\)
\(524\) 0 0
\(525\) 375.426 + 375.426i 0.715096 + 0.715096i
\(526\) 0 0
\(527\) −4.73205 17.6603i −0.00897922 0.0335109i
\(528\) 0 0
\(529\) −243.141 + 421.133i −0.459624 + 0.796092i
\(530\) 0 0
\(531\) 775.377 + 207.762i 1.46022 + 0.391265i
\(532\) 0 0
\(533\) −84.5915 315.700i −0.158708 0.592308i
\(534\) 0 0
\(535\) −224.512 + 837.888i −0.419648 + 1.56615i
\(536\) 0 0
\(537\) 365.703 + 211.138i 0.681010 + 0.393181i
\(538\) 0 0
\(539\) −705.328 + 188.992i −1.30859 + 0.350635i
\(540\) 0 0
\(541\) 30.4519 30.4519i 0.0562882 0.0562882i −0.678402 0.734691i \(-0.737327\pi\)
0.734691 + 0.678402i \(0.237327\pi\)
\(542\) 0 0
\(543\) −1138.34 + 657.219i −2.09638 + 1.21035i
\(544\) 0 0
\(545\) 673.850i 1.23642i
\(546\) 0 0
\(547\) −422.438 −0.772282 −0.386141 0.922440i \(-0.626192\pi\)
−0.386141 + 0.922440i \(0.626192\pi\)
\(548\) 0 0
\(549\) 403.705 + 699.238i 0.735346 + 1.27366i
\(550\) 0 0
\(551\) −387.233 387.233i −0.702783 0.702783i
\(552\) 0 0
\(553\) 191.159 + 713.415i 0.345676 + 1.29008i
\(554\) 0 0
\(555\) −106.550 + 184.550i −0.191982 + 0.332522i
\(556\) 0 0
\(557\) −409.234 109.654i −0.734711 0.196865i −0.127985 0.991776i \(-0.540851\pi\)
−0.606726 + 0.794911i \(0.707518\pi\)
\(558\) 0 0
\(559\) 734.466 1.31389
\(560\) 0 0
\(561\) −13.0718 + 48.7846i −0.0233009 + 0.0869601i
\(562\) 0 0
\(563\) −367.510 212.182i −0.652771 0.376878i 0.136746 0.990606i \(-0.456336\pi\)
−0.789517 + 0.613729i \(0.789669\pi\)
\(564\) 0 0
\(565\) −824.604 + 220.952i −1.45948 + 0.391065i
\(566\) 0 0
\(567\) 1330.26 1330.26i 2.34613 2.34613i
\(568\) 0 0
\(569\) −267.482 + 154.431i −0.470091 + 0.271407i −0.716278 0.697815i \(-0.754156\pi\)
0.246187 + 0.969222i \(0.420822\pi\)
\(570\) 0 0
\(571\) 971.272i 1.70100i 0.525974 + 0.850501i \(0.323701\pi\)
−0.525974 + 0.850501i \(0.676299\pi\)
\(572\) 0 0
\(573\) −641.415 −1.11940
\(574\) 0 0
\(575\) 28.0666 + 48.6128i 0.0488116 + 0.0845441i
\(576\) 0 0
\(577\) −413.542 413.542i −0.716710 0.716710i 0.251220 0.967930i \(-0.419168\pi\)
−0.967930 + 0.251220i \(0.919168\pi\)
\(578\) 0 0
\(579\) −289.583 1080.74i −0.500144 1.86656i
\(580\) 0 0
\(581\) 28.8616 49.9897i 0.0496757 0.0860408i
\(582\) 0 0
\(583\) 225.769 + 60.4947i 0.387254 + 0.103764i
\(584\) 0 0
\(585\) −1111.12 + 1111.12i −1.89936 + 1.89936i
\(586\) 0 0
\(587\) 238.582 890.400i 0.406443 1.51687i −0.394936 0.918708i \(-0.629233\pi\)
0.801379 0.598157i \(-0.204100\pi\)
\(588\) 0 0
\(589\) −265.492 153.282i −0.450751 0.260241i
\(590\) 0 0
\(591\) −1831.35 + 490.708i −3.09872 + 0.830301i
\(592\) 0 0
\(593\) 439.901 439.901i 0.741822 0.741822i −0.231106 0.972928i \(-0.574235\pi\)
0.972928 + 0.231106i \(0.0742345\pi\)
\(594\) 0 0
\(595\) 56.7846 32.7846i 0.0954363 0.0551002i
\(596\) 0 0
\(597\) 625.836i 1.04830i
\(598\) 0 0
\(599\) 1081.06 1.80477 0.902386 0.430928i \(-0.141814\pi\)
0.902386 + 0.430928i \(0.141814\pi\)
\(600\) 0 0
\(601\) 24.3391 + 42.1565i 0.0404976 + 0.0701439i 0.885564 0.464518i \(-0.153772\pi\)
−0.845066 + 0.534662i \(0.820439\pi\)
\(602\) 0 0
\(603\) 1690.06 + 1690.06i 2.80276 + 2.80276i
\(604\) 0 0
\(605\) −53.3461 199.090i −0.0881754 0.329075i
\(606\) 0 0
\(607\) 134.550 233.047i 0.221664 0.383933i −0.733649 0.679528i \(-0.762185\pi\)
0.955313 + 0.295595i \(0.0955179\pi\)
\(608\) 0 0
\(609\) 1950.24 + 522.564i 3.20236 + 0.858069i
\(610\) 0 0
\(611\) −144.617 + 539.717i −0.236688 + 0.883333i
\(612\) 0 0
\(613\) 25.9256 96.7558i 0.0422930 0.157840i −0.941550 0.336874i \(-0.890630\pi\)
0.983843 + 0.179034i \(0.0572972\pi\)
\(614\) 0 0
\(615\) −689.496 398.081i −1.12113 0.647286i
\(616\) 0 0
\(617\) 258.141 69.1687i 0.418381 0.112105i −0.0434861 0.999054i \(-0.513846\pi\)
0.461867 + 0.886949i \(0.347180\pi\)
\(618\) 0 0
\(619\) −192.862 + 192.862i −0.311570 + 0.311570i −0.845517 0.533948i \(-0.820708\pi\)
0.533948 + 0.845517i \(0.320708\pi\)
\(620\) 0 0
\(621\) 366.697 211.713i 0.590495 0.340922i
\(622\) 0 0
\(623\) 1276.55i 2.04904i
\(624\) 0 0
\(625\) 765.950 1.22552
\(626\) 0 0
\(627\) 423.426 + 733.395i 0.675320 + 1.16969i
\(628\) 0 0
\(629\) 4.75833 + 4.75833i 0.00756491 + 0.00756491i
\(630\) 0 0
\(631\) 7.08211 + 26.4308i 0.0112236 + 0.0418871i 0.971311 0.237815i \(-0.0764311\pi\)
−0.960087 + 0.279702i \(0.909764\pi\)
\(632\) 0 0
\(633\) 142.354 246.564i 0.224888 0.389517i
\(634\) 0 0
\(635\) −1022.60 274.004i −1.61039 0.431502i
\(636\) 0 0
\(637\) −513.500 + 889.408i −0.806122 + 1.39625i
\(638\) 0 0
\(639\) 93.5064 348.970i 0.146332 0.546120i
\(640\) 0 0
\(641\) −924.395 533.700i −1.44211 0.832605i −0.444124 0.895965i \(-0.646485\pi\)
−0.997991 + 0.0633603i \(0.979818\pi\)
\(642\) 0 0
\(643\) 530.161 142.056i 0.824512 0.220927i 0.178194 0.983995i \(-0.442975\pi\)
0.646318 + 0.763068i \(0.276308\pi\)
\(644\) 0 0
\(645\) 1265.11 1265.11i 1.96141 1.96141i
\(646\) 0 0
\(647\) −71.9756 + 41.5551i −0.111245 + 0.0642274i −0.554590 0.832124i \(-0.687125\pi\)
0.443345 + 0.896351i \(0.353792\pi\)
\(648\) 0 0
\(649\) 355.754i 0.548157i
\(650\) 0 0
\(651\) 1130.26 1.73618
\(652\) 0 0
\(653\) 480.400 + 832.077i 0.735681 + 1.27424i 0.954424 + 0.298455i \(0.0964712\pi\)
−0.218743 + 0.975783i \(0.570195\pi\)
\(654\) 0 0
\(655\) −698.554 698.554i −1.06649 1.06649i
\(656\) 0 0
\(657\) −176.036 656.977i −0.267940 0.999965i
\(658\) 0 0
\(659\) −30.3538 + 52.5744i −0.0460604 + 0.0797790i −0.888136 0.459580i \(-0.848000\pi\)
0.842076 + 0.539359i \(0.181333\pi\)
\(660\) 0 0
\(661\) 79.7820 + 21.3775i 0.120699 + 0.0323412i 0.318663 0.947868i \(-0.396766\pi\)
−0.197964 + 0.980209i \(0.563433\pi\)
\(662\) 0 0
\(663\) 35.5167 + 61.5167i 0.0535696 + 0.0927853i
\(664\) 0 0
\(665\) 284.554 1061.97i 0.427900 1.59695i
\(666\) 0 0
\(667\) 184.865 + 106.732i 0.277159 + 0.160018i
\(668\) 0 0
\(669\) 828.267 221.933i 1.23807 0.331739i
\(670\) 0 0
\(671\) 253.023 253.023i 0.377083 0.377083i
\(672\) 0 0
\(673\) 140.789 81.2846i 0.209196 0.120780i −0.391742 0.920075i \(-0.628127\pi\)
0.600938 + 0.799296i \(0.294794\pi\)
\(674\) 0 0
\(675\) 556.400i 0.824296i
\(676\) 0 0
\(677\) 354.554 0.523713 0.261857 0.965107i \(-0.415665\pi\)
0.261857 + 0.965107i \(0.415665\pi\)
\(678\) 0 0
\(679\) 441.682 + 765.015i 0.650489 + 1.12668i
\(680\) 0 0
\(681\) −18.9282 18.9282i −0.0277947 0.0277947i
\(682\) 0 0
\(683\) −61.6781 230.186i −0.0903047 0.337022i 0.905961 0.423361i \(-0.139150\pi\)
−0.996266 + 0.0863392i \(0.972483\pi\)
\(684\) 0 0
\(685\) −214.248 + 371.088i −0.312771 + 0.541735i
\(686\) 0 0
\(687\) −1107.37 296.718i −1.61189 0.431904i
\(688\) 0 0
\(689\) 284.692 164.367i 0.413195 0.238558i
\(690\) 0 0
\(691\) −121.397 + 453.061i −0.175684 + 0.655661i 0.820750 + 0.571287i \(0.193556\pi\)
−0.996434 + 0.0843737i \(0.973111\pi\)
\(692\) 0 0
\(693\) −1888.84 1090.52i −2.72560 1.57363i
\(694\) 0 0
\(695\) 1483.03 397.377i 2.13386 0.571765i
\(696\) 0 0
\(697\) −17.7776 + 17.7776i −0.0255058 + 0.0255058i
\(698\) 0 0
\(699\) 2021.24 1166.96i 2.89162 1.66948i
\(700\) 0 0
\(701\) 657.692i 0.938220i −0.883140 0.469110i \(-0.844575\pi\)
0.883140 0.469110i \(-0.155425\pi\)
\(702\) 0 0
\(703\) 112.833 0.160503
\(704\) 0 0
\(705\) 680.554 + 1178.75i 0.965324 + 1.67199i
\(706\) 0 0
\(707\) −1316.97 1316.97i −1.86276 1.86276i
\(708\) 0 0
\(709\) −160.279 598.171i −0.226064 0.843683i −0.981975 0.189009i \(-0.939473\pi\)
0.755911 0.654674i \(-0.227194\pi\)
\(710\) 0 0
\(711\) −680.774 + 1179.14i −0.957488 + 1.65842i
\(712\) 0 0
\(713\) 115.426 + 30.9282i 0.161887 + 0.0433776i
\(714\) 0 0
\(715\) 603.100 + 348.200i 0.843496 + 0.486993i
\(716\) 0 0
\(717\) −76.5538 + 285.703i −0.106770 + 0.398469i
\(718\) 0 0
\(719\) 487.923 + 281.703i 0.678613 + 0.391798i 0.799332 0.600889i \(-0.205187\pi\)
−0.120719 + 0.992687i \(0.538520\pi\)
\(720\) 0 0
\(721\) 446.851 119.733i 0.619766 0.166066i
\(722\) 0 0
\(723\) −896.802 + 896.802i −1.24039 + 1.24039i
\(724\) 0 0
\(725\) −242.921 + 140.251i −0.335064 + 0.193449i
\(726\) 0 0
\(727\) 877.779i 1.20740i 0.797212 + 0.603700i \(0.206307\pi\)
−0.797212 + 0.603700i \(0.793693\pi\)
\(728\) 0 0
\(729\) 282.138 0.387021
\(730\) 0 0
\(731\) −28.2487 48.9282i −0.0386439 0.0669332i
\(732\) 0 0
\(733\) −629.878 629.878i −0.859315 0.859315i 0.131943 0.991257i \(-0.457878\pi\)
−0.991257 + 0.131943i \(0.957878\pi\)
\(734\) 0 0
\(735\) 647.496 + 2416.49i 0.880947 + 3.28774i
\(736\) 0 0
\(737\) 529.626 917.338i 0.718624 1.24469i
\(738\) 0 0
\(739\) 1064.61 + 285.261i 1.44061 + 0.386010i 0.892747 0.450559i \(-0.148775\pi\)
0.547862 + 0.836569i \(0.315442\pi\)
\(740\) 0 0
\(741\) 1150.47 + 308.267i 1.55259 + 0.416014i
\(742\) 0 0
\(743\) 10.3848 38.7564i 0.0139768 0.0521621i −0.958585 0.284806i \(-0.908071\pi\)
0.972562 + 0.232644i \(0.0747376\pi\)
\(744\) 0 0
\(745\) −224.913 129.854i −0.301897 0.174300i
\(746\) 0 0
\(747\) 102.785 27.5411i 0.137597 0.0368689i
\(748\) 0 0
\(749\) −1197.39 + 1197.39i −1.59866 + 1.59866i
\(750\) 0 0
\(751\) −234.413 + 135.338i −0.312134 + 0.180211i −0.647881 0.761741i \(-0.724345\pi\)
0.335747 + 0.941952i \(0.391011\pi\)
\(752\) 0 0
\(753\) 2576.07i 3.42108i
\(754\) 0 0
\(755\) 823.146 1.09026
\(756\) 0 0
\(757\) 211.354 + 366.076i 0.279199 + 0.483587i 0.971186 0.238323i \(-0.0765977\pi\)
−0.691987 + 0.721910i \(0.743264\pi\)
\(758\) 0 0
\(759\) −233.415 233.415i −0.307530 0.307530i
\(760\) 0 0
\(761\) −252.362 941.829i −0.331619 1.23762i −0.907488 0.420078i \(-0.862003\pi\)
0.575869 0.817542i \(-0.304664\pi\)
\(762\) 0 0
\(763\) 657.723 1139.21i 0.862022 1.49307i
\(764\) 0 0
\(765\) 116.756 + 31.2846i 0.152622 + 0.0408949i
\(766\) 0 0
\(767\) −353.800 353.800i −0.461278 0.461278i
\(768\) 0 0
\(769\) −41.1149 + 153.443i −0.0534654 + 0.199536i −0.987492 0.157667i \(-0.949603\pi\)
0.934027 + 0.357203i \(0.116269\pi\)
\(770\) 0 0
\(771\) −587.363 339.114i −0.761819 0.439837i
\(772\) 0 0
\(773\) −698.599 + 187.189i −0.903751 + 0.242159i −0.680626 0.732631i \(-0.738292\pi\)
−0.223124 + 0.974790i \(0.571626\pi\)
\(774\) 0 0
\(775\) −111.033 + 111.033i −0.143269 + 0.143269i
\(776\) 0 0
\(777\) −360.267 + 208.000i −0.463664 + 0.267696i
\(778\) 0 0
\(779\) 421.556i 0.541150i
\(780\) 0 0
\(781\) −160.113 −0.205010
\(782\) 0 0
\(783\) 1057.94 + 1832.41i 1.35114 + 2.34024i
\(784\) 0 0
\(785\) −280.198 280.198i −0.356940 0.356940i
\(786\) 0 0
\(787\) −268.750 1002.99i −0.341487 1.27445i −0.896663 0.442713i \(-0.854016\pi\)
0.555177 0.831732i \(-0.312651\pi\)
\(788\) 0 0
\(789\) −290.200 + 502.641i −0.367807 + 0.637061i
\(790\) 0 0
\(791\) −1609.74 431.328i −2.03507 0.545295i
\(792\) 0 0
\(793\) 503.267i 0.634636i
\(794\) 0 0
\(795\) 207.258 773.496i 0.260701 0.972951i
\(796\) 0 0
\(797\) 1033.00 + 596.405i 1.29612 + 0.748312i 0.979731 0.200319i \(-0.0641977\pi\)
0.316384 + 0.948631i \(0.397531\pi\)
\(798\) 0 0
\(799\) 41.5167 11.1244i 0.0519608 0.0139228i
\(800\) 0 0
\(801\) 1664.02 1664.02i 2.07743 2.07743i
\(802\) 0 0
\(803\) −261.046 + 150.715i −0.325089 + 0.187690i
\(804\) 0 0
\(805\) 428.554i 0.532365i
\(806\) 0 0
\(807\) −500.287 −0.619935
\(808\) 0 0
\(809\) −192.845 334.018i −0.238375 0.412878i 0.721873 0.692025i \(-0.243281\pi\)
−0.960248 + 0.279148i \(0.909948\pi\)
\(810\) 0 0
\(811\) −496.823 496.823i −0.612606 0.612606i 0.331019 0.943624i \(-0.392608\pi\)
−0.943624 + 0.331019i \(0.892608\pi\)
\(812\) 0 0
\(813\) −133.856 499.559i −0.164645 0.614464i
\(814\) 0 0
\(815\) 712.592 1234.25i 0.874346 1.51441i
\(816\) 0 0
\(817\) −915.041 245.184i −1.12000 0.300103i
\(818\) 0 0
\(819\) −2963.00 + 793.933i −3.61783 + 0.969394i
\(820\) 0 0
\(821\) −414.570 + 1547.20i −0.504957 + 1.88453i −0.0399843 + 0.999200i \(0.512731\pi\)
−0.464973 + 0.885325i \(0.653936\pi\)
\(822\) 0 0
\(823\) −525.282 303.272i −0.638253 0.368495i 0.145688 0.989331i \(-0.453460\pi\)
−0.783941 + 0.620835i \(0.786794\pi\)
\(824\) 0 0
\(825\) 418.985 112.267i 0.507860 0.136081i
\(826\) 0 0
\(827\) −815.167 + 815.167i −0.985691 + 0.985691i −0.999899 0.0142079i \(-0.995477\pi\)
0.0142079 + 0.999899i \(0.495477\pi\)
\(828\) 0 0
\(829\) −547.172 + 315.910i −0.660038 + 0.381073i −0.792291 0.610143i \(-0.791112\pi\)
0.132253 + 0.991216i \(0.457779\pi\)
\(830\) 0 0
\(831\) 2451.20i 2.94970i
\(832\) 0 0
\(833\) 79.0000 0.0948379
\(834\) 0 0
\(835\) 84.7461 + 146.785i 0.101492 + 0.175790i
\(836\) 0 0
\(837\) 837.549 + 837.549i 1.00066 + 1.00066i
\(838\) 0 0
\(839\) −29.4473 109.899i −0.0350980 0.130988i 0.946154 0.323717i \(-0.104933\pi\)
−0.981252 + 0.192730i \(0.938266\pi\)
\(840\) 0 0
\(841\) −112.846 + 195.455i −0.134181 + 0.232408i
\(842\) 0 0
\(843\) 1214.60 + 325.450i 1.44080 + 0.386062i
\(844\) 0 0
\(845\) 946.075 253.500i 1.11962 0.300000i
\(846\) 0 0
\(847\) 104.139 388.651i 0.122950 0.458856i
\(848\) 0 0
\(849\) 1183.96 + 683.559i 1.39453 + 0.805134i
\(850\) 0 0
\(851\) −42.4833 + 11.3834i −0.0499217 + 0.0133765i
\(852\) 0 0
\(853\) −265.826 + 265.826i −0.311637 + 0.311637i −0.845544 0.533907i \(-0.820723\pi\)
0.533907 + 0.845544i \(0.320723\pi\)
\(854\) 0 0
\(855\) 1755.23 1013.38i 2.05290 1.18524i
\(856\) 0 0
\(857\) 670.268i 0.782110i 0.920367 + 0.391055i \(0.127890\pi\)
−0.920367 + 0.391055i \(0.872110\pi\)
\(858\) 0 0
\(859\) −36.8334 −0.0428794 −0.0214397 0.999770i \(-0.506825\pi\)
−0.0214397 + 0.999770i \(0.506825\pi\)
\(860\) 0 0
\(861\) −777.108 1345.99i −0.902564 1.56329i
\(862\) 0 0
\(863\) 124.939 + 124.939i 0.144772 + 0.144772i 0.775778 0.631006i \(-0.217358\pi\)
−0.631006 + 0.775778i \(0.717358\pi\)
\(864\) 0 0
\(865\) 283.061 + 1056.40i 0.327239 + 1.22127i
\(866\) 0 0
\(867\) −786.831 + 1362.83i −0.907532 + 1.57189i
\(868\) 0 0
\(869\) 582.851 + 156.175i 0.670715 + 0.179718i
\(870\) 0 0
\(871\) −385.583 1439.02i −0.442690 1.65214i
\(872\) 0 0
\(873\) −421.474 + 1572.96i −0.482788 + 1.80179i
\(874\) 0 0
\(875\) 931.923 + 538.046i 1.06505 + 0.614910i
\(876\) 0 0
\(877\) 502.038 134.521i 0.572449 0.153387i 0.0390295 0.999238i \(-0.487573\pi\)
0.533420 + 0.845851i \(0.320907\pi\)
\(878\) 0 0
\(879\) −1369.38 + 1369.38i −1.55789 + 1.55789i
\(880\) 0 0
\(881\) −1146.46 + 661.908i −1.30132 + 0.751315i −0.980630 0.195871i \(-0.937247\pi\)
−0.320686 + 0.947186i \(0.603913\pi\)
\(882\) 0 0
\(883\) 789.464i 0.894070i −0.894516 0.447035i \(-0.852480\pi\)
0.894516 0.447035i \(-0.147520\pi\)
\(884\) 0 0
\(885\) −1218.83 −1.37721
\(886\) 0 0
\(887\) 632.410 + 1095.37i 0.712977 + 1.23491i 0.963735 + 0.266862i \(0.0859867\pi\)
−0.250758 + 0.968050i \(0.580680\pi\)
\(888\) 0 0
\(889\) −1461.35 1461.35i −1.64382 1.64382i
\(890\) 0 0
\(891\) −397.797 1484.60i −0.446462 1.66622i
\(892\) 0 0
\(893\) 360.344 624.133i 0.403520 0.698917i
\(894\) 0 0
\(895\) −432.631 115.923i −0.483386 0.129523i
\(896\) 0 0
\(897\) −464.267 −0.517577
\(898\) 0 0
\(899\) −154.550 + 576.788i −0.171913 + 0.641589i
\(900\) 0 0
\(901\) −21.8993 12.6436i −0.0243056 0.0140328i
\(902\) 0 0
\(903\) 3373.62 903.959i 3.73601 1.00106i
\(904\) 0 0
\(905\) 985.829 985.829i 1.08931 1.08931i
\(906\) 0 0
\(907\) −1122.13 + 647.864i −1.23719 + 0.714293i −0.968519 0.248938i \(-0.919918\pi\)
−0.268673 + 0.963232i \(0.586585\pi\)
\(908\) 0 0
\(909\) 3433.42i 3.77714i
\(910\) 0 0
\(911\) 458.733 0.503549 0.251774 0.967786i \(-0.418986\pi\)
0.251774 + 0.967786i \(0.418986\pi\)
\(912\) 0 0
\(913\) −23.5795 40.8409i −0.0258264 0.0447327i
\(914\) 0 0
\(915\) −866.869 866.869i −0.947398 0.947398i
\(916\) 0 0
\(917\) −499.138 1862.81i −0.544317 2.03142i
\(918\) 0 0
\(919\) −637.804 + 1104.71i −0.694019 + 1.20208i 0.276491 + 0.961017i \(0.410828\pi\)
−0.970510 + 0.241060i \(0.922505\pi\)
\(920\) 0 0
\(921\) −1660.74 444.995i −1.80320 0.483165i
\(922\) 0 0
\(923\) −159.233 + 159.233i −0.172517 + 0.172517i
\(924\) 0 0
\(925\) 14.9583 55.8250i 0.0161711 0.0603513i
\(926\) 0 0
\(927\) 738.558 + 426.406i 0.796718 + 0.459985i
\(928\) 0 0
\(929\) −742.056 + 198.833i −0.798768 + 0.214029i −0.635043 0.772477i \(-0.719018\pi\)
−0.163725 + 0.986506i \(0.552351\pi\)
\(930\) 0 0
\(931\) 936.656 936.656i 1.00608 1.00608i
\(932\) 0 0
\(933\) −334.046 + 192.862i −0.358034 + 0.206711i
\(934\) 0 0
\(935\) 53.5692i 0.0572933i
\(936\) 0 0
\(937\) −969.985 −1.03520 −0.517601 0.855622i \(-0.673175\pi\)
−0.517601 + 0.855622i \(0.673175\pi\)
\(938\) 0 0
\(939\) −1502.96 2603.21i −1.60060 2.77232i
\(940\) 0 0
\(941\) 880.815 + 880.815i 0.936042 + 0.936042i 0.998074 0.0620325i \(-0.0197582\pi\)
−0.0620325 + 0.998074i \(0.519758\pi\)
\(942\) 0 0
\(943\) −42.5294 158.722i −0.0451001 0.168316i
\(944\) 0 0
\(945\) −2123.94 + 3678.77i −2.24755 + 3.89288i
\(946\) 0 0
\(947\) 708.865 + 189.940i 0.748538 + 0.200570i 0.612869 0.790184i \(-0.290015\pi\)
0.135668 + 0.990754i \(0.456682\pi\)
\(948\) 0 0
\(949\) −109.725 + 409.500i −0.115622 + 0.431507i
\(950\) 0 0
\(951\) −574.022 + 2142.28i −0.603598 + 2.25266i
\(952\) 0 0
\(953\) −846.431 488.687i −0.888175 0.512788i −0.0148299 0.999890i \(-0.504721\pi\)
−0.873345 + 0.487102i \(0.838054\pi\)
\(954\) 0 0
\(955\) 657.142 176.081i 0.688107 0.184378i
\(956\) 0 0
\(957\) 1166.39 1166.39i 1.21880 1.21880i
\(958\) 0 0
\(959\) −724.415 + 418.241i −0.755386 + 0.436122i
\(960\) 0 0
\(961\) 626.723i 0.652157i
\(962\) 0 0
\(963\) −3121.67 −3.24161
\(964\) 0 0
\(965\) 593.367 + 1027.74i 0.614888 + 1.06502i
\(966\) 0 0
\(967\) 931.492 + 931.492i 0.963281 + 0.963281i 0.999349 0.0360688i \(-0.0114835\pi\)
−0.0360688 + 0.999349i \(0.511484\pi\)
\(968\) 0 0
\(969\) −23.7128 88.4974i −0.0244714 0.0913286i
\(970\) 0 0
\(971\) −665.678 + 1152.99i −0.685559 + 1.18742i 0.287701 + 0.957720i \(0.407109\pi\)
−0.973261 + 0.229703i \(0.926224\pi\)
\(972\) 0 0
\(973\) 2895.08 + 775.733i 2.97541 + 0.797259i
\(974\) 0 0
\(975\) 305.033 528.333i 0.312855 0.541880i
\(976\) 0 0
\(977\) −185.625 + 692.761i −0.189995 + 0.709070i 0.803511 + 0.595290i \(0.202963\pi\)
−0.993506 + 0.113780i \(0.963704\pi\)
\(978\) 0 0
\(979\) −903.202 521.464i −0.922576 0.532650i
\(980\) 0 0
\(981\) 2342.35 627.630i 2.38771 0.639786i
\(982\) 0 0
\(983\) 788.487 788.487i 0.802123 0.802123i −0.181304 0.983427i \(-0.558032\pi\)
0.983427 + 0.181304i \(0.0580318\pi\)
\(984\) 0 0
\(985\) 1741.54 1005.48i 1.76806 1.02079i
\(986\) 0 0
\(987\) 2657.07i 2.69206i
\(988\) 0 0
\(989\) 369.261 0.373368
\(990\) 0 0
\(991\) 340.627 + 589.983i 0.343720 + 0.595341i 0.985120 0.171865i \(-0.0549794\pi\)
−0.641400 + 0.767207i \(0.721646\pi\)
\(992\) 0 0
\(993\) 130.410 + 130.410i 0.131329 + 0.131329i
\(994\) 0 0
\(995\) −171.804 641.181i −0.172667 0.644403i
\(996\) 0 0
\(997\) 247.761 429.135i 0.248507 0.430427i −0.714605 0.699528i \(-0.753393\pi\)
0.963112 + 0.269102i \(0.0867268\pi\)
\(998\) 0 0
\(999\) −421.100 112.833i −0.421521 0.112946i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.3.bd.b.193.1 4
4.3 odd 2 104.3.v.b.89.1 4
13.6 odd 12 inner 208.3.bd.b.97.1 4
52.19 even 12 104.3.v.b.97.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.3.v.b.89.1 4 4.3 odd 2
104.3.v.b.97.1 yes 4 52.19 even 12
208.3.bd.b.97.1 4 13.6 odd 12 inner
208.3.bd.b.193.1 4 1.1 even 1 trivial